Skip to content
2000
image of Development and Validation of a Diagnostic Model for AKI Based on the Analysis of Ferroptosis-related Genes

Abstract

Background

Acute kidney injury (AKI) is a common renal condition associated with various factors, including pre-renal, post-renal, and renal causes, with ischemia-reperfusion being a frequent contributor leading to tubular injury. Early identification of AKI is crucial but remains challenging.

Methods

This study explored the molecular signature of AKI using gene microarray data from the GEO dataset, focusing on identifying ferroptosis-related features through three machine-learning algorithms. We also validated potential biomarkers through a hypoxia/reoxygenation model.

Results

ROC curves, expression differences, and associations with immune cells were analyzed for the three markers to confirm their potential as AKI biomarkers, each demonstrating strong diagnostic ability. Combining these markers proved more effective.

Conclusion

The combination of AEBP2, MDM2, and NR4A1 as diagnostic biomarkers for AKI not only enhances detection capability but also holds promise as a significant tool in clinical practice, providing patients with diagnostic and therapeutic guidance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296300240829075534
2024-11-22
2024-12-26
Loading full text...

Full text loading...

References

  1. Peerapornratana S. Manrique-Caballero C.L. Gómez H. Kellum J.A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019 96 5 1083 1099 10.1016/j.kint.2019.05.026 31443997
    [Google Scholar]
  2. Kimura T. Isaka Y. Yoshimori T. Autophagy and kidney inflammation. Autophagy 2017 13 6 997 1003 10.1080/15548627.2017.1309485 28441075
    [Google Scholar]
  3. Pan H.C. Chen J.Y. Chen H.Y. Yeh F.Y. Sun C.Y. Huang T.T.M. Wu V.C. GLP-1 receptor agonists’ impact on cardio-renal outcomes and mortality in T2D with acute kidney disease. Nat. Commun. 2024 15 1 5912 10.1038/s41467‑024‑50199‑y 39003287
    [Google Scholar]
  4. Sharma I. Liao Y. Zheng X. Kanwar Y.S. Modulation of gentamicin-induced acute kidney injury by myo-inositol oxygenase via the ROS/ALOX-12/12-HETE/GPR31 signaling pathway. JCI Insight 2022 7 6 e155487 10.1172/jci.insight.155487 35315361
    [Google Scholar]
  5. Fu Y. Xiang Y. Li H. Chen A. Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol. Ther. 2022 237 108240 10.1016/j.pharmthera.2022.108240 35803367
    [Google Scholar]
  6. Zhang W.R. Parikh C.R. Biomarkers of acute and chronic kidney disease. Annu. Rev. Physiol. 2019 81 1 309 333 10.1146/annurev‑physiol‑020518‑114605 30742783
    [Google Scholar]
  7. Scindia Y. Dey P. Thirunagari A. Liping H. Rosin D.L. Floris M. Okusa M.D. Swaminathan S. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 2015 26 11 2800 2814 10.1681/ASN.2014101037 25788528
    [Google Scholar]
  8. Zhu H. Wang J. Miao J. Shen M. Wang H. Huang X. Ni A. Wu H. Chen J. Xiao L. Xie S. Lin W. Han F. SNORD3A regulates STING transcription to promote ferroptosis in acute kidney injury. Adv. Sci. (Weinh.) 2024 2400305 10.1002/advs.202400305 38962954
    [Google Scholar]
  9. Lin J. Zhang Y. Guan H. Li S. Sui Y. Hong L. Zheng Z. Huang M. Myricitrin inhibited ferritinophagy- mediated ferroptosis in cisplatin-induced human renal tubular epithelial cell injury. Front. Pharmacol. 2024 15 1372094 10.3389/fphar.2024.1372094 38910888
    [Google Scholar]
  10. Li D. Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther. 2020 5 1 108 10.1038/s41392‑020‑00216‑5 32606298
    [Google Scholar]
  11. Lin S.Y. Chang C.L. Liou K.T. Kao Y.K. Wang Y.H. Chang C.C. Kuo T.B.J. Huang H.T. Yang C.C.H. Liaw C.C. Shen Y.C. The protective role of Achyranthes aspera extract against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis. J. Ethnopharmacol. 2024 319 Pt 1 117097 10.1016/j.jep.2023.117097 37648176
