Skip to content
2000
image of The Role of Nutraceuticals in Chemoprevention and their Therapeutic Effects when Used in Combination with Synthetic Drugs

Abstract

Recently, increasing attention has been directed toward nutraceuticals, natural substances extracted from plants, fruits, or cereals. These compounds are well-known for their antibacterial, anti-inflammatory, antioxidant, and antitumor properties, with the latter being the primary focus of this review. The use of nutraceuticals, both as standalone treatments and in combination with standard chemotherapy, has been extensively studied through , experiments, and clinical trials for the prevention and treatment of various types of cancer, including breast, colon, pancreatic, prostate cancers, and leukemia. Findings from these studies emphasize the benefits of nutraceuticals in improving patient compliance and mitigating the adverse effects of conventional drugs. Specifically, the combination of nutraceuticals with chemotherapy allows for reduced dosages of synthetic drugs, thereby lessening their often-severe side effects. In this review, we explore the diverse mechanisms of action underlying the antitumor activity of key nutraceuticals—including curcumin, resveratrol, tocotrienols, ursolic acid, fisetin, gambogic acid, catechins, silibinin, berberine, emodin, piperine, deguelin, garcinol, plumbagin, zerumbone, and ginger. Furthermore, we summarize the most significant outcomes from clinical trials investigating these compounds. The clinical studies addressed various aspects of treatment, such as efficacy, safety, maximum tolerated doses, potential adverse effects, and patient compliance. The majority of the findings highlight the positive impact of combining nutraceuticals with chemotherapy, demonstrating enhanced therapeutic outcomes in anticancer treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348105250102040623
2025-02-12
2025-03-31
Loading full text...

Full text loading...

References

  1. Calvani M. Pasha A. Favre C. Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species. Int. J. Mol. Sci. 2020 21 6 1936 10.3390/ijms21061936 32178382
    [Google Scholar]
  2. The nutraceutical revolution: Fueling a powerful, new international market. https://fimdefelice.org/library/the-nutraceutical-revolution-fueling-a-powerful-new-international-market/
  3. Santini A. Tenore G.C. Novellino E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017 96 53 61 10.1016/j.ejps.2016.09.003 27613382
    [Google Scholar]
  4. Jain N. Nutraceuticals and Antioxidants in Prevention of Diseases. >Natural Products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Ramawat K.G. Mérillon J-M. Springer Berlin Heidelberg 2013 2559 2580 10.1007/978‑3‑642‑22144‑6_70
    [Google Scholar]
  5. Prakash D. Gupta C. Sharma G. Importance of phytochemicals in nutraceuticals. J.Chin. Med. Res. Develop. 2012 1 70 78
    [Google Scholar]
  6. Zheng J. Zhou Y. Li Y. Xu D.P. Li S. Li H.B. Spices for prevention and treatment of cancers. Nutrients 2016 8 8 495 10.3390/nu8080495 27529277
    [Google Scholar]
  7. Institute of Medicine (US) Food and Nutrition Board Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients. National Academies Press Washington (DC) 1998 20845565
    [Google Scholar]
  8. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  9. Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition 2013 29 1 15 21 10.1016/j.nut.2012.02.014 22784609
    [Google Scholar]
  10. Khurana R.K. Jain A. Jain A. Sharma T. Singh B. Kesharwani P. Administration of antioxidants in cancer: Debate of the decade. Drug Discov. Today 2018 23 4 763 770 10.1016/j.drudis.2018.01.021 29317341
    [Google Scholar]
  11. Singh K. Bhori M. Kasu Y.A. Bhat G. Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity: Exploring the armoury of obscurity. Saudi Pharm. J. 2018 26 2 177 190 10.1016/j.jsps.2017.12.013 30166914
    [Google Scholar]
  12. Simone C.B. II Simone N.L. Simone V. Simone C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part 1. Altern. Ther. Health Med. 2007 13 1 22 28 17283738
    [Google Scholar]
  13. Bordoloi D. Roy N.K. Monisha J. Padmavathi G. Kunnumakkara A.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from Curcumin thus far. Recent Patents Anticancer Drug Discov. 2016 11 1 67 97 10.2174/1574892810666151020101706 26537958
    [Google Scholar]
  14. Kunnumakkara A.B. Bordoloi D. Padmavathi G. Monisha J. Roy N.K. Prasad S. Aggarwal B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017 174 11 1325 1348 10.1111/bph.13621 27638428
    [Google Scholar]
  15. Bordoloi D. Kunnumakkara A.B. The potential of curcumin: A multitargeting agent in cancer cell chemosensitization. Role of nutraceuticals in cancer chemosensitization. Academic Press 2018 31 60 10.1016/B978‑0‑12‑812373‑7.00002‑4
    [Google Scholar]
  16. Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: Benefits of omega-3 with curcumin against cancer. Molecules 2015 20 2 3020 3026 10.3390/molecules20023020 25685909
    [Google Scholar]
  17. Qadir M.I. Naqvi S.T. Muhammad S.A. Curcumin: A polyphenol with molecular targets for cancer control. Asian Pac. J. Cancer Prev. 2016 17 6 2735 2739 27356682
    [Google Scholar]
  18. Tyagi A.K. Prasad S. Molecular targets of curcumin: A potential magic bullet for health. Mol. Biol. 2014 4 e123
    [Google Scholar]
  19. Sun Y. Guan Z. Liang L. Cheng Y. Zhou J. Li J. Xu Y. NF-κB signaling plays irreplaceable roles in cisplatin-induced bladder cancer chemoresistance and tumor progression. Int. J. Oncol. 2016 48 1 225 234 10.3892/ijo.2015.3256 26647959
    [Google Scholar]
  20. Kamat A.M. Sethi G. Aggarwal B.B. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-κB and nuclear factor-κB–regulated gene products in IFN-α–sensitive and IFN-α–resistant human bladder cancer cells. Mol. Cancer Ther. 2007 6 3 1022 1030 10.1158/1535‑7163.MCT‑06‑0545 17363495
    [Google Scholar]
  21. Dilnawaz F. Sahoo S.K. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur. J. Pharm. Biopharm. 2013 85 3 452 462 10.1016/j.ejpb.2013.07.013 23891772
    [Google Scholar]
  22. Ramachandran C. Nair S.M. Escalon E. Melnick S.J. Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines. J. Complement. Integr. Med. 2012 9 1 20 10.1515/1553‑3840.1614 22944718
    [Google Scholar]
  23. Jones S.K. Merkel O.M. Tackling breast cancer chemoresistance with nano-formulated siRNA. Gene Ther. 2016 23 12 821 828 10.1038/gt.2016.67 27648580
    [Google Scholar]
  24. Guo Q. Li X. Yang Y. Wei J. Zhao Q. Luo F. Qian Z. Enhanced 4T1 breast carcinoma anticancer activity by co-delivery of doxorubicin and curcumin with core-shell drug-carrier based on heparin modified poly(L-lactide) grafted polyethylenimine cationic nanoparticles. J. Biomed. Nanotechnol. 2014 10 2 227 237 10.1166/jbn.2014.1785 24738331
    [Google Scholar]
  25. Zhan Y. Chen Y. Liu R. Zhang H. Zhang Y. Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch. Pharm. Res. 2014 37 8 1086 1095 10.1007/s12272‑013‑0311‑3 24318305
    [Google Scholar]
  26. Bayet-Robert M. Kwiatowski F. Leheurteur M. Gachon F. Planchat E. Abrial C. Mouret-Reynier M.A. Durando X. Barthomeuf C. Chollet P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther. 2010 9 1 8 14 10.4161/cbt.9.1.10392 19901561
    [Google Scholar]
  27. Körber M.I. Staribacher A. Ratzenböck I. Steger G. Mader R.M. NFκB-associated pathways in progression of chemoresistance to 5-fluorouracil in an in vitro model colonic carcinoma. Anticancer Res. 2016 36 4 1631 1639 27069140
    [Google Scholar]
  28. Yu Y. Kanwar S.S. Patel B.B. Nautiyal J. Sarkar F.H. Majumdar A.P.N. Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl. Oncol. 2009 2 4 321 328 10.1593/tlo.09193 19956394
    [Google Scholar]
  29. Patel B.B. Sengupta R. Qazi S. Vachhani H. Yu Y. Rishi A.K. Majumdar A.P.N. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int. J. Cancer 2008 122 2 267 273 10.1002/ijc.23097 17918158
