Skip to content
2000
image of Actinomycetes: A Source of Anticancer Metabolites

Abstract

Microbes in general, actinomycetes in particular, produce a wide range of antibiotics with various biological activities such as anticancer, antimicrobial, anti-inflammatory, antituberculosis and enzyme inhibition. Actinomycetes are filamentous gram-positive bacteria found in both terrestrial and marine environments. Currently, antibiotics such as Rifamycin, Tetracycline, Kanamycin, Neomycin, Streptomycin and Clavulanic acid derived from actinobacteria are highly useful in the medical field. Out of these biological activities, we need to explore the anticancer activity of various compounds isolated from different actinomycetes since cancer is a deadly disease and it is very common now a day. There are no proper medications for cancer treatment to date. The identification of a drug candidate for cancer treatment will be a striking and lifesaving achievement. Many more research activities must be done in this field. Many molecules have been used as chemotherapeutic agents reported from actinobacteria used for cancer treatment. In this review, various anticancer compounds isolated from the crude extracts of different marine and soil actinomycetes have been reported from 2000-2022. The aim of this review is to summarize and consolidate the anticancer and cytotoxic compounds isolated from the actinomycetes (from different locations) to encourage the scientific community to concentrate more on this field, which will serve good for mankind.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673309904240911080042
2024-12-23
2025-01-18
Loading full text...

Full text loading...

References

  1. Sudhakar A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther. 2009 1 2 i iv 10.4172/1948‑5956.100000e2 20740081
    [Google Scholar]
  2. Seyfried T.N. Flores R.E. Poff A.M. D’Agostino D.P. Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis 2014 35 3 515 527 10.1093/carcin/bgt480 24343361
    [Google Scholar]
  3. Demain A.L. Antibiotics: Natural products essential to human health. Med. Res. Rev. 2009 29 6 821 842 10.1002/med.20154 19291695
    [Google Scholar]
  4. Saurav K. Kannabiran K. Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi J. Biol. Sci. 2012 19 1 81 86 10.1016/j.sjbs.2011.07.003 23961165
    [Google Scholar]
  5. Zhu X. Tian X. Yu C. Shen C. Yan T. Hong J. Wang Z. Fang J.Y. Chen H. A long non-coding RNA signature to improve prognosis prediction of gastric cancer. Mol. Cancer 2016 15 1 60 10.1186/s12943‑016‑0544‑0 27647437
    [Google Scholar]
  6. Subramanian A.P. Jaganathan S.K. Manikandan A. Pandiaraj K.N. N G. Supriyanto E. Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Advances 2016 6 54 48294 48314 10.1039/C6RA07802H
    [Google Scholar]
  7. Nakaew N. Pathom-aree W. Lumyong S. First record of the isolation, identification and biological activity of a new strain of Spirillospora albida from Thai cave soil. Actinomycetologica 2009 23 1 1 7 10.3209/saj.SAJ230102
    [Google Scholar]
  8. Daigham G.E. Mahfouz A.Y. Isolation, characterization, and screening of actinomycetes producing bioactive compounds from Egyptian soil. Egypt. Pharm. J. 2020 19 4 381 10.4103/epj.epj_44_20
    [Google Scholar]
  9. Bhat M.P Nayaka S. Kumar R.S. A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells. Arch Microbiol 2022 204 9 540 10.1007/s00203‑022‑03147‑7
    [Google Scholar]
  10. Bahri A. Moazamian E. Azarpira N. Molecular identification, isolation and evaluation of persian gulf actinomycetes as candidates of cytotoxic metabolites against breast cancer. Multidisciplinary Cancer Investigation 2017 1 3 10 14 10.21859/mci‑01035
    [Google Scholar]
  11. Gong B. Chen S. Lan W. Huang Y. Zhu X. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China. Iran. J. Pharm. Res. 2018 17 4 1339 1346 30568692
    [Google Scholar]
  12. Hamed M.M. Abdrabo M.A.A. Fahmy N.M. Abdelfattah L.S. Kelany M.S. Abd-El latif H.H. El ela G.M.A. Abd-Elnaby H.M. Hassan S.W.M. Distribution and characterization of actinomycetes in mangrove habitats (Red Sea, Egypt) with special emphasis on Streptomyces mutabilis M3MT483919. J. Pure Appl. Microbiol. 2021 15 1 246 261 10.22207/JPAM.15.1.19
    [Google Scholar]
  13. Savi D.C. Haminiuk C.W.I. Sora G.T.S. Adamoski D.M. Kenski J. Winnischofer S.M.B. Glienke C. Antitumor, antioxidant and antibacterial activities of secondary metabolites extracted by endophytic actinomycetes isolated from vochysiadivergens. Int. J. Pharm. Chem. Biol. Sci. 2015 5 1
    [Google Scholar]
  14. Oliveros K.M Rosana A.R. Montecillo A.D. Opulencia R.B. Jacildo A.J. Zulaybar T.O. Raymundo A.K. Genomic insights into the antimicrobial and anticancer potential of Streptomyces sp. A1-08 isolated from volcanic soils of Mount Mayon, Philippines. Philipp. J. Sci. 2021 150 6A 1351 1377
    [Google Scholar]
  15. Qasim B. Risan M.H. Anti-tumor and antimicrobial activity of antibiotic produced by Streptomyces spp. World J. Pharm. Res. 2017 6 4 116 128 10.20959/wjpr20174‑8121
    [Google Scholar]
  16. Yongsmith B. Bioenrichment of Vitamin B 12 in Fermented Foods. Functional Properties of Traditional Foods. Boston, MA Springer 2016 17 37 10.1007/978‑1‑4899‑7662‑8_3
    [Google Scholar]
  17. Bundale S. Singh J. Begde D. Nashikkar N. Upadhyay A. Rare actinobacteria: A potential source of bioactive polyketides and peptides. World J. Microbiol. Biotechnol. 2019 35 6 92 10.1007/s11274‑019‑2668‑z 31187317
