Skip to content
2000
image of Surgical Advancements, Immunotherapy, Targeted and Conventional Therapies, Biopsy, Colposcopy, and Pap Smear Integration in the Management of Cervical Cancer

Abstract

Cervical cancer remains a significant global health concern, making it essential to investigate new treatment options continuously. This page provides an overview of the latest advancements and best practices in detection and intervention, including Pap smears, colposcopy, biopsy, immunotherapy, targeted therapies, chemotherapy, radiation therapy, and surgery. Surgical techniques such as radical hysterectomy and minimally invasive procedures have advanced to enhance patient outcomes and quality of life. Simultaneously, radiation therapy methods have been refined to maximize tumour control while reducing adverse effects. Chemotherapy remains vital, with new drugs and combination regimens demonstrating improved tolerance and efficacy. Immunotherapy, notably immune checkpoint inhibitors, has shown promise in advanced stages of cervical cancer. Additionally, targeted therapies that focus on specific biochemical pathways offer the potential for personalized treatment approaches. This review critically assesses ongoing research, evaluates existing data, and emphasizes the opportunities and challenges of each therapeutic approach. Ultimately, integrating these diverse treatment strategies is the key to enhancing patient outcomes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673337745241123054840
2025-01-22
2025-04-11
Loading full text...

Full text loading...

References

  1. Roy P.S. Saikia B.J. Cancer and cure: A critical analysis. Indian J. Cancer 2016 53 3 441 442 10.4103/0019‑509X.200658 28244479
    [Google Scholar]
  2. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends-An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  3. Malagón T. Louvanto K. Ramanakumar A.V. Koushik A. Coutlée F. Franco E.L. Viral load of human papillomavirus types 16/18/31/33/45 as a predictor of cervical intraepithelial neoplasia and cancer by age. Gynecol. Oncol. 2019 155 2 245 253 10.1016/j.ygyno.2019.09.010 31604665
    [Google Scholar]
  4. Seifert F. Eisenblätter R. Beckmann J. Schürmann P. Hanel P. Jentschke M. Böhmer G. Strauß H.G. Hirchenhain C. Schmidmayr M. Müller F. Fasching P. Luyten A. Häfner N. Dürst M. Runnebaum I.B. Hillemanns P. Dörk T. Ramachandran D. Association of two genomic variants with HPV type-specific risk of cervical cancer. Tumour Virus Research 2023 16 200269 10.1016/j.tvr.2023.200269 37499979
    [Google Scholar]
  5. Burmeister C.A. Khan S.F. Schäfer G. Mbatani N. Adams T. Moodley J. Prince S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022 13 20023
    [Google Scholar]
  6. Perkins R.B. Wentzensen N. Guido R.S. Schiffman M. Cervical cancer screening. JAMA 2023 330 6 547 558 10.1001/jama.2023.13174 37552298
    [Google Scholar]
  7. Muhammad Husni C. Agus Priyo W. Upik Anderiani M. Berti N. Rina M. Syahrul R. Syarifuddin W. Detection of human papilloma virus (HPV) in parafin block of cervical cancer patients using multiplex polymerase chain reaction (PCR) and reverse line blot methods. Medicina Clínica Práctica 2021 4 100225
    [Google Scholar]
  8. Li X. Zhang Y. Wu H. Li S. Ge S. Gao J. A case of neoadjuvant chemotherapy in pregnancy with cervical cancer (IB3). Cancer Treat. Res. Commun. 2024 38 100749 10.1016/j.ctarc.2023.100749 38184968
    [Google Scholar]
  9. Plummer M. Peto J. Franceschi S. Time since first sexual intercourse and the risk of cervical cancer. Int. J. Cancer 2012 130 11 2638 2644 10.1002/ijc.26250 21702036
    [Google Scholar]
  10. Zhang S. Xu H. Zhang L. Qiao Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020 32 6 720 728 10.21147/j.issn.1000‑9604.2020.06.05 33446995
    [Google Scholar]
  11. Chen Q. Huang Y. Shao L. Han-Zhang H. Yang F. Wang Y. Liu J. Gan J. An EGFR-amplified cervical squamous cell carcinoma patient with pulmonary metastasis benefits from afatinib: A case report. OncoTargets Ther. 2020 13 1845 1849 10.2147/OTT.S236382 32184619
    [Google Scholar]
  12. Tewari K.S. Sill M.W. Long H.J. III Penson R.T. Huang H. Ramondetta L.M. Landrum L.M. Oaknin A. Reid T.J. Leitao M.M. Michael H.E. Monk B.J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 2014 370 8 734 743 10.1056/NEJMoa1309748 24552320
    [Google Scholar]
  13. Thibult M.L. Mamessier E. Gertner-Dardenne J. Pastor S. Just-Landi S. Xerri L. Chetaille B. Olive D. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 2013 25 2 129 137 10.1093/intimm/dxs098 23087177