    [Google Scholar]
  30. Cruz-Correa M. Shoskes D.A. Sanchez P. Zhao R. Hylind L.M. Wexner S.D. Giardiello F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2006 4 8 1035 1038 10.1016/j.cgh.2006.03.020 16757216
    [Google Scholar]
  31. Zhao L. Li Y. Song X. Zhou H. Li N. Miao Y. Jia L. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget 2016 7 37 60074 60086 10.18632/oncotarget.11054 27527856
    [Google Scholar]
  32. Shanmugam M. Rane G. Kanchi M. Arfuso F. Chinnathambi A. Zayed M. Alharbi S. Tan B. Kumar A. Sethi G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015 20 2 2728 2769 10.3390/molecules20022728 25665066
    [Google Scholar]
  33. Fan J-X. Zeng Y-J. Wu J-W. Li Z-Q. Li Y-M. Zheng R. Weng G-Y. Guo K.Y. Synergistic killing effect of arsenic trioxide combined with curcumin on KG1a cells. J. Exp. Hematol. 2014 22 5 1267 1272 25338570
    [Google Scholar]
  34. Sánchez Y. Simón G.P. Calviño E. de Blas E. Aller P. Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. J. Pharmacol. Exp. Ther. 2010 335 1 114 123 10.1124/jpet.110.168344 20605902
    [Google Scholar]
  35. Weng G. Zeng Y. Huang J. Fan J. Guo K. Curcumin enhanced busulfan-induced apoptosis through downregulating the expression of survivin in leukemia stem-like KG1a cells. BioMed Res. Int. 2015 2015 1 16 10.1155/2015/630397 26557682
    [Google Scholar]
  36. Nagy L.I. Fehér L.Z. Szebeni G.J. Gyuris M. Sipos P. Alföldi R. Ózsvári B. Hackler L. Jr Balázs A. Batár P. Kanizsai I. Puskás L.G. Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. BioMed Res. Int. 2015 2015 1 11 10.1155/2015/968981 26075279
    [Google Scholar]
  37. Kim K.C. Baek S.H. Lee C. Curcumin-induced downregulation of Axl receptor tyrosine kinase inhibits cell proliferation and circumvents chemoresistance in non-small lung cancer cells. Int. J. Oncol. 2015 47 6 2296 2303 10.3892/ijo.2015.3216 26498137
    [Google Scholar]
  38. Chen P. Li J. Jiang H.G. Lan T. Chen Y.C. Curcumin reverses cisplatin resistance in cisplatin-resistant lung caner cells by inhibiting FA/BRCA pathway. Tumour Biol. 2015 36 5 3591 3599 10.1007/s13277‑014‑2996‑4 25542235
    [Google Scholar]
  39. Chen P.M. Cheng Y.W. Wu T.C. Chen C.Y. Lee H. MnSOD overexpression confers cisplatin resistance in lung adenocarcinoma via the NF-κB/Snail/Bcl-2 pathway. Free Radic. Biol. Med. 2015 79 127 137 10.1016/j.freeradbiomed.2014.12.001 25499851
    [Google Scholar]
  40. Li S. Liu Z. Zhu F. Fan X. Wu X. Zhao H. Jiang L. Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncol. Res. 2014 21 3 137 144 10.3727/096504013X13832473330032 24512728
    [Google Scholar]
  41. Boztas A.O. Karakuzu O. Galante G. Ugur Z. Kocabas F. Altuntas C.Z. Yazaydin A.O. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm. 2013 10 7 2676 2683 10.1021/mp400101k 23730903
    [Google Scholar]
  42. Weng S.H. Tsai M.S. Chiu Y.F. Kuo Y.H. Chen H.J. Lin Y.W. Enhancement of mitomycin C-induced cytotoxicity by curcumin results from down-regulation of MKK1/2-ERK1/2-mediated thymidine phosphorylase expression. Basic Clin. Pharmacol. Toxicol. 2012 110 3 298 306 10.1111/j.1742‑7843.2011.00806.x 21973306
    [Google Scholar]
  43. Lee J.Y. Lee Y.M. Chang G.C. Yu S.L. Hsieh W.Y. Chen J.J.W. Chen H.W. Yang P.C. Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: The versatile adjuvant for gefitinib therapy. PLoS One 2011 6 8 e23756 10.1371/journal.pone.0023756 21858220
    [Google Scholar]
  44. Pop V.V. Seicean A. Lupan I. Samasca G. Burz C.C. IL-6 roles: Molecular pathway and clinical implication in pancreatic cancer: A systemic review. Immunol. Lett. 2017 181 45 50 10.1016/j.imlet.2016.11.010 27876525
    [Google Scholar]
  45. Kanai M. Yoshimura K. Asada M. Imaizumi A. Suzuki C. Matsumoto S. Nishimura T. Mori Y. Masui T. Kawaguchi Y. Yanagihara K. Yazumi S. Chiba T. Guha S. Aggarwal B.B. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol. 2011 68 1 157 164 10.1007/s00280‑010‑1470‑2 20859741
    [Google Scholar]
  46. Epelbaum R. Schaffer M. Vizel B. Badmaev V. Bar-Sela G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr. Cancer 2010 62 8 1137 1141 10.1080/01635581.2010.513802 21058202
    [Google Scholar]
  47. Alshaker H. Wang Q. Kawano Y. Arafat T. Böhler T. Winkler M. Cooper C. Pchejetski D. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget 2016 7 49 80943 80956 10.18632/oncotarget.13115 27821815
    [Google Scholar]
  48. Mahammedi H. Planchat E. Pouget M. Durando X. Curé H. Guy L. Van-Praagh I. Savareux L. Atger M. Bayet-Robert M. Gadea E. Abrial C. Thivat E. Chollet P. Eymard J.C. The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: a pilot phase II study. Oncology 2016 90 2 69 78 10.1159/000441148 26771576
    [Google Scholar]
  49. Mohammed S. Harikumar K. B. Role of resveratrol in chemosensitization of cancer. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 61 76 10.1016/B978‑0‑12‑812373‑7.00003‑6
    [Google Scholar]
  50. Buhrmann C. Shayan P. Kraehe P. Popper B. Goel A. Shakibaei M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem. Pharmacol. 2015 98 1 51 68 10.1016/j.bcp.2015.08.105 26310874
    [Google Scholar]
  51. Lee S.H. Koo B.S. Park S.Y. Kim Y.M. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol. Med. Rep. 2015 12 2 2777 2783 10.3892/mmr.2015.3675 25936796
    [Google Scholar]
  52. Sprouse A.A. Herbert B.S. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res. 2014 34 10 5363 5374 25275030
    [Google Scholar]
  53. Fukui M. Yamabe N. Zhu B.T. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur. J. Cancer 2010 46 10 1882 1891 10.1016/j.ejca.2010.02.004 20223651
    [Google Scholar]
  54. Bhardwaj A. Sethi G. Vadhan-Raj S. Bueso-Ramos C. Takada Y. Gaur U. Nair A.S. Shishodia S. Aggarwal B.B. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-κB–regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007 109 6 2293 2302 10.1182/blood‑2006‑02‑003988 17164350
    [Google Scholar]
  55. Zhu Y. He W. Gao X. Li B. Mei C. Xu R. Chen H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci. Rep. 2015 5 1 17730 10.1038/srep17730 26635117
    [Google Scholar]
  56. Zhao Y. Huan M. Liu M. Cheng Y. Sun Y. Cui H. Liu D. Mei Q. Zhou S. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci. Rep. 2016 6 1 35267 10.1038/srep35267 27731405
    [Google Scholar]
  57. Harikumar K.B. Kunnumakkara A.B. Sethi G. Diagaradjane P. Anand P. Pandey M.K. Gelovani J. Krishnan S. Guha S. Aggarwal B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer 2010 127 2 257 268 10.1002/ijc.25041 19908231
    [Google Scholar]
  58. Farrand L. Byun S. Kim J.Y. Im-Aram A. Lee J. Lim S. Lee K.W. Suh J.Y. Lee H.J. Tsang B.K. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J. Biol. Chem. 2013 288 33 23740 23750 10.1074/jbc.M113.487686 23833193
    [Google Scholar]
  59. Rai G. Mishra S. Suman S. Shukla Y. Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight. Phytomedicine 2016 23 3 233 242 10.1016/j.phymed.2015.12.020 26969377
    [Google Scholar]
  60. Resveratrol in treating patients with colorectal cancer that can be removed by surg. NC Patent T00433576 2024
  61. A biological study of resveratrol's effects on notch-1 signaling in subjects with low grade gastrointestinal tumors. NC Patent T01476592 2024
  62. Resveratrol for patients with colon cancer. NC Patent T00256334 2005
  63. Howells L.M. Berry D.P. Elliott P.J. Jacobson E.W. Hoffmann E. Hegarty B. Brown K. Steward W.P. Gescher A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila.) 2011 4 9 1419 1425 10.1158/1940‑6207.CAPR‑11‑0148 21680702
    [Google Scholar]
  64. Popat R. Plesner T. Davies F. Cook G. Cook M. Elliott P. Jacobson E. Gumbleton T. Oakervee H. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br. J. Haematol. 2013 160 5 714 10.1111/bjh.12154.