    [Google Scholar]
  18. Vidhyashree N. Yamini Sudha Lakshmi S. Screening, isolation, identification, characterisation and applications of silver nanoparticles synthesized from marine actinomycetes (Streptomyces grieseorubens). World J. Pharm. Res. 2015 4 8 1801 1820
    [Google Scholar]
  19. Selvakumar J.N. Chandrasekaran S.D. Bio prospecting of marine-derived Streptomyces spectabilis VITJS10 and exploring its cytotoxicity against human liver cancer cell lines. Pharmacognosy Magazine 2015 11 Suppl 3 S469
    [Google Scholar]
  20. Kim Jung Park Young-Min Lim Do-Seon Purification of materials produced by Amylocolatosis sp. and anticancer effect in oral cancer model. J Dent Hyg Sci 2003 3 1 11 14
    [Google Scholar]
  21. Sri M. Biosynthesis of silver nanoparticles using Streptomyces griseus pds1 for anticancer activity. IOSR J Pharm Biol Sci 2019 12 6 11 16
    [Google Scholar]
  22. Veluswamy S.C.B. Parimala G.S.A. Anti-cancer activity of green sporal polyketide from streptomyces sp-jb87 isolated from Jasmonium brevilobum. World J. Pharm. Res. 2015 4 11 1841 1853
    [Google Scholar]
  23. Huang Z.Y. Tang J.S. Gao H. Li Y.J. Hong K. Li J. Yao X.S. Studies on the cytotoxic constituents from marine actinomycete Micromonospora sp. Chin. J. Mar. Drugs 2011 30 29 33
    [Google Scholar]
  24. Daniel K. Guravaiah M. Anticancer activity and ant diabetic activity of Aspergillus stereusaf1. J.Pharm.Res 2017 7 2 1260 1266
    [Google Scholar]
  25. Nakaew N. Pathom-aree W. Lumyong S. Generic diversity of rare actinomycetes from Thai cave soils and their possible use as new bioactive compounds. Actinomycetologica 2009 23 2 21 26 10.3209/saj.SAJ230201
    [Google Scholar]
  26. Gozari M. Zaheri A. Jahromi S.T. Gozari M. Karimzadeh R. Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int. Microbiol. 2019 22 4 521 530 10.1007/s10123‑019‑00083‑3 31144066
    [Google Scholar]
  27. Chambiyal G. Antibacterial and Anticancer property of bioactive secondary metabolites from Actinomycetes isolated from different regions of Himachal Pradesh. 2018
    [Google Scholar]
  28. Arumugam T. Senthil Kumar P. Optimization of media components for production of antimicrobial compound by Brevibacillus brevis EGS9 isolated from mangrove ecosystem. J. Microbiol. Methods 2017 142 83 89 10.1016/j.mimet.2017.09.010 28923690
    [Google Scholar]
  29. Almuhayawi M. Mohamed M. Abdel-Mawgoud M. Selim S. Al Jaouni S. AbdElgawad H. Bioactive potential of several actinobacteria isolated from microbiologically barely explored desert habitat, Saudi Arabia. Biology 2021 10 3 235 10.3390/biology10030235 33808594
    [Google Scholar]
  30. Tan L.T.H. Ser H.L. Yin W.F. Chan K.G. Lee L.H. Goh B.H. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front. Microbiol. 2015 6 1316 10.3389/fmicb.2015.01316 26635777
    [Google Scholar]
  31. Subbaiya R. Saravanan M. Priya A.R. Shankar K.R. Selvam M. Ovais M. Balajee R. Barabadi H. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017 11 8 965 972 10.1049/iet‑nbt.2016.0222 29155396
    [Google Scholar]
  32. Polapally R. Mansani M. Rajkumar K. Burgula S. Hameeda B. Alhazmi A. Bantun F. Almalki A.H. Haque S. El Enshasy H.A. Sayyed R.Z. Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities. PLoS One 2022 17 4 e0266676 10.1371/journal.pone.0266676 35468144
    [Google Scholar]
  33. Hong K. Gao A.H. Xie Q.Y. Gao H.G. Zhuang L. Lin H.P. Yu H.P. Li J. Yao X.S. Goodfellow M. Ruan J.S. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 2009 7 1 24 44 10.3390/md7010024 19370169
    [Google Scholar]
  34. Huang X.L. Zhuang L. Lin H.P. Li J. Goodfellow M. Hong K. X. L. Huang Isolation and bioactivity of endophytic filamentous actinobacteria from tropical medicinal plants. Afr. J. Biotechnol. 2012 11 41 9855 9864 10.5897/AJB11.3839
    [Google Scholar]
  35. Sangdee K. Investigation of antibacterial and anti-cancer activities of Streptomycessp SRF1 culture filtrate. Trop. J. Pharm. Res. 2017 16 11 2727 2734 10.4314/tjpr.v16i11.21
    [Google Scholar]
  36. Fahmy N.M. Abdel-Tawab A.M. Isolation and characterization of marine sponge–associated Streptomyces sp. NMF6 strain producing secondary metabolite(s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. J. Genet. Eng. Biotechnol. 2021 19 1 102 10.1186/s43141‑021‑00203‑5 34264405
    [Google Scholar]
  37. Sarika K. Sampath G. Kaveriyappan Govindarajan R. Ameen F. Alwakeel S. Al Gwaiz H.I. Raja Komuraiah T. Ravi G. Antimicrobial and antifungal activity of soil actinomycetes isolated from coal mine sites. Saudi J. Biol. Sci. 2021 28 6 3553 3558 10.1016/j.sjbs.2021.03.029 34121898
    [Google Scholar]
  38. Andayani D.G.S. Sukandar U. Sukandar E.Y. Ketut Adnyana I. Antibacterial, antifungal and anticancer activity of five strains of soil microorganisms isolated from tangkuban perahu mountain by fermentation. HAYATI J Biosci 2015 22 4 186 190
    [Google Scholar]
  39. Abdelfattah M.S. Elmallah M.I.Y. Hawas U.W. Abou El-Kassema L.T. Eid M.A.G. Isolation and characterization of marine-derived actinomycetes with cytotoxic activity from the Red Sea coast. Asian Pac. J. Trop. Biomed. 2016 6 8 651 657 10.1016/j.apjtb.2016.06.004
    [Google Scholar]
  40. Karthik Y. Kalyani M.I. Cytotoxic and antimicrobial activities of microbial proteins from mangrove soil actinomycetes of Mangalore, Dakshina Kannada. Biomedicine 2020 40 1 59 67
    [Google Scholar]