    [Google Scholar]
  14. Bhatla N. Berek J.S. Cuello Fredes M. Denny L.A. Grenman S. Karunaratne K. Kehoe S.T. Konishi I. Olawaiye A.B. Prat J. Sankaranarayanan R. Brierley J. Mutch D. Querleu D. Cibula D. Quinn M. Botha H. Sigurd L. Rice L. Ryu H.S. Ngan H. Mäenpää J. Andrijono A. Purwoto G. Maheshwari A. Bafna U.D. Plante M. Natarajan J. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019 145 1 129 135 10.1002/ijgo.12749 30656645
    [Google Scholar]
  15. Bhatla N. Aoki D. Sharma D.N. Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018 143 S2 Suppl. 2 22 36 10.1002/ijgo.12611 30306584
    [Google Scholar]
  16. Nicolet V. Carignan L. Bourdon F. Prosmanne O. MR imaging of cervical carcinoma: A practical staging approach. Radiographics 2000 20 6 1539 1549 10.1148/radiographics.20.6.g00nv111539 11112809
    [Google Scholar]
  17. Nanthamongkolkul K. Hanprasertpong J. Predictive factors of pelvic lymph node metastasis in early-stage cervical cancer. Oncol. Res. Treat. 2018 41 4 194 198 10.1159/000485840 29562222
    [Google Scholar]
  18. Šarenac T. Mikov M. Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease. Front Pharmacol 2019 10 484
    [Google Scholar]
  19. Berek J.S. Matsuo K. Grubbs B.H. Gaffney D.K. Lee S.I. Kilcoyne A. Cheon G.J. Yoo C.W. Li L. Shao Y. Chen T. Kim M. Mikami M. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019 30 2 e40 10.3802/jgo.2019.30.e40 30740962
    [Google Scholar]
  20. Matsuo K. Machida H. Mandelbaum R.S. Konishi I. Mikami M. Validation of the 2018 FIGO cervical cancer staging system. Gynecol. Oncol. 2019 152 1 87 93 10.1016/j.ygyno.2018.10.026 30389105
    [Google Scholar]
  21. Otero-García M.M. Mesa-Álvarez A. Nikolic O. Blanco-Lobato P. Basta-Nikolic M. de Llano-Ortega R.M. Paredes-Velázquez L. Nikolic N. Szewczyk-Bieda M. Role of MRI in staging and follow-up of endometrial and cervical cancer: Pitfalls and mimickers. Insights Imaging 2019 10 1 19 10.1186/s13244‑019‑0696‑8 30758678
    [Google Scholar]
  22. Balleyguier C. Sala E. Da Cunha T. Bergman A. Brkljacic B. Danza F. Forstner R. Hamm B. Kubik-Huch R. Lopez C. Manfredi R. McHugo J. Oleaga L. Togashi K. Kinkel K. Staging of uterine cervical cancer with MRI: Guidelines of the European Society of Urogenital Radiology. Eur. Radiol. 2011 21 5 1102 1110 10.1007/s00330‑010‑1998‑x 21063710
    [Google Scholar]
  23. Valentini A.L. Gui B. Miccò M. Giuliani M. Rodolfino E. Ninivaggi V. Iacobucci M. Marino M. Gambacorta M.A. Testa A.C. Zannoni G.F. Bonomo L. MRI anatomy of parametrial extension to better identify local pathways of disease spread in cervical cancer. Diagn. Interv. Radiol. 2016 22 4 319 325 10.5152/dir.2015.15282 27165471
    [Google Scholar]
  24. Hricak H. MRI of the female pelvis: A review. AJR Am. J. Roentgenol. 1986 146 6 1115 1122 10.2214/ajr.146.6.1115 3486556
    [Google Scholar]
  25. Choi H.J. Ju W. Myung S.K. Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: Meta-analysis. Cancer Sci. 2010 101 6 1471 1479 10.1111/j.1349‑7006.2010.01532.x 20298252
    [Google Scholar]
  26. Pannu H.K. Corl F.M. Fishman E.K. CT evaluation of cervical cancer: Spectrum of disease. Radiographics 2001 21 5 1155 1168 10.1148/radiographics.21.5.g01se311155 11553823
    [Google Scholar]
  27. Wright J.D. Matsuo K. Huang Y. Tergas A.I. Hou J.Y. Khoury-Collado F. St Clair C.M. Ananth C.V. Neugut A.I. Hershman D.L. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines. Obstet. Gynecol. 2019 134 1 49 57 10.1097/AOG.0000000000003311 31188324
    [Google Scholar]
  28. Ayhan A. Aslan K. Öz M. Tohma Y.A. Kuşçu E. Meydanli M.M. Para-aortic lymph node involvement revisited in the light of the revised 2018 FIGO staging system for cervical cancer. Arch. Gynecol. Obstet. 2019 300 3 675 682 10.1007/s00404‑019‑05232‑7 31263988
    [Google Scholar]
  29. Nishio S. Matsuo K. Yonemoto K. Shimokawa M. Hosaka M. Kodama M. Miyake T.M. Ushijima K. Kamura T. Westin S.N. Soliman P.T. Coleman R.L. Race and nodal disease status are prognostic factors in patients with stage IVB cervical cancer. Oncotarget 2018 9 64 32321 32330 10.18632/oncotarget.25962 30190789
    [Google Scholar]
  30. Rockall A.G. Ghosh S. Alexander-Sefre F. Babar S. Younis M.T.S. Naz S. Jacobs I.J. Reznek R.H. Can MRI rule out bladder and rectal invasion in cervical cancer to help select patients for limited EUA? Gynecol. Oncol. 2006 101 2 244 249 10.1016/j.ygyno.2005.10.012 16310245
    [Google Scholar]
  31. Li H. Wu X. Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol. 2016 27 4 e43 10.3802/jgo.2016.27.e43 27171673
    [Google Scholar]