    [Google Scholar]
  12. Oliveira F.R.M.B. Sousa Soares E. Pillmann Ramos H. Lättig-Tünnemann G. Harms C. Cimarosti H. Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem. Pharmacol. 2024 227 116425 10.1016/j.bcp.2024.116425 39004233
    [Google Scholar]
  13. Guo Y. Yuan Z. Hu Z. Gao Y. Guo H. Zhu H. Hong K. Cen K. Mai Y. Bai Y. Yang X. Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells. Front. Immunol. 2023 14 1161436 10.3389/fimmu.2023.1161436 37266443
    [Google Scholar]
  14. Yang J.R. Yao F.H. Zhang J.G. Ji Z.Y. Li K.L. Zhan J. Tong Y.N. Lin L.R. He Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol. 2014 306 1 F75 F84 10.1152/ajprenal.00117.2013 24133119
    [Google Scholar]
  15. Bonventre J.V. Yang L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011 121 11 4210 4221 10.1172/JCI45161 22045571
    [Google Scholar]
  16. Edelstein C.L. Biomarkers of acute kidney injury. Adv. Chronic Kidney Dis. 2008 15 3 222 234 10.1053/j.ackd.2008.04.003 18565474
    [Google Scholar]
  17. Basile D.P. Anderson M.D. Sutton T.A. Pathophysiology of acute kidney injury. Compr. Physiol. 2012 2 2 1303 1353 10.1002/cphy.c110041 23798302
    [Google Scholar]
  18. Haase-Fielitz A. Mertens P.R. Plaß M. Kuppe H. Hetzer R. Westerman M. Ostland V. Prowle J.R. Bellomo R. Haase M. Urine hepcidin has additive value in ruling out cardiopulmonary bypass-associated acute kidney injury: an observational cohort study. Crit. Care 2011 15 4 R186 10.1186/cc10339 21816077
    [Google Scholar]
  19. Koyner J.L. Vaidya V.S. Bennett M.R. Ma Q. Worcester E. Akhter S.A. Raman J. Jeevanandam V. O’Connor M.F. Devarajan P. Bonventre J.V. Murray P.T. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2010 5 12 2154 2165 10.2215/CJN.00740110 20798258
    [Google Scholar]
  20. Haase-Fielitz A. Bellomo R. Devarajan P. Story D. Matalanis G. Dragun D. Haase M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery-a prospective cohort study. Crit. Care Med. 2009 37 2 553 560 10.1097/CCM.0b013e318195846e 19114878
    [Google Scholar]
  21. Mishra J. Dent C. Tarabishi R. Mitsnefes M.M. Ma Q. Kelly C. Ruff S.M. Zahedi K. Shao M. Bean J. Mori K. Barasch J. Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005 365 9466 1231 1238 10.1016/S0140‑6736(05)74811‑X 15811456
    [Google Scholar]
  22. Ding C. Ding X. Zheng J. Wang B. Li Y. Xiang H. Dou M. Qiao Y. Tian P. Xue W. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 2020 11 10 929 10.1038/s41419‑020‑03135‑z 33116120
    [Google Scholar]
  23. Eftekhari A. Maleki Dizaj S. Ahmadian E. Przekora A. Hosseiniyan Khatibi S.M. Ardalan M. Zununi Vahed S. Valiyeva M. Mehraliyeva S. Khalilov R. Hasanzadeh M. Application of advanced nanomaterials for kidney failure treatment and regeneration. Materials (Basel) 2021 14 11 2939 10.3390/ma14112939 34072461
    [Google Scholar]
  24. Maleki Dizaj S. Eftekhari A. Mammadova S. Ahmadian E. Ardalan M. Davaran S. Nasibova A. Khalilov R. Valiyeva M. Mehraliyeva S. Mostafavi E. Nanomaterials for chronic kidney disease detection. Appl. Sci. (Basel) 2021 11 20 9656 10.3390/app11209656
    [Google Scholar]
  25. Khalilov R. Bakishzade A. Nasibova A. Future prospects of biomaterials in nanomedicine. Advances in Biology & Earth Sciences 2023 9 5 10
    [Google Scholar]
  26. Schmidt-Ott K.M. Mori K. Li J.Y. Kalandadze A. Cohen D.J. Devarajan P. Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 2007 18 2 407 413 10.1681/ASN.2006080882 17229907
    [Google Scholar]
  27. Ma D. Li C. Jiang P. Jiang Y. Wang J. Zhang D. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig. Dis. Sci. 2021 66 2 483 492 10.1007/s10620‑020‑06225‑2 32219613
    [Google Scholar]