  41. Khatun M.F. Haque M.U. Islam M.A.U. Antibacterial and cytotoxic activities of crude ethyl acetate extract of Streptomyces sp. FEAI-1 isolated from soil samples of Rajshahi, Bangladesh. Bangladesh Pharmaceutical Journal 2018 20 2 188 193 10.3329/bpj.v20i2.37884
    [Google Scholar]
  42. Ripa F.A. Nikkon F. In vitro antibacterial activity of bioactive metabolite and crude extract from a new Streptomyces sp. Streptomyces rajshahiensis. Int. J. Pharm. Tech. Res. 2010 2 1 644 648
    [Google Scholar]
  43. S S P. Rudayni H.A. Bepari A. Niazi S.K. Nayaka S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J. Biol. Sci. 2022 29 1 228 238 10.1016/j.sjbs.2021.08.084 35002413
    [Google Scholar]
  44. Al-Ansari M. Kalaiyarasi M. Almalki M.A. Vijayaraghavan P. Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. J. King Saud Univ. Sci. 2020 32 3 1993 1998 10.1016/j.jksus.2020.02.005
    [Google Scholar]
  45. Nadar Rajivgandhi G. Ramachandran G. Li J.L. Yin L. Manoharan N. Rajesh Kannan M. Antony Joseph Velanganni A. Alharbi N.S. Kadaikunnan S. Khaled J.M. Li W-J. Molecular identification and structural detection of anti-cancer compound from marine Streptomyces akiyoshiensis GRG 6 (KY457710) against MCF-7 breast cancer cells. J. King Saud Univ. Sci. 2020 32 8 3463 3469 10.1016/j.jksus.2020.10.008
    [Google Scholar]
  46. Abd-Elnaby H.M. Abo-Elala G.M. Abdel-Raouf U.M. Hamed M.M. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 2016 42 3 301 312 10.1016/j.ejar.2016.05.004
    [Google Scholar]
  47. Davies-Bolorunduro O.F. Adeleye I.A. Akinleye M.O. Wang P.G. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J. Pharm. Anal. 2019 9 3 201 208 10.1016/j.jpha.2019.03.004 31297298
    [Google Scholar]
  48. Pham Huyen T. Nguyen Nhue P. Phi Tien Q. Dang Phuong T. Le Hy G. The antibacterial and anticancer activity of marine Actinomycete strain HP411 isolated in the Northern Coast of Vietnam. Actinomycetes 2014 5 9 15
    [Google Scholar]
  49. Izumikawa M. Khan S.T. Komaki H. Takagi M. Shin-ya K. JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge. J. Antibiot. 2010 63 1 33 36 10.1038/ja.2009.113 19927166
    [Google Scholar]
  50. Dhaneesha M. Sajeevan T.P. Anticancer activity of sponge associated actinomycetes Streptomyces sp. MCCB267 On lung cancer cell line. Proceedings of 28th Kerala Science Congress University of Calicut, January 2016, pp. 1628-1639.
    [Google Scholar]
  51. Kalimuthu K. Kumaravel M. Haldar D. Perumal A. Isolation and characterization of marine actinomycetes–bioprospecting for antimicrobial, antioxidant and anticancer properties. Research Square 2022 1 21 10.21203/rs.3.rs‑1546784/v1
    [Google Scholar]
  52. Dineshkumar K. Aparna V. Madhuri K.Z. Hopper W. Biological activity of sporolides A and B from Salinispora tropica: In silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase. Chem. Biol. Drug Des. 2014 83 3 350 361 10.1111/cbdd.12252 24165098
    [Google Scholar]
  53. Haque M.U. Rahman M.A. Haque M.A. Sarker A.K. Islam M.A. Antimicrobial and anticancer activities of ethyl acetate extract of co-culture of Streptomyces sp. ANAM-5 and AIAH-10 isolated from Mangrove Forest of Sundarbans, Bangladesh. J. Appl. Pharm. Sci. 2016 6 2 051 055 10.7324/JAPS.2016.60207
    [Google Scholar]
  54. Dhaneesha M. Benjamin Naman C. Krishnan K. P. Rupesh Kumar Sinha P. Streptomyces artemisiae MCCB 248 isolated from Arctic fjord sediments has unique PKS and NRPS biosynthetic genes and produces potential new anticancer natural products. 3 Biotech 2017 7 1 1 10
    [Google Scholar]
  55. Prieto-Davó A. Dias T. Gomes S.E. Rodrigues S. Parera-Valadez Y. Borralho P.M. Pereira F. Rodrigues C.M.P. Santos-Sanches I. Gaudêncio S.P. The Madeira archipelago as a significant source of marine-derived actinomycete diversity with anticancer and antimicrobial potential. Front. Microbiol. 2016 7 1594 10.3389/fmicb.2016.01594 27774089
    [Google Scholar]
  56. Elsayed T.R. Galil D.F. Sedik M.Z. Hassan H.M.M. Sadik M.W. Antimicrobial and anticancer activities of actinomycetes isolated from Egyptian soils. Int. J. Curr. Microbiol. Appl. Sci. 2020 9 9 1689 1700 10.20546/ijcmas.2020.909.209
    [Google Scholar]
  57. Ahmad M.S. Yasser M.M. Sholkamy E.N. Ali A.M. Mehanni M.M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomedicine 2015 10 3389 3401 26005349
    [Google Scholar]
  58. Olano C. Méndez C. Salas J.A. Antitumor compounds from marine actinomycetes. Mar. Drugs 2009 7 2 210 248 10.3390/md7020210 19597582
    [Google Scholar]
  59. Nagaseshu P. Gayatridevi V. Kumar A.B. Kumari S. Mohan M.G. Malla R. Antioxidant and antiproliferative potentials of marine actinomycetes. Int. J. Pharm. Pharm. Sci. 2016 8 277 284
    [Google Scholar]
  60. Veena S. Swetha D. Karthik L. Bhaskara Rao K.V. Assessment of anti-typhoid and antioxidant activity of marine actinobacteria isolated from Chennai marine sediments. Pharm. Lett. 2016 8 3 166 172
    [Google Scholar]
  61. Ravikumar S. Fredimoses M. Gnanadesigan M. Anticancer property of sediment actinomycetes against MCF–7 and MDA–MB–231 cell lines. Asian Pac. J. Trop. Biomed. 2012 2 2 92 96 10.1016/S2221‑1691(11)60199‑8 23569875
    [Google Scholar]
  62. El-Gendy M.M.A.A. Shaymaa M.M. Assessment of the phylogenetic analysis and antimicrobial, antiviral, and anticancer activities of marine endophytic Streptomyces species of the soft coral Sarcophyton convolutum. Int. Microbiol. 2022 25 1 133 152 10.1007/s10123‑021‑00204‑x 34427819
    [Google Scholar]