  32. Jain M.A. Limaiem F. Cervical Squamous Cell Carcinoma. StatPearls StatPearls Publishing 2024
    [Google Scholar]
  33. Takeuchi S. Biology and treatment of cervical adenocarcinoma. Chin. J. Cancer Res. 2016 28 2 254 262 10.21147/j.issn.1000‑9604.2016.02.11 27198186
    [Google Scholar]
  34. Gien L.T. Beauchemin M.C. Thomas G. Adenocarcinoma: A unique cervical cancer. Gynecol. Oncol. 2010 116 1 140 146 10.1016/j.ygyno.2009.09.040 19880165
    [Google Scholar]
  35. Stolnicu S. Hoang L. Hanko-Bauer O. Barsan I. Terinte C. Pesci A. Aviel-Ronen S. Kiyokawa T. Alvarado-Cabrero I. Oliva E. Park K.J. Soslow R.A. Retracted article: Cervical adenosquamous carcinoma: Detailed analysis of morphology, immunohistochemical profile, and clinical outcomes in 59 cases. Mod. Pathol. 2019 32 2 269 279 10.1038/s41379‑018‑0123‑6 30258209
    [Google Scholar]
  36. Boustani J. Achkar S. Bertaut A. Genestie C. Gouy S. Pautier P. Morice P. Haie-Meder C. Chargari C. Glassy cell carcinoma of the uterine cervix: 20-year experience from a comprehensive cancer center. Cancer Radiother. 2021 25 3 207 212 10.1016/j.canrad.2020.07.007 33408051
    [Google Scholar]
  37. Talerman A. Alenghat E. Okagaki T. Glassy cell carcinoma of the uterine cervix. APMIS 1991 Suppl 23 119 25
    [Google Scholar]
  38. Tempfer C.B. Tischoff I. Dogan A. Hilal Z. Schultheis B. Kern P. Rezniczek G.A. Neuroendocrine carcinoma of the cervix: A systematic review of the literature. BMC Cancer 2018 18 1 530 10.1186/s12885‑018‑4447‑x 29728073
    [Google Scholar]
  39. Kumar T. Nigam J.S. Kumari M. Swati J. Pandey J. Cervical neuroendocrine carcinoma: A rare case report. Cureus 2021 13 6 e15532 10.7759/cureus.15532 34269772
    [Google Scholar]
  40. Mirabello L. Clarke M. Nelson C. Dean M. Wentzensen N. Yeager M. Cullen M. Boland J. Schiffman M. Burk R. The intersection of HPV epidemiology, genomics and mechanistic studies of HPV-mediated carcinogenesis. Viruses 2018 10 2 80 10.3390/v10020080 29438321
    [Google Scholar]
  41. Chen A.A. Gheit T. Franceschi S. Tommasino M. Clifford G.M. Human papillomavirus 18 genetic variation and cervical cancer risk worldwide. J. Virol. 2015 89 20 10680 10687 10.1128/JVI.01747‑15 26269181
    [Google Scholar]
  42. De Brot L. Pellegrini B. Moretti S.T. Carraro D.M. Soares F.A. Rocha R.M. Baiocchi G. da Cunha I.W. de Andrade V.P. Infections with multiple high-risk HPV types are associated with high-grade and persistent low-grade intraepithelial lesions of the cervix. Cancer Cytopathol. 2017 125 2 138 143 10.1002/cncy.21789 27870295
    [Google Scholar]
  43. Cornet I. Gheit T. Franceschi S. Vignat J. Burk R.D. Sylla B.S. Tommasino M. Clifford G.M. Human papillomavirus type 16 genetic variants: Phylogeny and classification based on E6 and LCR. J. Virol. 2012 86 12 6855 6861 10.1128/JVI.00483‑12 22491459
    [Google Scholar]
  44. Chen A.A. Heideman D.A.M. Boon D. Chen Z. Burk R.D. De Vuyst H. Gheit T. Snijders P.J.F. Tommasino M. Franceschi S. Clifford G.M. Human papillomavirus 33 worldwide genetic variation and associated risk of cervical cancer. Virology 2014 448 356 362 10.1016/j.virol.2013.10.033 24314666
    [Google Scholar]
  45. Chen A.A. Heideman D.A.M. Boon D. Gheit T. Snijders P.J.F. Tommasino M. Franceschi S. Clifford G.M. Human papillomavirus 45 genetic variation and cervical cancer risk worldwide. J. Virol. 2014 88 8 4514 4521 10.1128/JVI.03534‑13 24501412
    [Google Scholar]
  46. Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer Nature 2017 543 7645 378 384 10.1038/nature21386 28112728
    [Google Scholar]
  47. Henken F.E. Wilting S.M. Overmeer R.M. van Rietschoten J.G.I. Nygren A.O.H. Errami A. Schouten J.P. Meijer C.J.L.M. Snijders P.J.F. Steenbergen R.D.M. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br. J. Cancer 2007 97 10 1457 1464 10.1038/sj.bjc.6604055 17971771
    [Google Scholar]
  48. Dong S.M. Kim H.S. Rha S.H. Sidransky D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin. Cancer Res. 2001 7 7 1982 1986 11448914
    [Google Scholar]
  49. Sartor M.A. Dolinoy D.C. Jones T.R. Colacino J.A. Prince M.E.P. Carey T.E. Rozek L.S. Genome-wide methylation and expression differences in HPV(+) and HPV(-) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics 2011 6 6 777 787 10.4161/epi.6.6.16216 21613826
    [Google Scholar]
  50. Curty G. Menezes A.N. Brant A.C. de Mulder Rougvie M. Moreira M.Â.M. Soares M.A. Expression of retroelements in cervical cancer and their interplay with HPV infection and host gene expression. Cancers 2021 13 14 3513 10.3390/cancers13143513 34298727