    [Google Scholar]
  65. Whittle K.J. Dunphy P.J. Pennock J.F. The isolation and properties of δ-tocotrienol from Hevea latex. Biochem. J. 1966 100 1 138 145 10.1042/bj1000138 5965249
    [Google Scholar]
  66. Aggarwal B.B. Sundaram C. Prasad S. Kannappan R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 2010 80 11 1613 1631 10.1016/j.bcp.2010.07.043 20696139
    [Google Scholar]
  67. Nesaretnam K. Guthrie N. Chambers A.F. Carroll K.K. Effect of tocotrienols on the growth of a human breast cancer cell line in culture. Lipids 1995 30 12 1139 1143 10.1007/BF02536615 8614304
    [Google Scholar]
  68. Parker R.A. Pearce B.C. Clark R.W. Gordon D.A. Wright J.J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 1993 268 15 11230 11238 10.1016/S0021‑9258(18)82115‑9 8388388
    [Google Scholar]
  69. Husain K. Role of tocotrienols in chemosensitization of cancer. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 77 79 10.1016/B978‑0‑12‑812373‑7.00004‑8
    [Google Scholar]
  70. Sun W. Xu W. Liu H. Liu J. Wang Q. Zhou J. Dong F. Chen B. γ-Tocotrienol induces mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells. J. Nutr. Biochem. 2009 20 4 276 284 10.1016/j.jnutbio.2008.03.003 18602811
    [Google Scholar]
  71. Park S.K. Sanders B.G. Kline K. Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res. Treat. 2010 124 2 361 375 10.1007/s10549‑010‑0786‑2 20157774
    [Google Scholar]
  72. Srivastava J.K. Gupta S. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem. Biophys. Res. Commun. 2006 346 2 447 453 10.1016/j.bbrc.2006.05.147 16762318
    [Google Scholar]
  73. Agarwal M.K. Agarwal M.L. Athar M. Gupta S. Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association. Cell Cycle 2004 3 2 200 199 10.4161/cc.3.2.637 14712090
    [Google Scholar]
  74. Wang C. Husain K. Zhang A. Centeno B.A. Chen D.T. Tong Z. Sebti S.M. Malafa M.P. EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J. Nutr. Biochem. 2015 26 8 797 807 10.1016/j.jnutbio.2015.02.008 25997867
    [Google Scholar]
  75. Nesaretnam K. Meganathan P. Veerasenan S.D. Selvaduray K.R. Tocotrienols and breast cancer: The evidence to date. Genes Nutr. 2012 7 1 3 9 10.1007/s12263‑011‑0224‑z 21516480
    [Google Scholar]
  76. ocotrienol in combination with neoadjuvant chemotherapy for women with breast cancer NC Patent T02909751 2024
  77. Springett G.M. Husain K. Neuger A. Centeno B. Chen D.T. Hutchinson T.Z. Lush R.M. Sebti S. Malafa M.P. A phase I safety, pharmacokinetic, and pharmacodynamic presurgical trial of vitamin E δ-tocotrienol in patients with pancreatic ductal neoplasia. EBioMedicine 2015 2 12 1987 1995 10.1016/j.ebiom.2015.11.025 26844278
    [Google Scholar]
  78. Prasad S. Tyagi A. K. Aggarwal B. B. Chemosensitization by ursolic acid: A new avenue for cancer therapy Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 99 109 10.1016/B978‑0‑12‑812373‑7.00005‑X
    [Google Scholar]
  79. Yadav V.R. Prasad S. Sung B. Kannappan R. Aggarwal B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins 2010 2 10 2428 2466 10.3390/toxins2102428 22069560
    [Google Scholar]
  80. Wu C.C. Cheng C.H. Lee Y.H. Chang I.L. Chen H.Y. Hsieh C.P. Chueh P.J. Ursolic acid triggers apoptosis in human osteosarcoma cells via caspase activation and the ERK1/2 MAPK pathway. J. Agric. Food Chem. 2016 64 21 4220 4226 10.1021/acs.jafc.6b00542 27171502
    [Google Scholar]
  81. Lin C.C. Huang C.Y. Mong M.C. Chan C.Y. Yin M.C. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J. Agric. Food Chem. 2011 59 2 755 762 10.1021/jf103904b 21175131
    [Google Scholar]
  82. Wang X.H. Zhou S.Y. Qian Z.Z. Zhang H.L. Qiu L.H. Song Z. Zhao J. Wang P. Hao X.S. Wang H.Q. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin. Drug Metab. Toxicol. 2013 9 2 117 125 10.1517/17425255.2013.738667 23134084
    [Google Scholar]
  83. Qian Z. Wang X. Song Z. Zhang H. Zhou S. Zhao J. Wang H. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. BioMed Res. Int. 2015 2015 1 7 10.1155/2015/809714 25866811
    [Google Scholar]
  84. Sung B. Role of fisetin in chemosensitization. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 111 139 10.1016/B978‑0‑12‑812373‑7.00006‑1
    [Google Scholar]
  85. Suh Y. Afaq F. Johnson J.J. Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF- B-signaling pathways. Carcinogenesis 2008 30 2 300 307 10.1093/carcin/bgn269 19037088
    [Google Scholar]
  86. Diehl J.A. Cycling to cancer with cyclin D1. Cancer Biol. Ther. 2002 1 3 226 231 10.4161/cbt.72 12432268
    [Google Scholar]
  87. Lim D.Y. Park J.H.Y. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am. J. Physiol. Gastrointest. Liver Physiol. 2009 296 5 G1060 G1068 10.1152/ajpgi.90490.2008 19264955
    [Google Scholar]
  88. Smith M.L. Murphy K. Doucette C.D. Greenshields A.L. Hoskin D.W. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J. Cell. Biochem. 2016 117 8 1913 1925 10.1002/jcb.25490 26755433
    [Google Scholar]
  89. Wu M.S. Lien G.S. Shen S.C. Yang L.Y. Chen Y.C. N-acetyl-L-cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol. Carcinog. 2014 53 S1 Suppl. 1 E119 E129 10.1002/mc.22053 24019108
    [Google Scholar]
  90. Touil Y.S. Seguin J. Scherman D. Chabot G.G. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice. Cancer Chemother. Pharmacol. 2011 68 2 445 455 10.1007/s00280‑010‑1505‑8 21069336
    [Google Scholar]
  91. Tripathi R. Samadder T. Gupta S. Surolia A. Shaha C. Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol. Cancer Ther. 2011 10 2 255 268 10.1158/1535‑7163.MCT‑10‑0606 21216935
    [Google Scholar]
  92. Pal H.C. Baxter R.D. Hunt K.M. Agarwal J. Elmets C.A. Athar M. Afaq F. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget 2015 6 29 28296 28311 10.18632/oncotarget.5064 26299806
    [Google Scholar]
  93. Kale V.P. Gilhooley P.J. Phadtare S. Nabavizadeh A. Pandey M.K. Role of Gambogic Acid in Chemosensitization of Cancer. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018
    [Google Scholar]
  94. Pandey M.K. Karelia D. Amin S.G. Gambogic acid and its role in chronic diseases. Anti-inflammatory Nutraceuticals and Chronic Diseases Springer 2016 375 395 10.1007/978‑3‑319‑41334‑1_15
    [Google Scholar]