  63. Sabido E.M. Tenebro C.P. Trono D.J.V.L. Vicera C.V.B. Leonida S.F.L. Maybay J.J.W.B. Reyes-Salarda R. Amago D.S. Aguadera A.M.V. Octaviano M.C. Saludes J.P. Dalisay D.S. Insights into the variation in bioactivities of closely related Streptomyces Strains from marine sediments of the Visayan Sea against ESKAPE and ovarian cancer. Mar. Drugs 2021 19 8 441 10.3390/md19080441 34436280
    [Google Scholar]
  64. Osama N. Bakeer W. Raslan M. Soliman H.A. Abdelmohsen U.R. Sebak M. Anti-cancer and antimicrobial potential of five soil Streptomycetes : A metabolomics-based study. R. Soc. Open Sci. 2022 9 2 211509 10.1098/rsos.211509 35154794
    [Google Scholar]
  65. Saravana Kumar P. Al-Dhabi N.A. Duraipandiyan V. Balachandran C. Praveen Kumar P. Ignacimuthu S. In vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. BMC Microbiol. 2014 14 1 291 10.1186/s12866‑014‑0291‑6 25433533
    [Google Scholar]
  66. Martin G.D.A. Tan L.T. Jensen P.R. Dimayuga R.E. Fairchild C.R. Raventos-Suarez C. Fenical W. Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J. Nat. Prod. 2007 70 9 1406 1409 10.1021/np060621r 17844998
    [Google Scholar]
  67. Shin H-J. Jeong H-S. Lee H-S. Park S-K. Kim H-M. Kwon H-J. Isolation and structure determination of streptochlorin, an antiproliferative agent from a marine-derived Streptomyces sp. 04DH110. J. Microbiol. Biotechnol. 2007 17 8 1403 1406 18051613
    [Google Scholar]
  68. Fu P. Kong F. Wang Y. Wang Y. Liu P. Zuo G. Zhu W. Antibiotic Metabolites from the Coral-Associated Actinomycete Streptomyces sp. OUCMDZ-1703. Chin. J. Chem. 2013 31 1 100 104 10.1002/cjoc.201201062
    [Google Scholar]
  69. Carretero-Molina D. Ortiz-López F.J. Martín J. Oves- Costales D. Díaz C. de la Cruz M. Cautain B. Vicente F. Genilloud O. Reyes F. New napyradiomycin analogues from Streptomyces sp. strain CA-271078. Mar. Drugs 2019 18 1 22 10.3390/md18010022 31888028
    [Google Scholar]
  70. Hughes C.C. Prieto-Davo A. Jensen P.R. Fenical W. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett. 2008 10 4 629 631 10.1021/ol702952n 18205372
    [Google Scholar]
  71. Hughes C.C. MacMillan J.B. Gaudêncio S.P. Jensen P.R. Fenical W. The ammosamides: Structures of cell cycle modulators from a marine-derived Streptomyces species. Angew. Chem. Int. Ed. 2009 48 4 725 727 10.1002/anie.200804890 19090514
    [Google Scholar]
  72. Li F. Maskey R.P. Qin S. Sattler I. Fiebig H.H. Maier A. Zeeck A. Laatsch H. Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J. Nat. Prod. 2005 68 3 349 353 10.1021/np030518r 15787434
    [Google Scholar]
  73. Miller E.D. Kauffman C.A. Jensen P.R. Fenical W. Piperazimycins: Cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J. Org. Chem. 2007 72 2 323 330 10.1021/jo061064g 17221946
    [Google Scholar]
  74. Soria-Mercado I.E. Prieto-Davo A. Jensen P.R. Fenical W. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J. Nat. Prod. 2005 68 6 904 910 10.1021/np058011z 15974616
    [Google Scholar]
  75. Farnaes L. La Clair J.J. Fenical W. Napyradiomycins CNQ525.510B and A80915C target the Hsp90 paralogue Grp94. Org. Biomol. Chem. 2014 12 3 418 423 10.1039/C3OB41355A 24292715
    [Google Scholar]
  76. Hawas U.W. Shaaban M. Shaaban K.A. Speitling M. Maier A. Kelter G. Fiebig H.H. Meiners M. Helmke E. Laatsch H. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J. Nat. Prod. 2009 72 12 2120 2124 10.1021/np900160g 19921834
    [Google Scholar]
  77. Kwon H.C. Espindola A.P.D.M. Park J-S. Prieto- Davó A. Rose M. Jensen P.R. Fenical W. Nitropyrrolins A−E, cytotoxic farnesyl-α-nitropyrroles from a marine-derived bacterium within the actinomycete family Streptomycetaceae. J. Nat. Prod. 2010 73 12 2047 2052 10.1021/np1006229 21090803
    [Google Scholar]
  78. Zhang W. Liu Z. Li S. Yang T. Zhang Q. Ma L. Tian X. Zhang H. Huang C. Zhang S. Ju J. Shen Y. Zhang C. Spiroindimicins A-D: New bisindole alkaloids from a deep-sea-derived actinomycete. Org. Lett. 2012 14 13 3364 3367 10.1021/ol301343n 22694269
    [Google Scholar]
  79. Zhang X. Zhang Y. Zhao J. Liu C. Wang S. Yang L. He H. Xiang W. Wang X. Nonomuraea fuscirosea sp. nov., an actinomycete isolated from the rhizosphere soil of rehmannia (Rehmannia glutinosa Libosch). Int. J. Syst. Evol. Microbiol. 2014 64 2 1102 1107
    [Google Scholar]
  80. Pan E. Oswald N.W. Legako A.G. Life J.M. Posner B.A. MacMillan J.B. Precursor-directed generation of amidine containing ammosamide analogs: Ammosamides E–P. Chem. Sci. 2013 4 1 482 488 10.1039/C2SC21442C 23209870
    [Google Scholar]
  81. Alvarez-Mico X. Jensen P.R. Fenical W. Hughes C.C. Chlorizidine, a cytotoxic 5H-pyrrolo[2,1-a]isoindol-5-one- containing alkaloid from a marine Streptomyces sp. Org. Lett. 2013 15 5 988 991 10.1021/ol303374e 23405849
    [Google Scholar]
  82. Cheng Y.B. Jensen P.R. Fenical W. Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. Eur. J. Org. Chem. 2013 2013 18 3751 3757 10.1002/ejoc.201300349 24376369
    [Google Scholar]
  83. Wu Z. Li S. Li J. Chen Y. Saurav K. Zhang Q. Zhang H. Zhang W. Zhang W. Zhang S. Zhang C. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar. Drugs 2013 11 6 2113 2125 10.3390/md11062113 23771045
    [Google Scholar]
  84. Moon K. Ahn C.H. Shin Y. Won T. Ko K. Lee S. Oh K.B. Shin J. Nam S.I. Oh D.C. New benzoxazine secondary metabolites from an arctic actinomycete. Mar. Drugs 2014 12 5 2526 2538 10.3390/md12052526 24796308
    [Google Scholar]