    [Google Scholar]
  51. Helt A.M. Funk J.O. Galloway D.A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol. 2002 76 20 10559 10568 10.1128/JVI.76.20.10559‑10568.2002 12239337
    [Google Scholar]
  52. Shin M.K. Balsitis S. Brake T. Lambert P.F. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res. 2009 69 14 5656 5663 10.1158/0008‑5472.CAN‑08‑3711 19584294
    [Google Scholar]
  53. Wijetunga N.A. Belbin T.J. Burk R.D. Whitney K. Abadi M. Greally J.M. Einstein M.H. Schlecht N.F. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia. Gynecol. Oncol. 2016 142 3 566 573 10.1016/j.ygyno.2016.07.006 27401842
    [Google Scholar]
  54. McLaughlin-Drubin M.E. Park D. Munger K. Tumor suppressor p16 INK4A is necessary for survival of cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 2013 110 40 16175 16180 10.1073/pnas.1310432110 24046371
    [Google Scholar]
  55. Karim R. Meyers C. Backendorf C. Ludigs K. Offringa R. van Ommen G.J.B. Melief C.J.M. van der Burg S.H. Boer J.M. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One 2011 6 3 e17848 10.1371/journal.pone.0017848 21423754
    [Google Scholar]
  56. Agarwal S.M. Raghav D. Singh H. Raghava G.P.S. CCDB: A curated database of genes involved in cervix cancer. Nucleic Acids Res. 2011 39 Database Suppl. 1 D975 D979 10.1093/nar/gkq1024 21045064
    [Google Scholar]
  57. Ngo C. Samuels S. Bagrintseva K. Slocker A. Hupé P. Kenter G. Popovic M. Samet N. Tresca P. von der Leyen H. Deutsch E. Rouzier R. Belin L. Kamal M. Scholl S. From prospective biobanking to precision medicine: BIO-RAIDs – An EU study protocol in cervical cancer. BMC Cancer 2015 15 1 842 10.1186/s12885‑015‑1801‑0 26531748
    [Google Scholar]
  58. Sangwaiya A. Gill M. Bairwa S. Chaudhry M. Sen R. Prakash Kataria S. Utility of P16/INK4a and Ki-67 in preneoplasticand neoplastic lesions of cervix. Iran. J. Pathol. 2018 13 3 308 316 30636953
    [Google Scholar]
  59. Gonçalves J.E.S. Andrade C.V. Russomano F.B. Nuovo G.J. Amaro-Filho S.M. Carvalho M.O.O. Nicol A.F. The role of p16 as putative biomarker for cervical neoplasia: A controversial issue? MedicalExpress 2017 4 6 4 10.5935/MedicalExpress.2017.06.01
    [Google Scholar]
  60. McCluggage W.G. Immunohistochemical and functional biomarkers of value in female genital tract lesions. Int. J. Gynecol. Pathol. 2006 25 2 101 120 10.1097/01.pgp.0000192269.14666.68 16633059
    [Google Scholar]
  61. Chen G. Wei K. Ling Y. Su S. Zhu M. Chen G. The prognostic role of Ki-67/MIB-1 in cervical cancer: A systematic review with meta-analysis. Med. Sci. Monit. 2015 21 882 889 10.12659/MSM.892807 25807305
    [Google Scholar]
  62. Cavalcante J. Sampaio J. Filho J. Vieira R. Eleutério J. Lima R. Ribeiro R. Almeida P. Progressive loss of E-cadherin immunoexpression during cervical carcinogenesis. Acta Cirurgica Brasileira 2014 29 667 674
    [Google Scholar]
  63. Ma X. Ge A. Han J. Kang J. Zhang Y. Liu X. Xing L. Liu X. Dong L. Meta-analysis of downregulated E-cadherin as a diagnostic biomarker for cervical cancer. Arch. Gynecol. Obstet. 2022 307 2 331 341 10.1007/s00404‑022‑06475‑7 35279729
    [Google Scholar]
  64. Shah U.J. Nasiruddin M. Dar S.A. Khan M.K.A. Akhter M.R. Singh N. Rabaan A.A. Haque S. Emerging biomarkers and clinical significance of HPV genotyping in prevention and management of cervical cancer. Microb. Pathog. 2020 143 104131 10.1016/j.micpath.2020.104131 32169490
    [Google Scholar]
  65. Vieillard V. Paul M. Physicochemical stability study of a biosimilar of Bevacizumab in vials and after dilution in 0.9% NaCl in polyolefin intravenous bags. Pharm. Technol. Hosp. Pharm. 2023 8 1 20220007 10.1515/pthp‑2022‑0007
    [Google Scholar]
  66. Garcia J. Hurwitz H.I. Sandler A.B. Miles D. Coleman R.L. Deurloo R. Chinot O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020 86 102017 10.1016/j.ctrv.2020.102017 32335505
    [Google Scholar]
  67. Saini J. Bansal V. Chandra A. Madan J. Jain U.K. Chandra R. Jain S.M. Bleomycin sulphate loaded nanostructured lipid particles augment oral bioavailability, cytotoxicity and apoptosis in cervical cancer cells. Colloids Surf. B Biointerfaces 2014 118 101 110 10.1016/j.colsurfb.2014.03.036 24732397
    [Google Scholar]
  68. Colombo N. Dubot C. Lorusso D. Caceres M.V. Hasegawa K. Shapira-Frommer R. Tewari K.S. Salman P. Hoyos Usta E. Yañez E. Gümüş M. Olivera Hurtado de Mendoza M. Samouëlian V. Castonguay V. Arkhipov A. Toker S. Li K. Keefe S.M. Monk B.J. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 2021 385 20 1856 1867 10.1056/NEJMoa2112435 34534429