  95. Kashyap D. Mondal R. Tuli H.S. Kumar G. Sharma A.K. Molecular targets of gambogic acid in cancer: Recent trends and advancements. Tumour Biol. 2016 37 10 12915 12925 10.1007/s13277‑016‑5194‑8 27448303
    [Google Scholar]
  96. Pandey M.K. Sung B. Ahn K.S. Kunnumakkara A.B. Chaturvedi M.M. Aggarwal B.B. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-κB signaling pathway. Blood 2007 110 10 3517 3525 10.1182/blood‑2007‑03‑079616 17673602
    [Google Scholar]
  97. Prasad S. Pandey M.K. Yadav V.R. Aggarwal B.B. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: Potential role in proliferation and apoptosis. Cancer Prev. Res. (Phila.) 2011 4 7 1084 1094 10.1158/1940‑6207.CAPR‑10‑0340 21490133
    [Google Scholar]
  98. Li X. Liu S. Huang H. Liu N. Zhao C. Liao S. Yang C. Liu Y. Zhao C. Li S. Lu X. Liu C. Guan L. Zhao K. Shi X. Song W. Zhou P. Dong X. Guo H. Wen G. Zhang C. Jiang L. Ma N. Li B. Wang S. Tan H. Wang X. Dou Q.P. Liu J. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo. Cell Rep. 2013 3 1 211 222 10.1016/j.celrep.2012.11.023 23260670
    [Google Scholar]
  99. Shi X. Chen X. Li X. Lan X. Zhao C. Liu S. Huang H. Liu N. Liao S. Song W. Zhou P. Wang S. Xu L. Wang X. Dou Q.P. Liu J. Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin. Cancer Res. 2014 20 1 151 163 10.1158/1078‑0432.CCR‑13‑1063 24334603
    [Google Scholar]
  100. Zhao W. Zhou S-F. Zhang Z-P. Xu G-P. Li X-B. Yan J.L. Gambogic acid inhibits the growth of osteosarcoma cells in vitro by inducing apoptosis and cell cycle arrest. Oncol. Rep. 2011 25 5 1289 1295 21331449
    [Google Scholar]
  101. Zhao W. Xia S.Q. Zhuang J.P. Zhang Z.P. You C.C. Yan J.L. Xu G.P. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α. Mol. Cell. Biochem. 2016 420 1-2 1 8 10.1007/s11010‑016‑2759‑1 27473145
    [Google Scholar]
  102. Zhou Z.T. Phase I human tolerability trail of Gambogic acid. Chin. New Drugs 2007 16 3
    [Google Scholar]
  103. Chi Y. Zhan X. Yu H. Xie G. Wang Z. Xiao W. Wang Y. Xiong F. Hu J. Yang L. Cui C. Wang J. An open-labeled, randomized, multicenter phase IIa study of gambogic acid injection for advanced malignant tumors. Chin. Med. J. (Engl.) 2013 126 9 1642 1646 10.3760/cma.j.issn.0366‑6999.20122582 23652044
    [Google Scholar]
  104. Shukla A. S. Jha A. K. Kumari R. Rawat K. Syeda S. Shrivastava A. Role of catechins in chemosensitization. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 169 198
    [Google Scholar]
  105. Hayakawa S. Saito K. Miyoshi N. Ohishi T. Oishi Y. Miyoshi M. Nakamura Y. Anti-cancer effects of green tea by either anti-or pro-oxidative mechanisms. Asian Pac. J. Cancer Prev. 2016 17 4 1649 1654 10.7314/APJCP.2016.17.4.1649 27221834
    [Google Scholar]
  106. Punathil T. Tollefsbol T.O. Katiyar S.K. EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem. Biophys. Res. Commun. 2008 375 1 162 167 10.1016/j.bbrc.2008.07.157 18692479
    [Google Scholar]
  107. Saeki K. Kobayashi N. Inazawa Y. Zhang H. Nishitoh H. Ichijo H. Saeki K. Isemura M. Yuo A. Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem. J. 2002 368 3 705 720 10.1042/bj20020101 12206715
    [Google Scholar]
  108. Henning S.M. Wang P. Said J.W. Huang M. Grogan T. Elashoff D. Carpenter C.L. Heber D. Aronson W.J. Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate 2015 75 5 550 559 10.1002/pros.22943 25545744
    [Google Scholar]
  109. Available from: https://clinicaltrials.gov/study/NCT0051624 2024
  110. Available from: https://clinicaltrials.gov/study/NCT00917735 2024
  111. Available from: https://clinicaltrials.gov/study/NCT00949923 2024
  112. Shimizu M. Fukutomi Y. Ninomiya M. Nagura K. Kato T. Araki H. Suganuma M. Fujiki H. Moriwaki H. Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol. Biomarkers Prev. 2008 17 11 3020 3025 10.1158/1055‑9965.EPI‑08‑0528 18990744
    [Google Scholar]
  113. Available from: https://clinicaltrials.gov/study/NCT01606124 2024
  114. Dheeraj A. Tailor D. Singh S.P. Anticancer attributes of silibinin: Chemo and radiosensitization of cancer. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 199 220
    [Google Scholar]
  115. Basiri A. Pashaiasl M. The toxic effect of silibinin and paclitaxel combination on endometrial Cancer cell line. JAUMS 2016 16 323 330
    [Google Scholar]
  116. Cuyàs E. Pérez-Sánchez A. Micol V. Menendez J.A. Bosch-Barrera J. STAT3-targeted treatment with silibinin overcomes the acquired resistance to crizotinib in ALK -rearranged lung cancer. Cell Cycle 2016 15 24 3413 3418 10.1080/15384101.2016.1245249 27753543
    [Google Scholar]
  117. Priego N. Zhu L. Monteiro C. Mulders M. Wasilewski D. Bindeman W. Doglio L. Martínez L. Martínez-Saez E. Ramón y Cajal S. Megías D. Hernández-Encinas E. Blanco-Aparicio C. Martínez L. Zarzuela E. Muñoz J. Fustero-Torre C. Piñeiro-Yáñez E. Hernández-Laín A. Bertero L. Poli V. Sanchez-Martinez M. Menendez J.A. Soffietti R. Bosch-Barrera J. Valiente M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 2018 24 7 1024 1035 10.1038/s41591‑018‑0044‑4 29892069
    [Google Scholar]
  118. Bharti A.C. Rajan P. Jadli M. Pande D. Singh T. Berberine as an adjuvant and sensitizer to current chemotherapy. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 221 240 10.1016/B978‑0‑12‑812373‑7.00011‑5
    [Google Scholar]
  119. Lin H-L. Liu T-Y. Wu C-W. Chi C-W. Berberine modulates expression of mdr1 gene product and the responses of digestive track cancer cells to Paclitaxel. Br. J. Cancer 1999 81 3 416 422 10.1038/sj.bjc.6690710 10507765
    [Google Scholar]
  120. Lee S-J. Noh H-J. Sung E-G. Song I-H. Kim J-Y. Kwon T.K. Lee T.J. Berberine sensitizes TRAIL-induced apoptosis through proteasome-mediated downregulation of c-FLIP and Mcl-1 proteins. Int. J. Oncol. 2011 38 2 485 492 10.3892/ijo.2010.878 21170508
    [Google Scholar]
  121. Bao J. Huang B. Zou L. Chen S. Zhang C. Zhang Y. Chen M. Wan J.B. Su H. Wang Y. He C. Hormetic effect of berberine attenuates the anticancer activity of chemotherapeutic agents. PLoS One 2015 10 9 e0139298 10.1371/journal.pone.0139298 26421434
    [Google Scholar]
  122. Zhang C. Li C. Chen S. Li Z. Jia X. Wang K. Bao J. Liang Y. Wang X. Chen M. Li P. Su H. Wan J.B. Lee S.M.Y. Liu K. He C. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol. 2017 11 1 11 10.1016/j.redox.2016.10.019 27835779