  85. Asolkar R.N. Singh A. Jensen P.R. Aalbersberg W. Carté B.K. Feussner K.D. Subramani R. DiPasquale A. Rheingold A.L. Fenical W. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 2017 73 16 2234 2241 10.1016/j.tet.2017.03.003 28814819
    [Google Scholar]
  86. Jiang Y.J. Li J.Q. Zhang H.J. Ding W.J. Ma Z.J. Cyclizidine-type alkaloids from Streptomyces sp. HNA39. J. Nat. Prod. 2018 81 2 394 399 10.1021/acs.jnatprod.7b01055 29389122
    [Google Scholar]
  87. Song Y. Yang J. Yu J. Li J. Yuan J. Wong N.K. Ju J. Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities. J. Antibiot. 2020 73 8 542 547 10.1038/s41429‑020‑0307‑4 32332871
    [Google Scholar]
  88. Hardt I.H. Jensen P.R. Fenical W. Neomarinone, and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Lett. 2000 41 13 2073 2076 10.1016/S0040‑4039(00)00117‑9
    [Google Scholar]
  89. Feling R.H. Buchanan G.O. Mincer T.J. Kauffman C.A. Jensen P.R. Fenical W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew. Chem. Int. Ed. 2003 42 3 355 357 10.1002/anie.200390115 12548698
    [Google Scholar]
  90. Oh D.C. Williams P.G. Kauffman C.A. Jensen P.R. Fenical W. Cyanosporasides A and B, chloro- and cyano- cyclopenta[a]indene glycosides from the marine actinomycete “Salinispora pacifica”. Org. Lett. 2006 8 6 1021 1024 10.1021/ol052686b 16524258
    [Google Scholar]
  91. Maloney K.N. MacMillan J.B. Kauffman C.A. Jensen P.R. DiPasquale A.G. Rheingold A.L. Fenical W. Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org. Lett. 2009 11 23 5422 5424 10.1021/ol901997k 19883103
    [Google Scholar]
  92. Snipes C.E. Duebelbeis D.O. Olson M. Hahn D.R. Dent W.H. III Gilbert J.R. Werk T.L. Davis G.E. Lee-Lu R. Graupner P.R. The ansacarbamitocins: Polar ansamitocin derivatives. J. Nat. Prod. 2007 70 10 1578 1581 10.1021/np070275t 17892263
    [Google Scholar]
  93. Li J. Lu C. Shen Y. Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J. Antibiot. 2010 63 10 595 599 10.1038/ja.2010.95 20823894
    [Google Scholar]
  94. Zhao P.J. Fan L.M. Li G.H. Zhu N. Shen Y.M. Antibacterial and antitumor macrolides from streptomyces sp. Is9131. Arch. Pharm. Res. 2005 28 11 1228 1232 10.1007/BF02978203 16350846
    [Google Scholar]
  95. Igarashi Y. Yanase S. Sugimoto K. Enomoto M. Miyanaga S. Trujillo M.E. Saiki I. Kuwahara S. Lupinacidin C, an inhibitor of tumor cell invasion from Micromonospora lupini. J. Nat. Prod. 2011 74 4 862 865 10.1021/np100779t 21226490
    [Google Scholar]
  96. Kim N. Shin J.C. Kim W. Hwang B.Y. Kim B.S. Hong Y.S. Lee D. Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J. Antibiot. 2006 59 12 797 800 10.1038/ja.2006.105 17323647
    [Google Scholar]
  97. Igarashi Y. Miura S. Fujita T. Furumai T. Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J. Antibiot. 2006 59 3 193 195 10.1038/ja.2006.28 16724461
    [Google Scholar]
  98. Fu P. Yang C. Wang Y. Liu P. Ma Y. Xu L. Su M. Hong K. Zhu W. Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived actinomycete strain Streptomyces sp. FMA. Org. Lett. 2012 14 9 2422 2425 10.1021/ol3008638 22519738
    [Google Scholar]
  99. Kumar K.S. Anuradha S. Sarma G.R. Screening, isolation, taxonomy and fermentation of an antibiotic producer Streptomyces xinghaiensis from soil capable of acting against linezolid resistant strains. Indian J. Exp. Biol. 2012 50 10 718 728
    [Google Scholar]
  100. Mohammadipanah F. Momenilandi M. Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents. Pharm. Biol. 2018 56 1 51 59 10.1080/13880209.2017.1417451 29275696
    [Google Scholar]
  101. Mangamuri U.K. Vijayalakshmi M. Poda S. Manavathi B. Chitturi B. Isolation and biological evaluation of N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide, a new semisynthetic derivative from the Mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech 2016 6 2 1 12
    [Google Scholar]
  102. Ding L. Maier A. Fiebig H.H. Görls H. Lin W.H. Peschel G. Hertweck C. Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew. Chem. Int. Ed. 2011 50 7 1630 1634 10.1002/anie.201006165 21308920
    [Google Scholar]
  103. Abraham J. Chauhan R. Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech 2018 8 1 1 9 10.1007/s13205‑017‑1044‑7
    [Google Scholar]
  104. Özakin S. Davis R.W. Umile T.P. Pirinccioglu N. Kizil M. Celik G. Sen A. Minbiole K.P.C. İnce E. The isolation of tetrangomycin from terrestrial Streptomyces sp. CAH29: evaluation of antioxidant, anticancer, and anti-MRSA activity. Med. Chem. Res. 2016 25 12 2872 2881 10.1007/s00044‑016‑1708‑6
    [Google Scholar]
  105. Mangrolia U. Osborne W.J. Staphylococcus xylosus VITURAJ10: Pyrrolo [1,2α] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity. Microb. Pathog. 2020 147 104259 10.1016/j.micpath.2020.104259 32446871
    [Google Scholar]
  106. Lima S.M. Melo J.G. Militão G.C. Lima G.M. do Carmo A Lima M. Aguiar J.S. Araújo R.M. Braz-Filho R. Marchand P. Araújo J.M. Silva T.G. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl. Microbiol. Biotechnol. 2017 101 2 711 723 10.1007/s00253‑016‑7886‑9 27757508
    [Google Scholar]
  107. Rather S.A. Shah A.M. Ali S.A. Dar R.A. Rah B. Ali A. Hassan Q.P. Isolation and characterization of Streptomyces tauricus from Thajiwas glacier—a new source of actinomycin-D. Med. Chem. Res. 2017 26 9 1897 1902 10.1007/s00044‑017‑1842‑9
    [Google Scholar]
  108. Jaroszewicz W. Bielańska P. Lubomska D. Kosznik-Kwaśnicka K. Golec P. Grabowski Ł. Wieczerzak E. Dróżdż W. Gaffke L. Pierzynowska K. Węgrzyn G. Węgrzyn A. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chochołowska cave (Tatra Mountains, Poland). Antibiotics 2021 10 10 1212 10.3390/antibiotics10101212 34680793