    [Google Scholar]
  69. Agostinelli V. Musacchio L. Camarda F. Salutari V. Carbone M.V. Ghizzoni V. Nero C. Ricci C. Perri M.T. Giudice E. Lardino S. Berardi R. Scambia G. Lorusso D. Therapeutic potential of tisotumab vedotin in the treatment of recurrent or metastatic cervical cancer: A short report on the emerging data. Cancer Manag. Res. 2023 15 1063 1072 10.2147/CMAR.S294080 37790898
    [Google Scholar]
  70. Sachan P.L. Singh M. Patel M.L. Sachan R. A study on cervical cancer screening using pap smear test and clinical correlation. Asia Pac. J. Oncol. Nurs. 2018 5 3 337 341 10.4103/apjon.apjon_15_18 29963597
    [Google Scholar]
  71. Burness J.V. Schroeder J.M. Warren J.B. Cervical colposcopy: Indications and risk assessment. Am. Fam. Physician 2020 102 1 39 48 32603071
    [Google Scholar]
  72. Valls J. Baena A. Venegas G. Celis M. González M. Sosa C. Santin J.L. Ortega M. Soilán A. Turcios E. Figueroa J. Rodríguez de la Peña M. Figueredo A. Beracochea A.V. Pérez N. Martínez-Better J. Lora O. Jiménez J.Y. Giménez D. Fleider L. Salgado Y. Martínez S. Bellido-Fuentes Y. Flores B. Tatti S. Villagra V. Cruz-Valdez A. Terán C. Sánchez G.I. Rodríguez G. Picconi M.A. Ferrera A. Mendoza L. Calderón A. Murillo R. Wiesner C. Broutet N. Luciani S. Pérez C. Darragh T.M. Jerónimo J. Herrero R. Almonte M. Performance of standardised colposcopy to detect cervical precancer and cancer for triage of women testing positive for human papillomavirus: Results from the ESTAMPA multicentric screening study. Lancet Glob. Health 2023 11 3 e350 e360 10.1016/S2214‑109X(22)00545‑9 36796982
    [Google Scholar]
  73. Oguntayo A.O. The role of punch biopsy in the management of carcinoma of the cervix in a low resource centre. Open J. Clin. Diagn. 2013 3 4 171 172 10.4236/ojcd.2013.34031
    [Google Scholar]
  74. Gage J.C. Duggan M.A. Nation J.G. Gao S. Castle P.E. Detection of cervical cancer and its precursors by endocervical curettage in 13, 115 colposcopically guided biopsy examinations. Am J Obstet Gynecol 2010 203 5 481
    [Google Scholar]
  75. Massad L.S. Perkins R.B. Naresh A. Nelson E.L. Spiryda L. Gecsi K.S. Mulhem E. Kostas-Polston E. Zou T. Giles T.L. Wentzensen N. Colposcopy standards: Guidelines for endocervical curettage at colposcopy. J. Low. Genit. Tract Dis. 2023 27 1 97 101 36222824
    [Google Scholar]
  76. Abraham C. Kim R. Oner C. Bucknor A. Colposcopy and loop electrosurgical excision procedure: A simulated exercise. MedEdPORTAL 2023 19 11344 10.15766/mep_2374‑8265.11344 37691878
    [Google Scholar]
  77. Yang E.J. Kim N.R. Choi J.Y. Kim W.Y. Lee S.J. Loop electrosurgical excision procedure combined with cold coagulation for cervical intraepithelial neoplasia and adenocarcinoma in-situ: A feasible treatment with a low risk of residual/recurrent disease. Infect. Agent. Cancer 2020 15 1 58 10.1186/s13027‑020‑00326‑3 33042214
    [Google Scholar]
  78. Chiva L. Chacon E. Is conization a protective surgical maneuver in early cervical cancer? Ann. Surg. Oncol. 2021 28 7 3463 3464 10.1245/s10434‑021‑09705‑5 33730225
    [Google Scholar]
  79. Nica A. Covens A. Cone biopsy (with pelvic lymphadenectomy) for fertility preservation in early stage cervical cancer: Ready for prime time? Gynecol. Oncol. 2020 158 2 229 230 10.1016/j.ygyno.2020.07.003 32778250
    [Google Scholar]
  80. Klapdor R. Hertel H. Delebinski L. Hillemanns P. Association of preoperative cone biopsy with recurrences after radical hysterectomy. Arch. Gynecol. Obstet. 2022 305 1 215 222 10.1007/s00404‑021‑06145‑0 34291339
    [Google Scholar]
  81. Bourgioti C. Chatoupis K. Moulopoulos L.A. Current imaging strategies for the evaluation of uterine cervical cancer. World J. Radiol. 2016 8 4 342 354 10.4329/wjr.v8.i4.342 27158421
    [Google Scholar]
  82. Poli U. Bidinger P.D. Gowrishankar S. Visual inspection with acetic acid (via) screening program: 7 years experience in early detection of cervical cancer and pre-cancers in rural South India. Indian J. Community Med. 2015 40 3 203 207 10.4103/0970‑0218.158873 26170547
    [Google Scholar]
  83. Smith E.S. Moon A.S. O’Hanlon R. Leitao M.M. Jr Sonoda Y. Abu-Rustum N.R. Mueller J.J. Radical trachelectomy for the treatment of early-stage cervical cancer. Obstet. Gynecol. 2020 136 3 533 542 10.1097/AOG.0000000000003952 32769648
    [Google Scholar]
  84. Ramirez P.T. Frumovitz M. Pareja R. Lopez A. Vieira M. Ribeiro R. Buda A. Yan X. Shuzhong Y. Chetty N. Isla D. Tamura M. Zhu T. Robledo K.P. Gebski V. Asher R. Behan V. Nicklin J.L. Coleman R.L. Obermair A. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N. Engl. J. Med. 2018 379 20 1895 1904 10.1056/NEJMoa1806395 30380365