    [Google Scholar]
  123. Available from: https://clinicaltrials.gov/search?term=berberine 2024
  124. Available from: https://www.clinicaltrials.gov/study/NCT02226185 2024
  125. Gupta S.C. Role of Emodin in Chemosensitization of Cancer. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 241 257 10.1016/B978‑0‑12‑812373‑7.00012‑7
    [Google Scholar]
  126. Mueller S.O. Schmitt M. Dekant W. Stopper H. Schlatter J. Schreier P. Lutz W.K. Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants. Food Chem. Toxicol. 1999 37 5 481 491 10.1016/S0278‑6915(99)00027‑7 10456676
    [Google Scholar]
  127. Sui J.Q. Xie K.P. Zou W. Xie M.J. Emodin inhibits breast cancer cell proliferation through the ERα-MAPK/Akt-cyclin D1/Bcl-2 signaling pathway. Asian Pac. J. Cancer Prev. 2014 15 15 6247 6251 10.7314/APJCP.2014.15.15.6247 25124606
    [Google Scholar]
  128. Prasad S. Kim J.H. Gupta S.C. Aggarwal B.B. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol. Sci. 2014 35 10 520 536 10.1016/j.tips.2014.07.004 25128958
    [Google Scholar]
  129. Kumar S. Bhandari C. Sharma P. Role of piperine in chemoresistance Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 259 286 10.1016/B978‑0‑12‑812373‑7.00013‑9
    [Google Scholar]
  130. Lai L. Fu Q. Liu Y. Jiang K. Guo Q. Chen Q. Yan B. Wang Q. Shen J. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012 33 4 523 530 10.1038/aps.2011.209 22388073
    [Google Scholar]
  131. Zhang J. Zhu X. Li H. Li B. Sun L. Xie T. Zhu T. Zhou H. Ye Z. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int. Immunopharmacol. 2015 24 1 50 58 10.1016/j.intimp.2014.11.012 25479727
    [Google Scholar]
  132. Yaffe P.B. Power Coombs M.R. Doucette C.D. Walsh M. Hoskin D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog. 2015 54 10 1070 1085 10.1002/mc.22176 24819444
    [Google Scholar]
  133. Ouyang D. Zeng L. Pan H. Xu L. Wang Y. Liu K. He X. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 2013 60 424 430 10.1016/j.fct.2013.08.007 23939040
    [Google Scholar]
  134. Fofaria N.M. Kim S.H. Srivastava S.K. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation. PLoS One 2014 9 5 e94298 10.1371/journal.pone.0094298 24804719
    [Google Scholar]
  135. Doucette C.D. Hilchie A.L. Liwski R. Hoskin D.W. Piperine, a dietary phytochemical, inhibits angiogenesis. J. Nutr. Biochem. 2013 24 1 231 239 10.1016/j.jnutbio.2012.05.009 22902327
    [Google Scholar]
  136. Abdelhamed S. Yokoyama S. Refaat A. Ogura K. Yagita H. Awale S. Saiki I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res. 2014 34 4 1893 1899 24692724
    [Google Scholar]
  137. Greenshields A.L. Doucette C.D. Sutton K.M. Madera L. Annan H. Yaffe P.B. Knickle A.F. Dong Z. Hoskin D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015 357 1 129 140 10.1016/j.canlet.2014.11.017 25444919
    [Google Scholar]
  138. Do M.T. Kim H.G. Choi J.H. Khanal T. Park B.H. Tran T.P. Jeong T.C. Jeong H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem. 2013 141 3 2591 2599 10.1016/j.foodchem.2013.04.125 23870999
    [Google Scholar]
  139. Doucette C.D. Greenshields A.L. Liwski R.S. Hoskin D.W. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways. Toxicol. Lett. 2015 234 1 1 12 10.1016/j.toxlet.2015.01.020 25655587
    [Google Scholar]
  140. Jagadeeshan S. Prasad M.M. Role of deguelin in chemoresistance. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 287 296
    [Google Scholar]
  141. Chun K.H. Kosmeder J.W. II Sun S. Pezzuto J.M. Lotan R. Hong W.K. Lee H.Y. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J. Natl. Cancer Inst. 2003 95 4 291 302 10.1093/jnci/95.4.291 12591985
    [Google Scholar]
  142. Wu W. Hai Y. Chen L. Liu R.J. Han Y.X. Li W.H. Li S. Lin S. Wu X.R. Deguelin-induced blockade of PI 3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down-regulation of fibroblast growth factor receptor 4 activity. Pharmacol. Res. Perspect. 2016 4 2 e00212 10.1002/prp2.212 27069628
    [Google Scholar]
  143. Li R. Chen Y. Shu W. Chen Z. Ke W. Involvement of SRC-3 in deguelin-induced apoptosis in Jurkat cells. Int. J. Hematol. 2009 89 5 628 635 10.1007/s12185‑009‑0311‑8 19365708
    [Google Scholar]
  144. Dat N.T. Lee J.H. Lee K. Hong Y.S. Kim Y.H. Lee J.J. Phenolic constituents of Amorpha fruticosa that inhibit NF-kappaB activation and related gene expression. J. Nat. Prod. 2008 71 10 1696 1700 10.1021/np800383q 18841906
    [Google Scholar]
  145. Mehta R. Katta H. Alimirah F. Patel R. Murillo G. Peng X. Muzzio M. Mehta R.G. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One 2013 8 6 e65113 10.1371/journal.pone.0065113 23762292
    [Google Scholar]
  146. Suh Y.A. Kim J.H. Sung M.A. Boo H.J. Yun H.J. Lee S.H. Lee H.J. Min H.Y. Suh Y.G. Kim K.W. Lee H.Y. A novel antitumor activity of deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer. Cancer Lett. 2013 332 1 102 109 10.1016/j.canlet.2013.01.022 23348700
    [Google Scholar]
  147. Gills J.J. Kosmeder J. II Moon R.C. Lantvit D.D. Pezzuto J.M. Effect of deguelin on UVB-induced skin carcinogenesis. J. Chemother. 2005 17 3 297 301 10.1179/joc.2005.17.3.297 16041863
    [Google Scholar]
  148. Woo J.K. Choi D.S. Tran H.T. Gilbert B.E. Hong W.K. Lee H.Y. Liposomal encapsulation of deguelin: Evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis. Cancer Prev. Res. (Phila.) 2009 2 4 361 369 10.1158/1940‑6207.CAPR‑08‑0237 19336726
    [Google Scholar]
  149. Kim W.Y. Chang D.J. Hennessy B. Kang H.J. Yoo J. Han S.H. Kim Y.S. Park H.J. Geo S-Y. Mills G. Kim K.W. Hong W.K. Suh Y.G. Lee H.Y. A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy. Cancer Prev. Res. (Phila.) 2008 1 7 577 587 10.1158/1940‑6207.CAPR‑08‑0184 19139008
    [Google Scholar]
  150. Lee S.C. Min H.Y. Choi H. Bae S.Y. Park K.H. Hyun S.Y. Lee H.J. Moon J. Park S.H. Kim J.Y. An H. Park S.J. Seo J.H. Lee S. Kim Y.M. Park H.J. Lee S.K. Lee J. Lee J. Kim K.W. Suh Y.G. Lee H.Y. Deguelin analogue SH-1242 inhibits Hsp90 activity and exerts potent anticancer efficacy with limited neurotoxicity. Cancer Res. 2016 76 3 686 699 10.1158/0008‑5472.CAN‑15‑1492 26645561
    [Google Scholar]
