Skip to content
2000
image of Advances and Challenges in Molecular Docking Applied to Neglected Tropical Diseases

Abstract

The discovery of new drugs for neglected tropical diseases (NTDs) is challenging due to the complexity of parasite-host interactions, causing resistance and the scarcity of financial resources. However, computational techniques, particularly molecular docking, have made significant advancements. This approach allows for the virtual screening of large compound libraries against specific molecular targets in parasites, efficiently cost-effectively identifying potential drug candidates. On the other hand, reverse docking seeks biological targets that can interact with specific substances of interest, integrating structural data from parasitic proteins with chemical information. Integrating computational approaches with experimental data drives the discovery of new therapeutic targets and the optimization of candidate compounds. In addition, artificial intelligence and molecular docking offer an innovative approach, enhancing prediction accuracy and driving advancements in discovering new treatments for NTDs. Thus, the primary focus of this review is to present the relevance, evolution, and prospects of the use of molecular docking techniques in the discovery and design of drug candidates for neglected diseases, despite advancements, challenges persist, including the need for increased investment in research and development, validation of predictive results, and collaboration among institutions. In this study, we aim to address the significant advancements in molecular docking and how this technique, along with modern medicinal chemistry tools, has been relevant in discovering and designing drug candidates for neglected diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327352240930040103
2025-01-03
2025-04-22
Loading full text...

Full text loading...

References

  1. EngelsD. ZhouX.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities.Infect. Dis. Poverty2020911010.1186/s40249‑020‑0630‑931987053
    [Google Scholar]
  2. MalecelaM.N. DuckerC. A road map for neglected tropical diseases 2021–2030.Trans. R. Soc. Trop. Med. Hyg.2021115212112310.1093/trstmh/trab00233508095
    [Google Scholar]
  3. Accelerating work to overcome the global impact of neglected tropical diseases – A roadmap for implementation.2012Available from: https://www.who.int/publications/i/item/WHO-HTM-NTD-2012.1
  4. BernC. MontgomeryS.P. HerwaldtB.L. RassiA.Jr Marin-NetoJ.A. DantasR.O. MaguireJ.H. AcquatellaH. MorilloC. KirchhoffL.V. GilmanR.H. ReyesP.A. SalvatellaR. MooreA.C. Evaluation and treatment of chagas disease in the United States: A systematic review.JAMA2007298182171218110.1001/jama.298.18.217118000201
    [Google Scholar]
  5. PetersenE. RønneT. RønnA. BygbjergI. LarsenS.O. Reported side effects to chloroquine, chloroquine plus proguanil, and mefloquine as chemoprophylaxis against malaria in Danish travelers.J. Travel Med.200072798410.2310/7060.2000.0002610759574
    [Google Scholar]
  6. BeigelJ.H. HaydenF.G. Influenza therapeutics in clinical practice—challenges and recent advances.Cold Spring Harb. Perspect. Med.2021114a03846310.1101/cshperspect.a03846332041763
    [Google Scholar]
  7. PatelS.S. RauscherM. KudelaM. PangH. Clinical safety experience of TAK-003 for dengue fever: A new tetravalent live attenuated vaccine candidate.Clin. Infect. Dis.2023763e1350e135910.1093/cid/ciac41835639602
    [Google Scholar]
  8. StelmaF.F. TallaI. SowS. KongsA. NiangM. PolmanK. DeelderA.M. GryseelsB. Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am. J. Trop. Med. Hyg.199553216717010.4269/ajtmh.1995.53.1677677219
    [Google Scholar]
  9. HoofnagleJ.H. SerranoJ. KnobenJ.E. NavarroV.J. LiverTox: A website on drug-induced liver injury.Hepatology201357387387410.1002/hep.2617523456678