    [Google Scholar]
  109. Fu P. Wang S. Hong K. Li X. Liu P. Wang Y. Zhu W. Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. J. Nat. Prod. 2011 74 8 1751 1756 10.1021/np200258h 21770434
    [Google Scholar]
  110. Kwon Y. Kim S.H. Shin Y. Bae M. Kim B.Y. Lee S. Oh K.B. Shin J. Oh D.C. A new benzofuran glycoside and indole alkaloids from a sponge-associated rare actinomycete, Amycolatopsis sp. Mar. Drugs 2014 12 4 2326 2340 10.3390/md12042326 24759001
    [Google Scholar]
  111. Kawahara T. Itoh M. Izumikawa M. Kozone I. Sakata N. Tsuchida T. Shin-ya K. New hydroxamate metabolite, MBJ-0003, from Micromonospora sp. 29867. J. Antibiot. 2014 67 3 261 263 10.1038/ja.2013.124 24252811
    [Google Scholar]
  112. Liu D. Lin H. Proksch P. Tang X. Shao Z. Lin W. Microbacterins A and B, new peptaibols from the deep sea actinomycete Microbacterium sediminis sp. nov. YLB-01(T). Org. Lett. 2015 17 5 1220 1223 10.1021/acs.orglett.5b00172 25675340
    [Google Scholar]
  113. Suthindhir K. Kannabiran K. Cytotoxic and antimicrobial potential of actinomycete species Saccharopolyspora salina VITSDK4 isolated from the Bay of Bengal Coast of India. Am. J. Infect. Dis. 2009 5 2 90 98 10.3844/ajidsp.2009.90.98
    [Google Scholar]
  114. Holkar S. Begde D. Nashikkar N. Kadam T. Upadhyay A. Rhodomycin analogues from Streptomyces purpurascens: isolation, characterization and biological activities. Springerplus 2013 2 1 93 10.1186/2193‑1801‑2‑93 23419944
    [Google Scholar]
  115. Kadiri S. Yarla N.S. Vidavalur S. Isolation and identification of a novel aporphine alkaloid SSV, an antitumor antibiotic from fermented broth of marine associated Streptomyces sp. KS1908. J. Mar. Sci. Res. Dev. 2013 3 4 1 10.4172/2155‑9910.1000137
    [Google Scholar]
  116. Saurav K. Kannabiran K. Biosorption of Cr(III) and Cr(VI) by Streptomyces VITSVK9 spp. Ann. Microbiol. 2011 61 4 833 841 10.1007/s13213‑011‑0204‑y
    [Google Scholar]
  117. Gorajana A. Kurada B.V.V.S.N. Peela S. Jangam P. Vinjamuri S. Poluri E. Zeeck A. 1-Hydroxy-1-norresistomycin, a new cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. J. Antibiot. 2005 58 8 526 529 10.1038/ja.2005.72 16266126
    [Google Scholar]
  118. Franco C.M.M. Gandhi J.N. Chatterjee S. Ganguli B.N. Swalpamycin, a new macrolide antibiotic. I. Taxonomy of the producing organism, fermentation, isolation and biological activity. J. Antibiot. 1987 40 10 1361 1367 10.7164/antibiotics.40.1361 3680001
    [Google Scholar]
  119. Nithya B. Ponmurugan P. Fredimoses P. 16S rRNA phylogenetic analysis of actinomycetes isolated from Eastern Ghats and marine mangrove associated with antibacterial and anticancerous activities. Afr. J. Biotechnol. 2012 11 60 12379 12388
    [Google Scholar]
  120. Al-Dhabi N.A. Mohammed Ghilan A.K. Esmail G.A. Valan Arasu M. Duraipandiyan V. Ponmurugan K. Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and its in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. J. Infect. Public Health 2019 12 4 549 556 10.1016/j.jiph.2019.01.065 30755364
    [Google Scholar]
  121. Demain A.L. Sanchez S. Microbial drug discovery: 80 years of progress. J. Antibiot. 2009 62 1 5 16 10.1038/ja.2008.16 19132062
    [Google Scholar]
  122. Arcamone F. Animati F. Capranico G. Lombardi P. Pratesi G. Manzini S. Supino R. Zunino F. New developments in antitumor anthracyclines. Pharmacol. Ther. 1997 76 1-3 117 124 10.1016/S0163‑7258(97)00096‑X 9535173
    [Google Scholar]
  123. Osaki T. Yokoe I. Uto Y. Ishizuka M. Tanaka T. Yamanaka N. Kurahashi T. Azuma K. Murahata Y. Tsuka T. Ito N. Imagawa T. Okamoto Y. Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrason. Sonochem. 2016 28 161 168 10.1016/j.ultsonch.2015.07.013 26384895
    [Google Scholar]
  124. Solecka J. Zajko J. Postek M. Rajnisz A. Biologically active secondary metabolites from Actinomycetes. Open Life Sci. 2012 7 3 373 390 10.2478/s11535‑012‑0036‑1
    [Google Scholar]
  125. Eleazu C.O. Eleazu K.C. Chukwuma S. Essien U.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord. 2013 12 1 60 10.1186/2251‑6581‑12‑60 24364898
    [Google Scholar]
  126. Criscitiello C. Morganti S. Curigliano G. Antibody–drug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol. 2021 14 1 20 10.1186/s13045‑021‑01035‑z 33509252
    [Google Scholar]
  127. Zhang H. Sun G.Z. Li X. Pan H.Y. Zhang Y.S. A new geldanamycin analogue from Streptomyces hygroscopicus. Molecules 2010 15 3 1161 1167 10.3390/molecules15031161 20335971
    [Google Scholar]
  128. Gorajana A. M V. Vinjamuri S. Kurada B.V.V.S.N. Peela S. Jangam P. Poluri E. Zeeck A. Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiol. Res. 2007 162 4 322 327 10.1016/j.micres.2006.01.012 16580188
    [Google Scholar]
  129. Bhatnagar I. Kim S.K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010 8 10 2673 2701 10.3390/md8102673 21116414
    [Google Scholar]
  130. Cho J.Y. Williams P.G. Kwon H.C. Jensen P.R. Fenical W. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J. Nat. Prod. 2007 70 8 1321 1328 10.1021/np070101b 17630797
    [Google Scholar]
  131. Pérez M. Crespo C. Schleissner C. Rodríguez P. Zúñiga P. Reyes F. Tartrolon D. A cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04-17-069. J. Nat. Prod. 2009 72 12 2192 2194 10.1021/np9006603 19968258
    [Google Scholar]