  151. Banerjee S. Parasramka M.A. Paruthy S.B. Garcinol: Preclinical perspective underpinning chemo- and radiosensitization of cancer. Role of nutraceuticals in cancer chemosensitization. Elsevier 2018 297 324
    [Google Scholar]
  152. Surh Y.J. Chun K.S. Cha H.H. Han S.S. Keum Y.S. Park K.K. Lee S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 2001 480-481 243 268 10.1016/S0027‑5107(01)00183‑X 11506818
    [Google Scholar]
  153. Liao C.H. Sang S. Liang Y.C. Ho C.T. Lin J.K. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 in downregulating nuclear factor-kappa B pathway by Garcinol. Mol. Carcinog. 2004 41 3 140 149 10.1002/mc.20050 15390082
    [Google Scholar]
  154. Yamaguchi F. Saito M. Ariga T. Yoshimura Y. Nakazawa H. Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem. 2000 48 6 2320 2325 10.1021/jf990908c 10888544
    [Google Scholar]
  155. Saadat N. Gupta S.V. Potential role of garcinol as an anticancer agent. J. Oncol. 2012 2012 1 8 10.1155/2012/647206 22745638
    [Google Scholar]
  156. Liu C. Ho P.C.L. Wong F.C. Sethi G. Wang L.Z. Goh B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 2015 362 1 8 14 10.1016/j.canlet.2015.03.019 25796441
    [Google Scholar]
  157. Kostanová-Poliaková D. Sabová L. Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 2005 52 6 441 449 16284687
    [Google Scholar]
  158. Chen C.S. Lee C.H. Hsieh C.D. Ho C.T. Pan M.H. Huang C.S. Tu S.H. Wang Y.J. Chen L.C. Chang Y.J. Wei P.L. Yang Y.Y. Wu C.H. Ho Y.S. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res. Treat. 2011 125 1 73 87 10.1007/s10549‑010‑0821‑3 20229177
    [Google Scholar]
  159. Yoshida K. Tanaka T. Hirose Y. Yamaguchi F. Kohno H. Toida M. Hara A. Sugie S. Shibata T. Mori H. Dietary garcinol inhibits 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in rats. Cancer Lett. 2005 221 1 29 39 10.1016/j.canlet.2004.08.016 15797624
    [Google Scholar]
  160. Rabik C.A. Dolan M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007 33 1 9 23 10.1016/j.ctrv.2006.09.006 17084534
    [Google Scholar]
  161. Li F. Shanmugam M.K. Siveen K.S. Wang F. Ong T.H. Loo S.Y. Swamy M.M.M. Mandal S. Kumar A.P. Goh B.C. Kundu T. Ahn K.S. Wang L.Z. Hui K.M. Sethi G. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget 2015 6 7 5147 5163 10.18632/oncotarget.2881 25762616
    [Google Scholar]
  162. Shibata M.A. Iinuma M. Morimoto J. Kurose H. Akamatsu K. Okuno Y. Akao Y. Otsuki Y. α-Mangostin extracted from the pericarp of the mangosteen (Garcinia mangostanaLinn) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med. 2011 9 1 69 10.1186/1741‑7015‑9‑69 21639868
    [Google Scholar]
  163. Spira A. Ettinger D.S. Multidisciplinary management of lung cancer. N. Engl. J. Med. 2004 350 4 379 392 10.1056/NEJMra035536 14736930
    [Google Scholar]
  164. Ohnishi H. Asamoto M. Tujimura K. Hokaiwado N. Takahashi S. Ogawa K. Kuribayashi M. Ogiso T. Okuyama H. Shirai T. Inhibition of cell proliferation by nobiletin, a dietary phytochemical, associated with apoptosis and characteristic gene expression, but lack of effect on early rat hepatocarcinogenesis in vivo. Cancer Sci. 2004 95 12 936 942 10.1111/j.1349‑7006.2004.tb03180.x 15596041
    [Google Scholar]
  165. Einbond L. Mighty J. Kashiwazaki R. Figueroa M. Jalees F. Acuna U. LeGendre O. Foster D. Kennelly E. E. Garcinia benzophenones inhibit the growth of human colon cancer cells and synergize with sulindac sulfide and turmeric. Anticancer. Agents Med. Chem. 2013 13 10 1540 1550 10.2174/18715206113139990095
    [Google Scholar]
  166. Checker R. Patwardhan R.S. Sharma D. Chemopreventive and anticancer effects of plumbagin: Novel mechanism(s) via modulation of cellular redox. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 325 321
    [Google Scholar]
  167. Sandur S.K. Ichikawa H. Sethi G. Ahn K.S. Aggarwal B.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J. Biol. Chem. 2006 281 25 17023 17033 10.1074/jbc.M601595200 16624823
    [Google Scholar]
  168. Zhao Y-L. Lu D.P. Effects of plumbagin on the human acute promyelocytic leukemia cells in vitro. J. Exp. Hematol 2006 14 2 208 211 16638181
    [Google Scholar]
  169. Hsu Y.L. Cho C.Y. Kuo P.L. Huang Y.T. Lin C.C. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J. Pharmacol. Exp. Ther. 2006 318 2 484 494 10.1124/jpet.105.098863 16632641
    [Google Scholar]
  170. Li Y.C. He S.M. He Z.X. Li M. Yang Y. Pang J.X. Zhang X. Chow K. Zhou Q. Duan W. Zhou Z.W. Yang T. Huang G.H. Liu A. Qiu J.X. Liu J.P. Zhou S.F. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett. 2014 344 2 239 259 10.1016/j.canlet.2013.11.001 24280585
    [Google Scholar]
  171. Xu T.P. Shen H. Liu L.X. Shu Y.Q. Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF- κB inactivation. Asian Pac. J. Cancer Prev. 2013 14 4 2325 2331 10.7314/APJCP.2013.14.4.2325 23725135
    [Google Scholar]
  172. Kuo P.L. Hsu Y.L. Cho C.Y. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol. Cancer Ther. 2006 5 12 3209 3221 10.1158/1535‑7163.MCT‑06‑0478 17172425
    [Google Scholar]
  173. Ahmad A. Banerjee S. Wang Z. Kong D. Sarkar F.H. Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-κB and Bcl-2. J. Cell. Biochem. 2008 105 6 1461 1471 10.1002/jcb.21966 18980240
    [Google Scholar]
  174. Yan W. Tu B. Liu Y. Wang T. Qiao H. Zhai Z. Li H. Tang T. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res. 2013 1 4 362 370 10.4248/BR201304007 26273514
    [Google Scholar]
  175. Aziz M.H. Dreckschmidt N.E. Verma A.K. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res. 2008 68 21 9024 9032 10.1158/0008‑5472.CAN‑08‑2494 18974148
    [Google Scholar]
  176. Subramaniya B.R. Srinivasan G. Mohammed Sadullah S.S. Davis N. Baddi Reddi Subhadara L. Halagowder D. Sivasitambaram N.D. Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. PLoS One 2011 6 4 e18695 10.1371/journal.pone.0018695 21559086
    [Google Scholar]
  177. Wang C.C.C. Chiang Y.M. Sung S.C. Hsu Y.L. Chang J.K. Kuo P.L. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett. 2008 259 1 82 98 10.1016/j.canlet.2007.10.005 18023967
    [Google Scholar]
  178. Klaus V. Hartmann T. Gambini J. Graf P. Stahl W. Hartwig A. Klotz L.O. 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch. Biochem. Biophys. 2010 496 2 93 100 10.1016/j.abb.2010.02.002 20153715