    [Google Scholar]
  10. MutapiF. BillingsleyP.F. SecorW.E. Infection and treatment immunizations for successful parasite vaccines.Trends Parasitol.201329313514110.1016/j.pt.2013.01.00323415733
    [Google Scholar]
  11. KitchenL.W. VaughnD.W. SkillmanD.R. Role of US military research programs in the development of US Food and Drug Administration--approved antimalarial drugs.Clin. Infect. Dis.2006431677110.1086/50487316758420
    [Google Scholar]
  12. DatooM.S. DickoA. TintoH. OuédraogoJ.B. HamalubaM. OlotuA. BeaumontE. Ramos LopezF. NatamaH.M. WestonS. ChembaM. CompaoreY.D. IssiakaD. SalouD. SomeA.M. OmendaS. LawrieA. BejonP. RaoH. ChandramohanD. RobertsR. BharatiS. StockdaleL. GairolaS. GreenwoodB.M. EwerK.J. BradleyJ. KulkarniP.S. ShaligramU. HillA.V.S. MahamarA. SanogoK. SidibeY. DiarraK. SamassekouM. AttaherO. TapilyA. DialloM. DickoO.M. KayaM. MaguiragaS.O. SankareY. YalcouyeH. DiarraS. NiambeleS.M. TheraI. SagaraI. SyllaM. DoloA. MisidaiN. SimandoS. MsamiH. JumaO. GutapakaN. PaulR. MswataS. SasamaloI. JohanessK. SultanM. AlexanderA. KimaroI. LwangaK. MtungweM. KhamisK. RugarabamL. KalingaW. MohammedM. KamangeJ. MsangiJ. MwaijandeB. MtakaI. MhapaM. MlaganileT. MbagaT. YerbangaR.S. SamtoumaW. SienouA.A. KabreZ. OuedraogoW.J.M. YarbangaG.A.B. ZongoI. SavadogoH. SanonJ. CompaoreJ. KereI. YoniF.L. SanreT.M. OuattaraS.B. Provstgaard-MorysS. WoodsD. SnowR.W. AmekN. NgetsaC.J. Ochola-OyierL.I. MusyokiJ. MuneneM. MumbaN. AdetifaU.J. MuiruriC.M. MwawakaJ.S. MwaganyumaM.H. NdichuM.N. WeyaJ.O. NjoguK. GrantJ. WebsterJ. LakhkarA. IdoN.F.A. TraoreO. TahitaM.C. BonkoM.A. RouambaT. OuedraogoD.F. SomaR. MillogoA. OuedraogoE. SorghoF. KonateF. ValeaI. R21/Matrix-M Phase 3 Trial Group Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: A multicentre, double-blind, randomised, phase 3 trial.Lancet20244031042653354410.1016/S0140‑6736(23)02511‑438310910
    [Google Scholar]
  13. TsoumaniM.E. VoyiatzakiC. EfstathiouA. Malaria vaccines: From the past towards the mRNA vaccine era.Vaccines2023119145210.3390/vaccines1109145237766129
    [Google Scholar]
  14. LyH. Ixchiq (VLA1553): The first FDA-approved vaccine to prevent disease caused by Chikungunya virus infection.Virulence2024151230157310.1080/21505594.2023.230157338217381
    [Google Scholar]
  15. PapapetropoulosA. TopouzisS. AlexanderS.P.H. Cortese-KrottM. KendallD.A. MartemyanovK.A. MauroC. NagercoilN. PanettieriR.A.Jr PatelH.H. SchulzR. StefanskaB. StephensG.J. TeixeiraM.M. VergnolleN. WangX. FerdinandyP. Novel drugs approved by the EMA, the FDA, and the MHRA in 2023: A year in review.Br. J. Pharmacol.2024181111553157510.1111/bph.1633738519837
    [Google Scholar]
  16. WangM. WangL. LengP. GuoJ. ZhouH. Drugs targeting structural and nonstructural proteins of the chikungunya virus: A review.Int. J. Biol. Macromol.2024262Pt 212994910.1016/j.ijbiomac.2024.12994938311132
    [Google Scholar]
  17. FreedmanD.O. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; What about travellers?J. Travel Med.2023307taad13210.1093/jtm/taad13237847608
    [Google Scholar]
  18. TullyD. GriffithsC.L. Dengvaxia: the world’s first vaccine for prevention of secondary dengue.Ther. Adv. Vaccines Immunother.2021910.1177/2515135521101583934036241
    [Google Scholar]
  19. AngelinM. SjölinJ. KahnF. Ljunghill HedbergA. RosdahlA. SkorupP. WernerS. WoxeniusS. AsklingH.H. Qdenga® - A promising dengue fever vaccine; Can it be recommended to non-immune travelers?Travel Med. Infect. Dis.20235410259810.1016/j.tmaid.2023.10259837271201
    [Google Scholar]
  20. WaechtlerA. CezanneB. MaillardD. SunR. WangS. WangJ. HarderA. Praziquantel – 50 years of research.ChemMedChem20231812e20230015410.1002/cmdc.20230015437009677
    [Google Scholar]