  132. Hohmann C. Schneider K. Bruntner C. Irran E. Nicholson G. Bull A.T. Jones A.L. Brown R. Stach J.E.M. Goodfellow M. Beil W. Krämer M. Imhoff J.F. Süssmuth R.D. Fiedler H.P. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009 62 2 99 104 10.1038/ja.2008.24 19198633
    [Google Scholar]
  133. Abdel-Mageed W.M. Milne B.F. Wagner M. Schumacher M. Sandor P. Pathom-aree W. Goodfellow M. Bull A.T. Horikoshi K. Ebel R. Diederich M. Fiedler H.P. Jaspars M. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 2010 8 10 2352 2362 10.1039/c001445a 20448892
    [Google Scholar]
  134. Saha S. Mollick S. Zaman S. The uses of bacteria in cancer therapy. PhD diss., Brac University 2021
    [Google Scholar]
  135. Motohashi K. Takagi M. Shin-ya K. Tetracenoquinocin and 5-iminoaranciamycin from a sponge-derived Streptomyces sp. Sp080513GE-26. J. Nat. Prod. 2010 73 4 755 758 10.1021/np9007409 20192240
    [Google Scholar]
  136. Maskey R.P. Li F.C. Qin S. Fiebig H.H. Laatsch H. Chandrananimycins A approximately C: Production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J. Antibiot. 2003 56 7 622 629 10.7164/antibiotics.56.622 14513905
    [Google Scholar]
  137. Ganesan S. Velsamy G. Sivasudha T. Manoharan N. MALDI-TOF mass spectrum profiling, antibacterial and anticancer activity of marine Streptomyces fradiae BDMS1. World J. Pharm. Pharm. Sci. 2013 2 6 5148 5165
    [Google Scholar]
  138. Jensen P.R. Mafnas C. Biogeography of the marine actinomycete Salinispora. Environ. Microbiol. 2006 8 11 1881 1888 10.1111/j.1462‑2920.2006.01093.x 17014488
    [Google Scholar]
  139. Abd-Elnaby H. Abo-Elala G. Abdel-Raouf U. Abd-elwahab A. Hamed M. Antibacterial and anticancer activity of marine Streptomyces parvus : Optimization and application. Biotechnol. Biotechnol. Equip. 2016 30 1 180 191 10.1080/13102818.2015.1086280
    [Google Scholar]
  140. Abdel-Aziz M.S. Hathout A.S. El-Neleety A.A. Hamed A.A. Sabry B.A. Aly S.E. Abdel-Wahhab M.A. Molecular identification of actinomycetes with antimicrobial, antioxidant and anticancer properties. Comun. Sci. 2019 10 2 218 231 10.14295/cs.v10i2.2269
    [Google Scholar]
  141. Zhou W. Fang H. Wu Q. Wang X. Liu R. Li F. Xiao J. Yuan L. Zhou Z. Ma J. Wang L. Zhao W. You H. Ju J. Feng J. Chen C. Ilamycin E, a natural product of marine actinomycete, inhibits triple-negative breast cancer partially through ER stress-CHOP-Bcl-2. Int. J. Biol. Sci. 2019 15 8 1723 1732 10.7150/ijbs.35284 31360114
    [Google Scholar]
  142. Fiedler H.P. Bruntner C. Riedlinger J. Bull A.T. Knutsen G. Goodfellow M. Jones A. Maldonado L. Pathom-aree W. Beil W. Schneider K. Keller S. Sussmuth R.D. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J. Antibiot. 2008 61 3 158 163 10.1038/ja.2008.125 18503194
    [Google Scholar]
  143. Karpiński T.M. Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics 2018 10 2 54 10.3390/pharmaceutics10020054 29710857
    [Google Scholar]
  144. El-Naggar N.E.A. Deraz S.F. Soliman H.M. El-Deeb N.M. El-Ewasy S.M. Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti- colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82. Sci. Rep. 2016 6 1 32926 10.1038/srep32926 27605431
    [Google Scholar]
  145. Ramalingam V. Varunkumar K. Ravikumar V. Rajaram R. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochem. 2019 78 169 177 10.1016/j.procbio.2019.01.002
    [Google Scholar]
  146. Yang N. Song F. Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from South China Sea sediments. Curr. Microbiol. 2018 75 2 142 149 10.1007/s00284‑017‑1358‑z 28918535
    [Google Scholar]
  147. Siddharth S. Aswathanarayan J.B. Kuruburu M.G. Madhunapantula S.R.V. Vittal R.R. Diketopiperazine derivative from marine actinomycetes Nocardiopsis sp. SCA30 with antimicrobial activity against MRSA. Arch. Microbiol. 2021 203 10 6173 6181 10.1007/s00203‑021‑02582‑2 34632524
    [Google Scholar]
  148. Dhaneesha M. Hasin O. Sivakumar K.C. Ravinesh R. Naman C.B. Carmeli S. Sajeevan T.P. DNA binding and molecular dynamic studies of polycyclic tetramate macrolactams (PTM) with potential anticancer activity isolated from a sponge-associated Streptomyces zhaozhouensis subsp. mycale subsp. nov. Mar. Biotechnol. (NY) 2019 21 1 124 137 10.1007/s10126‑018‑9866‑9 30542952
    [Google Scholar]
  149. Dhaneesha M. Umar M. Merlin T.S. Krishnan K.P. Sukumaran V. Sinha R.K. Anas A. Fu P. MacMillan J.B. Sajeevan T.P. Pseudonocardia cytotoxica sp. nov., a novel actinomycete isolated from an Arctic fjord with potential to produce cytotoxic compound. Antonie van Leeuwenhoek 2021 114 1 23 35 10.1007/s10482‑020‑01490‑7 33230720
    [Google Scholar]
  150. Liu R. Cui C.B. Duan L. Gu Q.Q. Zhu W.M. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Sac-charopolyspora sp. nov. Arch. Pharm. Res. 2005 28 12 1341 1344 10.1007/BF02977899 16392666
    [Google Scholar]
  151. Rajivgandhi G. Muneeswaran T. Maruthupandy M. Ramakritinan C.M. Saravanan K. Ravikumar V. Manoharan N. Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microb. Pathog. 2018 125 325 335 10.1016/j.micpath.2018.09.025 30243551
    [Google Scholar]
  152. Sudha S. Masilamani S.M. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4. Asian Pac. J. Trop. Biomed. 2012 2 10 770 773 10.1016/S2221‑1691(12)60227‑5 23569845
    [Google Scholar]
  153. Gan M. Liu B. Tan Y. Wang Q. Zhou H. He H. Ping Y. Yang Z. Wang Y. Xiao C. Saccharothrixones A–D, tetracenomycin-type polyketides from the marine-derived actinomycete Saccharothrix sp. 10-10. J. Nat. Prod. 2015 78 9 2260 2265 10.1021/acs.jnatprod.5b00577 26317881