    [Google Scholar]
  179. Sandur S.K. Pandey M.K. Sung B. Aggarwal B.B. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: Potential role in chemosensitization. Mol. Cancer Res. 2010 8 1 107 118 10.1158/1541‑7786.MCR‑09‑0257 20068065
    [Google Scholar]
  180. Chakraborty A. Role of zerumbone in the chemosensitization of cancer cells. Role of Nutraceuticals in Cancer Chemosensitization. Academic Press 2018 343 349 10.1016/B978‑0‑12‑812373‑7.00017‑6
    [Google Scholar]
  181. Kitayama T. Yamamoto K. Utsumi R. Takatani M. Hill R.K. Kawai Y. Sawada S. Okamoto T. Chemistry of zerumbone. 2. Regulation of ring bond cleavage and unique antibacterial activities of zerumbone derivatives. Biosci. Biotechnol. Biochem. 2001 65 10 2193 2199 10.1271/bbb.65.2193 11758909
    [Google Scholar]
  182. Shanmugam M.K. Rajendran P. Li F. Kim C. Sikka S. Siveen K.S. Kumar A.P. Ahn K.S. Sethi G. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model. Mol. Carcinog. 2015 54 10 971 985 10.1002/mc.22166 24797723
    [Google Scholar]
  183. Jorvig J.E. Chakraborty A. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anticancer Drugs 2015 26 2 160 166 10.1097/CAD.0000000000000171 25243457
    [Google Scholar]
  184. Abdelwahab S.I. Abdul A.B. Zain Z.N.M. Hadi A.H.A. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. Int. Immunopharmacol. 2012 12 4 594 602 10.1016/j.intimp.2012.01.014 22330084
    [Google Scholar]
  185. Abdul A.B. Abdelwahab S.I. Jalinas J.B. Biomed B. Al-Zubairi A.S. Taha M.M.E. Combination of zerumbone and cisplatin to treat cervical intraepithelial neoplasia in female BALB/c mice. Int. J. Gynecol. Cancer 2009 19 6 1004 1010 10.1111/IGC.0b013e3181a83b51 19820360
    [Google Scholar]
  186. Hu Z. Zeng Q. Zhang B. Liu H. Wang W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie 2014 107 Pt B 257 262 10.1016/j.biochi.2014.09.001 25220870
    [Google Scholar]
  187. Girisa S. Shabnam B. Monisha J. Fan L. Halim C.E. Arfuso F. Ahn K.S. Sethi G. Kunnumakkara A.B. Potential of zerumbone as an anti-cancer agent. Molecules 2019 24 4 734 10.3390/molecules24040734 30781671
    [Google Scholar]
  188. Saxena R. Multitalented ginger and its clinical development for cancer treatment. Role of Nutraceuticals in Cancer Chemosensitization Academic Press 2018 351 370 10.1016/B978‑0‑12‑812373‑7.00018‑8
    [Google Scholar]
  189. Baliga M.S. Haniadka R. Pereira M.M. D’Souza J.J. Pallaty P.L. Bhat H.P. Popuri S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr. 2011 51 6 499 523 10.1080/10408391003698669 21929329
    [Google Scholar]
  190. Haniadka R. Saldanha E. Sunita V. Palatty P.L. Fayad R. Baliga M.S. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct. 2013 4 6 845 855 10.1039/c3fo30337c 23612703
    [Google Scholar]
  191. Govindarajan V.S. Ginger--chemistry, technology, and quality evaluation: part 1. Crit. Rev. Food Sci. Nutr. 1982 17 1 1 96 7049579
    [Google Scholar]
  192. Govindarajan V.S. Connell D.W. Ginger: Chemistry, technology, and quality evaluation: Part 2. CRC Crit. Rev. Food Sci. Nutr. 1983 17 3 189 258 10.1080/10408398209527348 6756789
    [Google Scholar]
  193. Peter K.V. Handbook of Herbs and Spices. Woodhead Publishing Series 2004
    [Google Scholar]
  194. Grzanna R. Lindmark L. Frondoza C.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 2005 8 2 125 132 10.1089/jmf.2005.8.125 16117603
    [Google Scholar]
  195. Rahmani A.H. Shabrmi F.M. Aly S.M. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol. 2014 6 2 125 136 25057339
    [Google Scholar]
  196. Flynn D.L. Rafferty M.F. Boctor A.M. Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins Leukot. Med. 1986 24 2-3 195 198 10.1016/0262‑1746(86)90126‑5 3467378
    [Google Scholar]
  197. Tjendraputra E. Tran V.H. Liu-Brennan D. Roufogalis B.D. Duke C.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem. 2001 29 3 156 163 10.1006/bioo.2001.1208 11437391
    [Google Scholar]
  198. Kim J.S. Lee S.I. Park H.W. Yang J.H. Shin T.Y. Kim Y.C. Baek N.I. Kim S.H. Choi S.U. Kwon B.M. Leem K.H. Jung M.Y. Kim D.K. Cytotoxic components from the dried rhizomes of Zingiber officinaleRoscoe. Arch. Pharm. Res. 2008 31 4 415 418 10.1007/s12272‑001‑1172‑y 18449496
    [Google Scholar]
  199. Nigam N. Bhui K. Prasad S. George J. Shukla Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem. Biol. Interact. 2009 181 1 77 84 10.1016/j.cbi.2009.05.012 19481070
    [Google Scholar]
  200. Park Y.J. Wen J. Bang S. Park S.W. Song S.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J. 2006 47 5 688 697 10.3349/ymj.2006.47.5.688 17066513
    [Google Scholar]
  201. Yang G. Zhong L. Jiang L. Geng C. Cao J. Sun X. Ma Y. Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem. Biol. Interact. 2010 185 1 12 17 10.1016/j.cbi.2010.02.017 20167213
    [Google Scholar]
  202. Chen C.Y. Yang Y.H. Kuo S.Y. Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2). J. Nat. Prod. 2010 73 8 1370 1374 10.1021/np100213a 20669930
    [Google Scholar]
  203. Gan F.F. Nagle A.A. Ang X. Ho O.H. Tan S.H. Yang H. Chui W.K. Chew E.H. Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis 2011 16 8 856 867 10.1007/s10495‑011‑0611‑3 21598039
    [Google Scholar]
  204. Hung J.Y. Hsu Y.L. Li C.T. Ko Y.C. Ni W.C. Huang M.S. Kuo P.L. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J. Agric. Food Chem. 2009 57 20 9809 9816 10.1021/jf902315e 19799425
    [Google Scholar]
  205. Pan M.H. Hsieh M.C. Kuo J.M. Lai C.S. Wu H. Sang S. Ho C.T. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res. 2008 52 5 527 537 10.1002/mnfr.200700157 18384088
    [Google Scholar]
  206. Radhakrishnan E.K. Bava S.V. Narayanan S.S. Nath L.R. Thulasidasan A.K.T. Soniya E.V. Anto R.J. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 2014 9 8 e104401 10.1371/journal.pone.0104401 25157570
    [Google Scholar]
  207. Saha A. Blando J. Silver E. Beltran L. Sessler J. DiGiovanni J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prev. Res. (Phila.) 2014 7 6 627 638 10.1158/1940‑6207.CAPR‑13‑0420 24691500
    [Google Scholar]