    [Google Scholar]
  85. Yang J. Cai H. Xiao Z.X. Wang H. Yang P. Effect of radiotherapy on the survival of cervical cancer patients. Medicine 2019 98 30 e16421 10.1097/MD.0000000000016421 31348242
    [Google Scholar]
  86. Chao J. Silin L. Che W. Jie C. Jin W. Xinyue Z. Jinlu M. Mengjiao C. Relationship between visceral obesity and prognosis in patients with stage IVB cervical cancer receiving radiotherapy and chemotherapy. Cancer Pathog Ther. 2023 2 3 180 186
    [Google Scholar]
  87. Feng X. Meng X. Tang D. Guo S. Liao Q. Chen J. Xie Q. Liu F. Fang Y. Sun C. Han Y. Ai J. Li K. Reversal of the immunosuppressive tumor microenvironment via platinum-based neoadjuvant chemotherapy in cervical cancer. Cancer Pathogenesis and Therapy 2024 2 1 38 49 10.1016/j.cpt.2023.07.003 38328710
    [Google Scholar]
  88. Huang Z. Yao W. Zhong Z. Yang G. Liu J. Gu H. Huang J. Chemotherapy alone versus chemotherapy plus 125I brachytherapy for the second-line treatment of locally recurrent cervical cancer after/with radical treatment: A propensity score analysis. Heliyon 2024 10 2 e24666 10.1016/j.heliyon.2024.e24666 38298696
    [Google Scholar]
  89. Tsuda N. Watari H. Ushijima K. Chemotherapy and molecular targeting therapy for recurrent cervical cancer. Chin. J. Cancer Res. 2016 28 2 241 253 10.21147/j.issn.1000‑9604.2016.02.14 27199523
    [Google Scholar]
  90. Gawde K.A. Sau S. Tatiparti K. Kashaw S.K. Mehrmohammadi M. Azmi A.S. Iyer A.K. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf. B Biointerfaces 2018 167 8 19 10.1016/j.colsurfb.2018.03.046 29625422
    [Google Scholar]
  91. Mahalakshmi M. Kumar P. Phloroglucinol-conjugated gold nanoparticles targeting mitochondrial membrane potential of human cervical (HeLa) cancer cell lines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 219 450 456 10.1016/j.saa.2019.04.060 31063960
    [Google Scholar]
  92. Jia Y. Huang X. Li S. Wu Y. Wu J. Duan Z. Luo M. Tang J. Engineering of surface-altered polydopamine nanocomposites for successive drug release and in vivo antitumor effects in cervical cancer therapy: Investigation of antiproliferative effects and apoptosis. J. Drug Deliv. Sci. Technol. 2024 91 105189 10.1016/j.jddst.2023.105189
    [Google Scholar]
  93. Nascimento J. do Canto Olegário I. Mariot C. de Oliveira T.V. dos Santos Chaves P. Oliveira R. de Oliveira E.G. Guterres S.S. Buffon A. Pilger D.A. Beck R.C.R. Encapsulation of orlistat in biodegradable polymeric nanocapsules improves its cytotoxic effect against cervical cancer cells. J. Drug Deliv. Sci. Technol. 2023 89 105086 10.1016/j.jddst.2023.105086
    [Google Scholar]
  94. Tomao S. Tomao F. Rossi L. Zaccarelli E. Caruso D. Zoratto F. Benedetti Panici P. Papa A. Angiogenesis and antiangiogenic agents in cervical cancer. OncoTargets Ther. 2014 7 2237 2248 10.2147/OTT.S68286 25506227
    [Google Scholar]
  95. Cohen A.C. Roane B.M. Leath C.A. III Novel therapeutics for recurrent cervical cancer: Moving towards personalized therapy. Drugs 2020 80 3 217 227 10.1007/s40265‑019‑01249‑z 31939072
    [Google Scholar]
  96. Monk B.J. Mas Lopez L. Zarba J.J. Oaknin A. Tarpin C. Termrungruanglert W. Alber J.A. Ding J. Stutts M.W. Pandite L.N. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J. Clin. Oncol. 2010 28 22 3562 3569 10.1200/JCO.2009.26.9571 20606083
    [Google Scholar]
  97. Chan J.K. Deng W. Higgins R.V. Tewari K.S. Bonebrake A.J. Hicks M. Gaillard S. Ramirez P.T. Chafe W. Monk B.J. Aghajanian C. A phase II evaluation of brivanib in the treatment of persistent or recurrent carcinoma of the cervix: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2017 146 3 554 559 10.1016/j.ygyno.2017.05.033 28728751
    [Google Scholar]
  98. Liu Z. Chen H. Lv F. Wang J. Zhao S. Li Y. Xue X. Liu Y. Wei G. Lu W. Sequential release of paclitaxel and imatinib from core–shell microparticles prepared by coaxial electrospray for vaginal therapy of cervical cancer. Int. J. Mol. Sci. 2021 22 16 8760 10.3390/ijms22168760 34445466
    [Google Scholar]
  99. Candelaria M. Arias-Bonfill D. Chávez-Blanco A. Chanona J. Cantú D. Pérez C. Dueñas-González A. Lack in efficacy for imatinib mesylate as second-line treatment of recurrent or metastatic cervical cancer expressing platelet-derived growth factor receptor alpha. Int. J. Gynecol. Cancer 2009 19 9 1632 1637 10.1111/IGC.0b013e3181a80bb5 19955950
    [Google Scholar]