    [Google Scholar]
  154. Fu P. MacMillan J.B. Thiasporines A-C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. J. Nat. Prod. 2015 78 3 548 551 10.1021/np500929z 25584783
    [Google Scholar]
  155. Duncan K.R. Haltli B. Gill K.A. Correa H. Berrué F. Kerr R.G. Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada. J. Ind. Microbiol. Biotechnol. 2015 42 1 57 72 10.1007/s10295‑014‑1529‑x 25371290
    [Google Scholar]
  156. Mullowney M. Ó hAinmhire E. Tanouye U. Burdette J. Pham V. Murphy B. A pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnam’s east sea. Mar. Drugs 2015 13 9 5815 5827 10.3390/md13095815 26389922
    [Google Scholar]
  157. Zhang X.M. Zhang D.F. Li W.J. Lu C.H. Pseudonocardides A - G, new γ -butyrolactones from marine-derived pseudonocardia sp. YIM M13669. Helv. Chim. Acta 2016 99 3 191 196 10.1002/hlca.201500109
    [Google Scholar]
  158. Ye X. Anjum K. Song T. Wang W. Yu S. Huang H. Lian X.Y. Zhang Z. A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat. Prod. Res. 2016 30 10 1156 1161 10.1080/14786419.2015.1047775 26119337
    [Google Scholar]
  159. Fukuda T. Takahashi M. Nagai K. Harunari E. Imada C. Tomoda H. Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J. Antibiot. 2017 70 5 590 594 10.1038/ja.2016.152 27999443
    [Google Scholar]
  160. Zhang X.M. Sun M.W. Shi H. Lu C.H. α-pyrone derivatives from a marine actinomycete Nocardiopsis sp. YIM M13066. Nat. Prod. Res. 2017 31 19 2245 2249 10.1080/14786419.2017.1299730 28281379
    [Google Scholar]
  161. Sarmiento-Vizcaíno A. Braña A. Pérez-Victoria I. Martín J. De Pedro N. Cruz M. Díaz C. Vicente F. Acuña J. Reyes F. García L. Blanco G. Paulomycin G, a new natural product with cytotoxic activity against tumor cell lines produced by deep-sea sediment derived Micromonosporamatsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Mar. Drugs 2017 15 9 271 10.3390/md15090271 28846627
    [Google Scholar]
  162. Sun M. Chen X. Li W. Lu C. Shen Y. New diketopiperazine derivatives with cytotoxicity from Nocardiopsis sp. YIM M13066. J. Antibiot. 2017 70 6 795 797 10.1038/ja.2017.46 28377635
    [Google Scholar]
  163. Bhat M.P. Nayaka S. Cave soil Streptomyces sp. strain YC69 antagonistic to chilli fungal pathogens exhibits in vitro anticancer activity against human cervical cancer cells. Appl. Biochem. Biotechnol. 2023 195 10 6232 6255 10.1007/s12010‑023‑04388‑y 36853440
    [Google Scholar]
  164. Math H.H. Nayaka S. Rudrappa M. Kumar R.S. Almansour A.I. Perumal K. Kantli G.B. Isolation, characterization of pyraclostrobin derived from soil actinomycete Streptomyces sp. HSN-01 and its antimicrobial and anticancer activity. Antibiotics 2023 12 7 1211 10.3390/antibiotics12071211 37508307
    [Google Scholar]
  165. Kanchanasin P. Sripreechasak P. Suriyachadkun C. Supong K. Pittayakhajonwut P. Somphong A. Tanasupawat S. Phongsopitanun W. Streptomyces macrolidinus sp. nov., a novel soil actinobacterium with potential anticancer and antimalarial activity. Int. J. Syst. Evol. Microbiol. 2023 73 1 005682 10.1099/ijsem.0.005682 36748587
    [Google Scholar]
  166. Al-Tuwaijri M. Phylogenetic analysis and bioactivity of soil-derived nocardiopsis species: Antibacterial and anticancer potentials against MCF7 and HCT16 cell. J. Biosci. Appl. Res. 2023 0 0 102 114 10.21608/jbaar.2023.314704
    [Google Scholar]
  167. Ibrahim W.M. Olama Z.A. Abou-elela G.M. Ramadan H.S. Hegazy G.E. El Badan D.E.S. Exploring the antimicrobial, antiviral, antioxidant, and antitumor potentials of marine Streptomyces tunisiensis W4MT573222 pigment isolated from Abu-Qir sediments, Egypt. Microb. Cell Fact. 2023 22 1 94 10.1186/s12934‑023‑02106‑1 37147660
    [Google Scholar]
  168. Hamed A.A. Abdel-Razik G.G. Battah M.G. Hassan M. Bioactive metabolites from Streptomyces sp. RSE with potential anticancer and antioxidant activity. Egypt. J. Chem. 2024 67 4 115 125
    [Google Scholar]
  169. Shaaban M.T. Mohamed B.S. Zayed M. El-Sabbagh S.M. Antibacterial, antibiofilm, and anticancer activity of silver-nanoparticles synthesized from the cell-filtrate of Streptomyces enissocaesilis. BMC Biotechnol. 2024 24 1 8 10.1186/s12896‑024‑00833‑w 38321442
    [Google Scholar]
  170. do Nascimento Chaves K.R. Lucila Texeira de Andrade França M. Ludmylla Oliveira Mendes A. Pereira Cardoso P. Brielle Pantoja Vasconcelos K. Carlos Ferrer de Santana R. Veras Costa Lotufo L. Antibacterial, antioxidant and anticancer activities of the streptomyces PML5 strain isolated from carbonate rocksin the amazon. Research Square 2024
    [Google Scholar]
  171. Somphong A. Weeraphan T. Poengsungnoen V. Suriyachadkun C. Sripreechasak P. Chaotham C. Tanasupawat S. Phongsopitanun W. Actinoplanes pyxinae sp. nov., a new lichen-derived rare actinobacterium exhibiting antimicrobial and anticancer activity. Int. J. Syst. Evol. Microbiol. 2024 74 1 006215 10.1099/ijsem.0.006215 38180333
    [Google Scholar]
  172. Mesta S.C. Onkarappa R. Anticancer property of l-glutaminase producing actinomycete Streptomyces albogriseolus isolated from estuary of uttara kannada district against hela and HepG2 cell lines. J. Adv. Zool. 2024 45 3
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673309904240911080042
Loading
/content/journals/cmc/10.2174/0109298673309904240911080042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer compounds ; cytotoxicity ; cancer treatment ; antibiotics ; actinomycetes ; Microbes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test