  208. Hsu Y.L. Chen C.Y. Hou M.F. Tsai E.M. Jong Y.J. Hung C.H. Kuo P.L. 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells. Mol. Nutr. Food Res. 2010 54 9 1307 1317 10.1002/mnfr.200900125 20175081
    [Google Scholar]
  209. Di Fiore F. Van Cutsem E. Acute and long-term gastrointestinal consequences of chemotherapy. Best Pract. Res. Clin. Gastroenterol. 2009 23 1 113 124 10.1016/j.bpg.2008.11.016 19258191
    [Google Scholar]
  210. Herrstedt J. Dombernowsky P. Anti-emetic therapy in cancer chemotherapy: Current status. Basic Clin. Pharmacol. Toxicol. 2007 101 3 143 150 10.1111/j.1742‑7843.2007.00122.x 17697032
    [Google Scholar]
  211. Minami M. Endo T. Hirafuji M. Hamaue N. Liu Y. Hiroshige T. Nemoto M. Saito H. Yoshioka M. Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. Pharmacol. Ther. 2003 99 2 149 165 10.1016/S0163‑7258(03)00057‑3 12888110
    [Google Scholar]
  212. Marx W. Ried K. McCarthy A.L. Vitetta L. Sali A. McKavanagh D. Isenring L. Ginger—Mechanism of action in chemotherapy-induced nausea and vomiting: A review. Crit. Rev. Food Sci. Nutr. 2017 57 1 141 146 10.1080/10408398.2013.865590 25848702
    [Google Scholar]
  213. Abdel-Aziz H. Windeck T. Ploch M. Verspohl E.J. Mode of action of gingerols and shogaols on 5-HT3 receptors: Binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur. J. Pharmacol. 2006 530 1-2 136 143 10.1016/j.ejphar.2005.10.049 16364290
    [Google Scholar]
  214. Huang Q. Iwamoto M. Aoki S. Tanaka N. Tajima K. Yamahara J. Takaishi Y. Yoshida M. Tomimatsu T. Tamai Y. Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger. Chem. Pharm. Bull. (Tokyo) 1991 39 2 397 399 10.1248/cpb.39.397 2054863
    [Google Scholar]
  215. Panahi Y. Saadat A. Sahebkar A. Hashemian F. Taghikhani M. Abolhasani E. Effect of ginger on acute and delayed chemotherapy-induced nausea and vomiting: A pilot, randomized, open-label clinical trial. Integr. Cancer Ther. 2012 11 3 204 211 10.1177/1534735411433201 22313739
    [Google Scholar]
  216. Pillai A.K. Sharma K.K. Gupta Y.K. Bakhshi S. Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy. Pediatr. Blood Cancer 2011 56 2 234 238 10.1002/pbc.22778 20842754
    [Google Scholar]
  217. Ryan J.L. Heckler C.E. Roscoe J.A. Dakhil S.R. Kirshner J. Flynn P.J. Hickok J.T. Morrow G.R. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: A URCC CCOP study of 576 patients. Support. Care Cancer 2012 20 7 1479 1489 10.1007/s00520‑011‑1236‑3 21818642
    [Google Scholar]
  218. Zick S.M. Ruffin M.T. Lee J. Normolle D.P. Siden R. Alrawi S. Brenner D.E. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support. Care Cancer 2009 17 5 563 572 10.1007/s00520‑008‑0528‑8 19005687
    [Google Scholar]
  219. Marx W. McCarthy A.L. Ried K. Vitetta L. McKavanagh D. Thomson D. Sali A. Isenring L. Can ginger ameliorate chemotherapy-induced nausea? Protocol of a randomized double blind, placebo-controlled trial. BMC Complement. Altern. Med. 2014 14 1 134 10.1186/1472‑6882‑14‑134 24712653
    [Google Scholar]
  220. Karna P. Chagani S. Gundala S.R. Rida P.C.G. Asif G. Sharma V. Gupta M.V. Aneja R. Benefits of whole ginger extract in prostate cancer. Br. J. Nutr. 2012 107 4 473 484 10.1017/S0007114511003308 21849094
    [Google Scholar]
  221. Dai H. Fan Q. Wang C. 6 edn 20210157 (Wiley Online Library).
    [Google Scholar]
  222. Feng Y. Zhang Z. Tang W. Dai Y. 5 edn 20220173 (Wiley Online Library).
    [Google Scholar]
  223. Zhang S. Li D. Liu Y. Qin C. Tong L. Xu L. Multifunctional exosome-driven pancreatic cancer diagnostics and therapeutics. Extracellular Vesicle 2023 2 100022 10.1016/j.vesic.2023.100022
    [Google Scholar]
  224. Zhao J. Xu L. Yang D. Tang H. Chen Y. Zhang X. Xu Y. Ou R. Li D. Exosome-driven liquid biopsy for breast cancer: Recent advances in isolation, biomarker identification and detection. Extracellular Vesicle 2022 1 100006 10.1016/j.vesic.2022.100006
    [Google Scholar]
  225. Di Chio C. Previti S. De Luca F. Allegra A. Zappalà M. Ettari R. Drug combination studies of PS-1 and quercetin against rhodesain of Trypanosoma brucei. Nat. Prod. Res. 2022 36 16 4282 4286 10.1080/14786419.2021.1978993 34533390
    [Google Scholar]
  226. Di Chio C. Previti S. De Luca F. Bogacz M. Zimmer C. Wagner A. Schirmeister T. Zappalà M. Ettari R. Drug combination studies of the dipeptide nitrile CD24 with curcumin: A new strategy to synergistically inhibit rhodesain of Trypanosoma brucei rhodesiense. Int. J. Mol. Sci. 2022 23 22 14470 10.3390/ijms232214470 36430948
    [Google Scholar]
  227. Di Chio C. Previti S. Starvaggi J. De Luca F. Calabrò M.L. Zappalà M. Ettari R. Drug combination studies of isoquinolinone AM12 with curcumin or quercetin: A new combination strategy to synergistically inhibit 20S proteasome. Int. J. Mol. Sci. 2024 25 19 10708 10.3390/ijms251910708 39409037
    [Google Scholar]
  228. Di Chio C. Previti S. Totaro N. De Luca F. Allegra A. Schirmeister T. Zappalà M. Ettari R. Dipeptide nitrile CD34 with curcumin: A new improved combination strategy to synergistically inhibit rhodesain of Trypanosoma brucei rhodesiense. Int. J. Mol. Sci. 2023 24 10 8477 10.3390/ijms24108477 37239824
    [Google Scholar]
  229. Ettari R. Previti S. Di Chio C. Maiorana S. Allegra A. Schirmeister T. Zappalà M. Drug synergism: Studies of combination of RK-52 and curcumin against rhodesain of Trypanosoma brucei rhodesiense. ACS Med. Chem. Lett. 2020 11 5 806 810 10.1021/acsmedchemlett.9b00635 32435388
    [Google Scholar]
  230. Ettari R. Previti S. Maiorana S. Allegra A. Schirmeister T. Grasso S. Zappalà M. Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma bruce. Nat. Prod. Res. 2019 33 24 3577 3581 10.1080/14786419.2018.1483927 29897253
    [Google Scholar]
  231. Davatgaran-Taghipour Y. Masoomzadeh S. Farzaei M.H. Bahramsoltani R. Karimi-Soureh Z. Rahimi R. Abdollahi M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine 2017 12 2689 2702 10.2147/IJN.S131973 28435252
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348105250102040623
Loading
/content/journals/cmc/10.2174/0109298673348105250102040623
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: combination therapy ; chemotherapy ; Chemoprevention ; cancer ; clinical trials ; nutraceuticals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test