  28. Guerrero-Hue M. García-Caballero C. Palomino-Antolín A. Rubio-Navarro A. Vázquez-Carballo C. Herencia C. Martín-Sanchez D. Farré-Alins V. Egea J. Cannata P. Praga M. Ortiz A. Egido J. Sanz A.B. Moreno J.A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J. 2019 33 8 8961 8975 10.1096/fj.201900077R 31034781
    [Google Scholar]
  29. Yang B. Lan S. Dieudé M. Sabo-Vatasescu J.P. Karakeussian-Rimbaud A. Turgeon J. Qi S. Gunaratnam L. Patey N. Hébert M.J. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 2018 29 7 1900 1916 10.1681/ASN.2017050581 29925521
    [Google Scholar]
  30. Padanilam B.J. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am. J. Physiol. Renal Physiol. 2003 284 4 F608 F627 10.1152/ajprenal.00284.2002 12620919
    [Google Scholar]
  31. Baud L. Ardaillou R. Involvement of reactive oxygen species in kidney damage. Br. Med. Bull. 1993 49 3 621 629 10.1093/oxfordjournals.bmb.a072635 8221027
    [Google Scholar]
  32. Paneroni M. Ambrosino N. Simonelli C. Bertacchini L. Venturelli M. Vitacca M. Physical activity in patients with chronic obstructive pulmonary disease on long-term oxygen therapy: A cross-sectional study. Int. J. Chron. Obstruct. Pulmon. Dis. 2019 14 2815 2823 10.2147/COPD.S228465 31824146
    [Google Scholar]
  33. Hilliard S.A. Li Y. Dixon A. El-Dahr S.S. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech. Dev. 2020 163 103616 10.1016/j.mod.2020.103616 32464196
    [Google Scholar]
  34. Shi W. Dong J. Liang Y. Liu K. Peng Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp. Mol. Pathol. 2019 111 104303 10.1016/j.yexmp.2019.104303 31465766
    [Google Scholar]
  35. Westbrook L. Johnson A.C. Regner K.R. Williams J.M. Mattson D.L. Kyle P.B. Henegar J.R. Garrett M.R. Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. J. Am. Soc. Nephrol. 2014 25 11 2499 2510 10.1681/ASN.2013070786 24722447
    [Google Scholar]
  36. Chawla L.S. Eggers P.W. Star R.A. Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014 371 1 58 66 10.1056/NEJMra1214243 24988558
    [Google Scholar]
  37. Li L. Huang L. Vergis A.L. Ye H. Bajwa A. Narayan V. Strieter R.M. Rosin D.L. Okusa M.D. IL-17 produced by neutrophils regulates IFN-γ–mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 2010 120 1 331 342 10.1172/JCI38702 20038794
    [Google Scholar]
  38. Li L. Huang L. Sung S.J. Lobo P.I. Brown M.G. Gregg R.K. Engelhard V.H. Okusa M.D. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J. Immunol. 2007 178 9 5899 5911 10.4049/jimmunol.178.9.5899 17442974
    [Google Scholar]
  39. Bamboat Z.M. Ocuin L.M. Balachandran V.P. Obaid H. Plitas G. DeMatteo R.P. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 2010 120 2 559 569 10.1172/JCI40008 20093775
    [Google Scholar]
  40. Li N. Steiger S. Fei L. Li C. Shi C. Salei N. Schraml B.U. Zheng Z. Anders H.J. Lichtnekert J. IRF8-dependent type I conventional dendritic cells (cDC1s) control oost-ischemic inflammation and mildly protect against post-ischemic acute kidney injury and disease. Front. Immunol. 2021 12 685559 10.3389/fimmu.2021.685559 34234783
    [Google Scholar]
  41. Xu J. Li X. Yuan Q. Wang C. Xu L. Wei X. Liu H. Yu B. An Z. Zhao Y. Li X. Zhang X. Ma X. Cai M. The semaphorin 4A–neuropilin 1 axis alleviates kidney ischemia reperfusion injury by promoting the stability and function of regulatory T cells. Kidney Int. 2021 100 6 1268 1281 10.1016/j.kint.2021.08.023 34534552
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296300240829075534
Loading
/content/journals/cmc/10.2174/0109298673296300240829075534
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: biomarker ; diagnose ; immune cells ; GEO datase ; Acute kidney injury ; renal tubules
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test