  100. Eskander R.N. Tewari K.S. Targeting angiogenesis in advanced cervical cancer. Ther. Adv. Med. Oncol. 2014 6 6 280 292 10.1177/1758834014543794 25364393
    [Google Scholar]
  101. Kagabu M. Nagasawa T. Sato C. Fukagawa Y. Kawamura H. Tomabechi H. Takemoto S. Shoji T. Baba T. Immunotherapy for uterine cervical cancer using checkpoint inhibitors: Future directions. Int. J. Mol. Sci. 2020 21 7 2335 10.3390/ijms21072335 32230938
    [Google Scholar]
  102. Peralta-Zaragoza O. Bermúdez-Morales V.H. Pérez-Plasencia C. Salazar-León J. Gómez-Cerón C. Madrid-Marina V. Targeted treatments for cervical cancer: A review. OncoTargets Ther. 2012 5 315 328 10.2147/OTT.S25123 23144564
    [Google Scholar]
  103. Jazaeri A.A. Zsiros E. Amaria R.N. Artz A.S. Edwards R.P. Wenham R.M. Slomovitz B.M. Walther A. Thomas S.S. Chesney J.A. Morris R. Matsuo K. Gaillard S. Rose P.G. Donas J.G. Tromp J.M. Tavakkoli F. Li H. Fardis M. Monk B.J. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 2019 37 15_suppl Suppl. 2538 2538 10.1200/JCO.2019.37.15_suppl.2538
    [Google Scholar]
  104. Kenter G.G. Welters M.J.P. Valentijn A.R.P.M. Lowik M.J.G. Berends-van der Meer D.M.A. Vloon A.P.G. Essahsah F. Fathers L.M. Offringa R. Drijfhout J.W. Wafelman A.R. Oostendorp J. Fleuren G.J. van der Burg S.H. Melief C.J.M. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009 361 19 1838 1847 10.1056/NEJMoa0810097 19890126
    [Google Scholar]
  105. Eskander R.N. Tewari K.S. Immunotherapy: An evolving paradigm in the treatment of advanced cervical cancer. Clin. Ther. 2015 37 1 20 38 10.1016/j.clinthera.2014.11.010 25592089
    [Google Scholar]
  106. Emens L.A. Ascierto P.A. Darcy P.K. Demaria S. Eggermont A.M.M. Redmond W.L. Seliger B. Marincola F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017 81 116 129 10.1016/j.ejca.2017.01.035 28623775
    [Google Scholar]
  107. Enwere E.K. Kornaga E.N. Dean M. Koulis T.A. Phan T. Kalantarian M. Köbel M. Ghatage P. Magliocco A.M. Lees-Miller S.P. Doll C.M. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol. 2017 30 4 577 586 10.1038/modpathol.2016.221 28059093
    [Google Scholar]
  108. Reddy O.L. Shintaku P.I. Moatamed N.A. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 2017 12 1 45 10.1186/s13000‑017‑0631‑6 28623908
    [Google Scholar]
  109. Mezache L. Paniccia B. Nyinawabera A. Nuovo G.J. Enhanced expression of PDL1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 2015 28 12 1594 1602 10.1038/modpathol.2015.108 26403783
    [Google Scholar]
  110. Browne I. Fennelly D.W. Crown J. Murray H. The efficacy and safety of pembrolizumab in advanced cervical cancer-A real world treatment study in an irish healthcare setting. J. Clin. Oncol. 2020 38 15_suppl Suppl. e18007 e18007 10.1200/JCO.2020.38.15_suppl.e18007
    [Google Scholar]
  111. Frenel J.S. Le Tourneau C. O’Neil B. Ott P.A. Piha-Paul S.A. Gomez-Roca C. van Brummelen E.M.J. Rugo H.S. Thomas S. Saraf S. Rangwala R. Varga A. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1–positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 2017 35 36 4035 4041 10.1200/JCO.2017.74.5471 29095678
    [Google Scholar]
  112. Naumann R.W. Hollebecque A. Meyer T. Devlin M.J. Oaknin A. Kerger J. López-Picazo J.M. Machiels J.P. Delord J.P. Evans T.R.J. Boni V. Calvo E. Topalian S.L. Chen T. Soumaoro I. Li B. Gu J. Zwirtes R. Moore K.N. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: Results from the phase I/II checkmate 358 trial. J. Clin. Oncol. 2019 37 31 2825 2834 10.1200/JCO.19.00739 31487218
    [Google Scholar]
  113. Leach D.R. Krummel M.F. Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996 271 5256 1734 1736 10.1126/science.271.5256.1734 8596936
    [Google Scholar]
  114. Duranti S. Pietragalla A. Daniele G. Nero C. Ciccarone F. Scambia G. Lorusso D. Role of immune checkpoint inhibitors in cervical cancer: From preclinical to clinical data. Cancers 2021 13 9 2089 10.3390/cancers13092089 33925884
    [Google Scholar]
  115. Lheureux S. Butler M.O. Clarke B. Cristea M.C. Martin L.P. Tonkin K. Fleming G.F. Tinker A.V. Hirte H.W. Tsoref D. Mackay H. Dhani N.C. Ghatage P. Weberpals J. Welch S. Pham N.A. Motta V. Sotov V. Wang L. Karakasis K. Udagani S. Kamel-Reid S. Streicher H.Z. Shaw P. Oza A.M. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus–related cervical carcinoma. JAMA Oncol. 2018 4 7 e173776 10.1001/jamaoncol.2017.3776 29145543
    [Google Scholar]
  116. Naumann R.W. Oaknin A. Meyer T. Lopez-Picazo J.M. Lao C. Bang Y.J. Boni V. Sharfman W.H. Park J.C. Devriese L.A. Harano K. Chung C.H. Topalian S.L. Zaki K. Chen T. Gu J. Li B. Barrows A. Horvath A. Moore K.N. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358. Ann. Oncol. 2019 30 v898 v899 10.1093/annonc/mdz394.059
