Skip to content
2000
image of Integrated Transcriptome and Proteome Analyses Reveal Differentially Expressed Genes and Proteins in Granulosa Cells from Female Patients with Metabolic Syndrome-associated Infertility

Abstract

Background

Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.

Objective

This study aimed to investigate Differentially Expressed Genes (DEGs) and Proteins (DEPs) in granulosa cells from female patients with MS-associated infertility.

Method

Transcriptome and proteome analyses were integrated to compare granulosa cells from three MS patients with infertility to three control subjects. RNA sequencing and quantitative proteomics analyses were conducted, followed by differential expression analysis, Gene Set Enrichment Analysis (GSEA), and Protein-protein Interaction (PPI) network construction. Functional enrichment of overlapping DEGs and DEPs and potential drug-protein interactions were also explored. Hub genes identified by PPI were validated quantitative Polymerase Chain Reaction (qPCR) and western blot assays.

Results

Principal Component Analysis (PCA) demonstrated a distinct separation between MS and control groups, indicating significant differences in gene and protein expression. A total of 1,046 upregulated and 23 downregulated DEGs, along with 222 upregulated and 412 downregulated DEPs, were identified in the MS group. GSEA highlighted enrichment in processes, like the cell cycle and immune response. Venn diagram revealed 71 overlapping DEGs and DEPs, mainly related to immune regulation. Key hub proteins and potential therapeutic candidates were identified, with hub genes upregulated at the mRNA level, but downregulated at the protein level in granulosa cells of MS patients.

Conclusion

The integrative analyses revealed significant molecular alterations in granulosa cells from MS patients with infertility. Identified DEGs, DEPs, and hub proteins suggested potential therapeutic targets and pathways for addressing MS-associated infertility.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673357582241223070335
2025-01-20
2025-04-11
Loading full text...

Full text loading...

References

  1. Fahed G. Aoun L. Bou Zerdan M. Allam S. Bou Zerdan M. Bouferraa Y. Assi H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022 23 2 786 10.3390/ijms23020786 35054972
    [Google Scholar]
  2. Collée J. Mawet M. Tebache L. Nisolle M. Brichant G. Polycystic ovarian syndrome and infertility: Overview and insights of the putative treatments. Gynecol. Endocrinol. 2021 37 10 869 874 10.1080/09513590.2021.1958310 34338572
    [Google Scholar]
  3. Liu S. Jia Y. Meng S. Luo Y. Yang Q. Pan Z. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review. Int. J. Mol. Sci. 2023 24 11 9205 10.3390/ijms24119205 37298157
    [Google Scholar]
  4. Yang J. Chen C. Hormonal changes in PCOS. J. Endocrinol. 2024 261 1 e230342 10.1530/JOE‑23‑0342 38285626
    [Google Scholar]
  5. Zeng X. Xie Y. Liu Y. Long S. Mo Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020 502 214 221 10.1016/j.cca.2019.11.003 31733195
    [Google Scholar]
  6. Zhang Q.L. Wang Y. Liu J.S. Du Y.Z. Effects of hypercaloric diet-induced hyperinsulinemia and hyperlipidemia on the ovarian follicular development in mice. J. Reprod. Dev. 2022 68 3 173 180 10.1262/jrd.2021‑132 35236789
    [Google Scholar]
  7. Zanjirband M. Baharlooie M. Safaeinejad Z. Nasr-Esfahani M.H. Transcriptomic screening to identify hub genes and drug signatures for PCOS based on RNA-Seq data in granulosa cells. Comput. Biol. Med. 2023 154 106601 10.1016/j.compbiomed.2023.106601 36738709
    [Google Scholar]
  8. Cozzolino M. Herraiz S. Titus S. Roberts L. Romeu M. Peinado I. Scott R.T. Pellicer A. Seli E. Transcriptomic landscape of granulosa cells and peripheral blood mononuclear cells in women with PCOS compared to young poor responders and women with normal response. Hum. Reprod. 2022 37 6 1274 1286 10.1093/humrep/deac069 35451009
    [Google Scholar]
  9. Wang C. Fei X. Zhang H. Zhou W. Cheng Z. Feng Y. Proteomic analysis of the alterations in follicular fluid proteins during oocyte maturation in humans. Front. Endocrinol. (Lausanne) 2022 12 830691 10.3389/fendo.2021.830691 35185790
    [Google Scholar]
  10. Guo Y. Cai L. Liu X. Ma L. Zhang H. Wang B. Qi Y. Liu J. Diao F. Sha J. Guo X. Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes. Mol. Cell. Proteomics 2022 21 8 100267 10.1016/j.mcpro.2022.100267 35809850
    [Google Scholar]
  11. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  12. Liberzon A. Subramanian A. Pinchback R. Thorvaldsdóttir H. Tamayo P. Mesirov J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011 27 12 1739 1740 10.1093/bioinformatics/btr260 21546393
    [Google Scholar]
  13. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  14. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  15. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014 8 Suppl 4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  16. Cannon M. Stevenson J. Stahl K. Basu R. Coffman A. Kiwala S. McMichael J.F. Kuzma K. Morrissey D. Cotto K. Mardis E.R. Griffith O.L. Griffith M. Wagner A.H. DGIdb 5.0: Rebuilding the drug–gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024 52 D1 D1227 D1235 10.1093/nar/gkad1040 37953380
    [Google Scholar]
  17. Liao B. Qi X. Yun C. Qiao J. Pang Y. Effects of androgen excess-related metabolic disturbances on granulosa cell function and follicular development. Front. Endocrinol. (Lausanne) 2022 13 815968 10.3389/fendo.2022.815968 35237237
    [Google Scholar]
  18. Dai M. Hong L. Yin T. Liu S. Disturbed follicular microenvironment in polycystic ovary syndrome: Relationship to oocyte quality and infertility. Endocrinology 2024 165 4 bqae023 10.1210/endocr/bqae023 38375912
    [Google Scholar]
  19. Rudnicka E. Suchta K. Grymowicz M. Calik-Ksepka A. Smolarczyk K. Duszewska A.M. Smolarczyk R. Meczekalski B. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci. 2021 22 7 3789 10.3390/ijms22073789 33917519
    [Google Scholar]
  20. Weber E.W. Lynn R.C. Sotillo E. Lattin J. Xu P. Mackall C.L. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019 3 5 711 717 10.1182/bloodadvances.2018028720 30814055
    [Google Scholar]
  21. Chambers J.K. Epoetin alfa: Focus on inflammation and infection. Case study of the anemic patient. ANNA J. 1998 25 3 353 356 9801493
    [Google Scholar]
  22. Rana D. Mandal B.M. Bhattacharyya S.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer (Guildf.) 1993 34 7 1454 1459 10.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  23. Rana D. Mandal B.M. Bhattacharyya S.N. Analogue calorimetric studies of blends of poly (vinyl ester) s and polyacrylates. Macromolecules 1996 29 5 1579 1583 10.1021/ma950954n
    [Google Scholar]
  24. Rana D. Mandal B.M. Bhattacharyya S.N. Analogue calorimetry of polymer blends: Poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer (Guildf.) 1996 37 12 2439 2443 10.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  25. Rana D. Bag K. Bhattacharyya S.N. Mandal B.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST. J. Polym. Sci., B, Polym. Phys. 2000 38 3 369 375 10.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673357582241223070335
Loading
/content/journals/cmc/10.2174/0109298673357582241223070335
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: transcriptomics ; hub proteins ; infertility ; Metabolic syndrome ; proteomics ; granulosa cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test