  21. EberhardtE. BultéD. Van BockstalL. Van den KerkhofM. CosP. DelputteP. HendrickxS. MaesL. CaljonG. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain.J. Antimicrob. Chemother.201974239540610.1093/jac/dky45030412253
    [Google Scholar]
  22. FirdousR. YasinzaiM. RanjaK. Efficacy of glucantime in the treatment of Old World cutaneous leishmaniasis.Int. J. Dermatol.200948775876210.1111/j.1365‑4632.2009.04072.x19570087
    [Google Scholar]
  23. CroftS.L. CoombsG.H. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs.Trends Parasitol.2003191150250810.1016/j.pt.2003.09.00814580961
    [Google Scholar]
  24. Laniado-LaborínR. Cabrales-VargasM.N. Amphotericin B: Side effects and toxicity.Rev. Iberoam. Micol.200926422322710.1016/j.riam.2009.06.00319836985
    [Google Scholar]
  25. CavassinF.B. Baú-CarneiroJ.L. Vilas-BoasR.R. Queiroz-TellesF. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections.Infect. Dis. Ther.202110111514710.1007/s40121‑020‑00382‑733523419
    [Google Scholar]
  26. BrayP.G. BarrettM.P. WardS.A. de KoningH.P. Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future.Trends Parasitol.200319523223910.1016/S1471‑4922(03)00069‑212763430
    [Google Scholar]
  27. de OliveiraR.G. CruzL.R. MolloM.C. DiasL.C. KratzJ.M. Chagas disease drug discovery in latin america-a mini review of antiparasitic agents explored between 2010 and 2021.Front Chem.2021977114310.3389/fchem.2021.77114334778217
    [Google Scholar]
  28. FerreiraL.L.G. de MoraesJ. AndricopuloA.D. Approaches to advance drug discovery for neglected tropical diseases.Drug Discov. Today20222782278228710.1016/j.drudis.2022.04.00435398562
    [Google Scholar]
  29. DanhofM. KleinK. StolkP. AitkenM. LeufkensH. The future of drug development: The paradigm shift towards systems therapeutics.Drug Discov. Today201823121990199510.1016/j.drudis.2018.09.00230213566
    [Google Scholar]
  30. Peña-GuerreroJ. NguewaP.A. García-SosaA.T. Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021115e151310.1002/wcms.1513
    [Google Scholar]
  31. DasA. BiswasN. ChakrabartiS. Leish-ExP: A database of exclusive proteins from Leishmania parasite.bioRxiv 202010.1101/2020.05.04.076851
    [Google Scholar]
  32. BermanH. HenrickK. NakamuraH. Announcing the worldwide protein data bank.Nat. Struct. Mol. Biol.2003101298098010.1038/nsb1203‑98014634627
    [Google Scholar]
  33. GilsonM.K. LiuT. BaitalukM. NicolaG. HwangL. ChongJ. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.Nucleic Acids Res.201644D1D1045D105310.1093/nar/gkv107226481362
    [Google Scholar]
  34. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A- JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt Consortium UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac105236408920
    [Google Scholar]
  35. CastrignanòT. De MeoP.D. CozzettoD. TalamoI.G. TramontanoA. The PMDB protein model database.Nucleic Acids Res.20063490001D306D30910.1093/nar/gkj10516381873
    [Google Scholar]
  36. VaradiM. AnyangoS. DeshpandeM. NairS. NatassiaC. YordanovaG. YuanD. StroeO. WoodG. LaydonA. ŽídekA. GreenT. TunyasuvunakoolK. PetersenS. JumperJ. ClancyE. GreenR. VoraA. LutfiM. FigurnovM. CowieA. HobbsN. KohliP. KleywegtG. BirneyE. HassabisD. VelankarS. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab106134791371
    [Google Scholar]
  37. SmithR.D. ClarkJ.J. AhmedA. OrbanZ.J. DunbarJ.B.Jr CarlsonH.A. Updates to binding MOAD (mother of all databases): Polypharmacology tools and their utility in drug repurposing.J. Mol. Biol.2019431132423243310.1016/j.jmb.2019.05.02431125569
    [Google Scholar]
  38. WatsonA.K. KepplingerB. BakhietS.M. MhmoudN.A. ChapmanJ. AllenbyN.E.E. MickiewiczK. GoodfellowM. FahalA.H. ErringtonJ. Systematic whole-genome sequencing reveals an unexpected diversity among actinomycetoma pathogens and provides insights into their antibacterial susceptibilities.PLoS Negl. Trop. Dis.2022167e001012810.1371/journal.pntd.001012835877680