    [Google Scholar]
  117. Da Silva D.M. Enserro D.M. Mayadev J.S. Skeate J.G. Matsuo K. Pham H.Q. Lankes H.A. Moxley K.M. Ghamande S.A. Lin Y.G. Schilder R.J. Birrer M.J. Kast W.M. Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929). Clin. Cancer Res. 2020 26 21 5621 5630 10.1158/1078‑0432.CCR‑20‑0776 32816895
    [Google Scholar]
  118. Mauricio D. Zeybek B. Tymon-Rosario J. Harold J. Santin A.D. Immunotherapy in cervical cancer. Curr. Oncol. Rep. 2021 23 6 61 10.1007/s11912‑021‑01052‑8 33852056
    [Google Scholar]
  119. Geukes Foppen M.H. Donia M. Svane I.M. Haanen J.B.A.G. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 2015 9 10 1918 1935 10.1016/j.molonc.2015.10.018 26578452
    [Google Scholar]
  120. Wrzesinski C. Restifo N.P. Less is more: Lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr. Opin. Immunol. 2005 17 2 195 201 10.1016/j.coi.2005.02.002 15766681
    [Google Scholar]
  121. Stevanović S. Draper L.M. Langhan M.M. Campbell T.E. Kwong M.L. Wunderlich J.R. Dudley M.E. Yang J.C. Sherry R.M. Kammula U.S. Restifo N.P. Rosenberg S.A. Hinrichs C.S. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 2015 33 14 1543 1550 10.1200/JCO.2014.58.9093 25823737
    [Google Scholar]
  122. Liao J.B. Immunotherapy for gynecologic cancers. Gynecol. Oncol. 2016 142 1 3 5 10.1016/j.ygyno.2016.05.029 27242186
    [Google Scholar]
  123. Basu P. Mehta A. Jain M. Gupta S. Nagarkar R.V. John S. Petit R. A randomized phase 2 study of ADXS11-001 listeria monocytogenes–listeriolysin o immunotherapy with or without cisplatin in treatment of advanced cervical cancer. Int. J. Gynecol. Cancer 2018 28 4 764 772 10.1097/IGC.0000000000001235 29538258
    [Google Scholar]
  124. Borysiewicz L.K. Fiander A. Nimako M. Man S. Wilkinson G.W.G. Westmoreland D. Evans A.S. Adams M. Stacey S.N. Boursnell M.E.G. Rutherford E. Hickling J.K. Inglis S.C. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996 347 9014 1523 1527 10.1016/S0140‑6736(96)90674‑1 8684105
    [Google Scholar]
  125. Kaufmann A.M. Stern P.L. Rankin E.M. Sommer H. Nuessler V. Schneider A. Adams M. Onon T.S. Bauknecht T. Wagner U. Kroon K. Hickling J. Boswell C.M. Stacey S.N. Kitchener H.C. Gillard J. Wanders J. Roberts J.S. Zwierzina H. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin. Cancer Res. 2002 8 12 3676 3685 12473576
    [Google Scholar]
  126. Roman L.D. Wilczynski S. Muderspach L.I. Burnett A.F. O’Meara A. Brinkman J.A. Kast W.M. Facio G. Felix J.C. Aldana M. Weber J.S. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol. Oncol. 2007 106 3 558 566 10.1016/j.ygyno.2007.05.038 17631950
    [Google Scholar]
  127. Garcia F. Petry K.U. Muderspach L. Gold M.A. Braly P. Crum C.P. Magill M. Silverman M. Urban R.G. Hedley M.L. Beach K.J. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: A randomized controlled trial. Obstet. Gynecol. 2004 103 2 317 326 10.1097/01.AOG.0000110246.93627.17 14754702
    [Google Scholar]
  128. Trimble C.L. Morrow M.P. Kraynyak K.A. Shen X. Dallas M. Yan J. Edwards L. Parker R.L. Denny L. Giffear M. Brown A.S. Marcozzi-Pierce K. Shah D. Slager A.M. Sylvester A.J. Khan A. Broderick K.E. Juba R.J. Herring T.A. Boyer J. Lee J. Sardesai N.Y. Weiner D.B. Bagarazzi M.L. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015 386 10008 2078 2088 10.1016/S0140‑6736(15)00239‑1 26386540
    [Google Scholar]
  129. Rischin D. Gil-Martin M. González-Martin A. Braña I. Hou J.Y. Cho D. Falchook G.S. Formenti S. Jabbour S. Moore K. Naing A. Papadopoulos K.P. Baranda J. Fury W. Feng M. Stankevich E. Li J. Yama-Dang N.A. Yoo S.Y. Lowy I. Mathias M. Fury M.G. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol. Oncol. 2020 159 2 322 328 10.1016/j.ygyno.2020.08.026 32917410
    [Google Scholar]
  130. O’Malley D.M. Oaknin A. Monk B.J. Selle F. Rojas C. Gladieff L. Berton D. Leary A. Moore K.N. Estevez-Diz M.D.P. Hardy-Bessard A.C. Alexandre J. Opperman C.P. de Azevedo C.R.A.S. Randall L.M. Feliu W.O. Ancukiewicz M. Ray-Coquard I. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol. Oncol. 2021 163 2 274 280 10.1016/j.ygyno.2021.08.018 34452745
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673337745241123054840
Loading
/content/journals/cmc/10.2174/0109298673337745241123054840
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chemotherapy ; targeted therapy ; immunotherapy ; pap smear test ; colposcopy ; Cervical cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test