    [Google Scholar]
  39. BerdigaliyevN. AljofanM. An overview of drug discovery and development.Future Med. Chem.2020121093994710.4155/fmc‑2019‑030732270704
    [Google Scholar]
  40. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fernandez-LozanoC. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.01134471498
    [Google Scholar]
  41. CoxP.B. GuptaR. Contemporary computational applications and tools in drug discovery.ACS Med. Chem. Lett.20221371016102910.1021/acsmedchemlett.1c0066235859884
    [Google Scholar]
  42. ChangY. HawkinsB.A. DuJ.J. GroundwaterP.W. HibbsD.E. LaiF. A guide to in silico drug design.Pharmaceutics20221514910.3390/pharmaceutics1501004936678678
    [Google Scholar]
  43. ChenX. JiZ.L. ChenY.Z. TTD: Therapeutic target database.Nucleic Acids Res.200230141241510.1093/nar/30.1.41211752352
    [Google Scholar]
  44. Alvarez-JarretaJ. AmosB. AurrecoecheaC. BahS. BarbaM. BarretoA. BasenkoE.Y. BelnapR. BlevinsA. BöhmeU. BrestelliJ. BrownS. CallanD. CampbellL.I. ChristophidesG.K. CrouchK. DavisonH.R. DeBarryJ.D. DemkoR. DohertyR. DuanY. DundoreW. DyerS. FalkeD. FischerS. GajriaB. GaldiD. Giraldo-CalderónG.I. HarbO.S. HarperE. HelbD. HowingtonC. HuS. HumphreyJ. IodiceJ. JonesA. JudkinsJ. KellyS.A. KissingerJ.C. KitturN. KwonD.K. LamoureuxK. LiW. LodhaD. MacCallumR.M. MaslenG. McDowellM.A. MyersJ. NuralM.V. RoosD.S. RundS.S.C. ShanmugasundramA. SitnikV. SpruillD. StarnsD. TomkoS.S. WangH. WarrenfeltzS. WieckR. WilkinsonP.A. ZhengJ. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center in 2023.Nucleic Acids Res.202452D1D808D81610.1093/nar/gkad100337953350
    [Google Scholar]
  45. VijayakumarS. KantV. DasP. LeishInDB: A web-accessible resource for small molecule inhibitors against Leishmania sp. Acta Trop.201919037537910.1016/j.actatropica.2018.12.02230552881
    [Google Scholar]
  46. VijayakumarS. RanjanR. KumarR. DasP. TrypInDB: A searchable online resource of small molecule inhibitors against Trypanosoma sp. Parasitol. Int.20207810213110.1016/j.parint.2020.10213132380213
    [Google Scholar]
  47. PatelP. MandlikV. SinghS. LmSmdB: An integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni. Genom. Data2016711511810.1016/j.gdata.2015.12.01226981382
    [Google Scholar]
  48. YoshinoR. YasuoN. HagiwaraY. IshidaT. InaokaD.K. AmanoY. TateishiY. OhnoK. NamatameI. NiimiT. OritaM. KitaK. AkiyamaY. SekijimaM. In silico, in vitro, X-ray crystallography, and integrated strategies for discovering spermidine synthase inhibitors for Chagas disease.Sci. Rep.201771666610.1038/s41598‑017‑06411‑928751689
    [Google Scholar]
  49. SimobenC.V. QaseemA. MoumbockA.F.A. TelukuntaK.K. GüntherS. SipplW. Ntie-KangF. Pharmacoinformatic investigation of medicinal plants from East Africa.Mol. Inform.20203911200016310.1002/minf.20200016332964659
    [Google Scholar]
  50. Ntie-KangF. TelukuntaK.K. DöringK. SimobenC.V. A MoumbockA.F. MalangeY.I. NjumeL.E. YongJ.N. SipplW. GüntherS. NANPDB: A resource for natural products from northern african sources.J. Nat. Prod.20178072067207610.1021/acs.jnatprod.7b0028328641017
    [Google Scholar]
  51. Urán LandaburuL. BerensteinA.J. VidelaS. MaruP. ShanmugamD. ChernomoretzA. AgüeroF. TDR Targets 6: Driving drug discovery for human pathogens through intensive chemogenomic data integration.Nucleic Acids Res.2019Novgkz99910.1093/nar/gkz99931680154
    [Google Scholar]
  52. BorbaJ.V.V.B. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases.Advances in Protein Chemistry and Structural Biology.Elsevier202112418722310.1016/bs.apcsb.2020.10.006
    [Google Scholar]
  53. AndradeC.H. NevesB.J. Melo-FilhoC.C. RodriguesJ. SilvaD.C. BragaR.C. CravoP.V.L. In silico chemogenomics drug repositioning strategies for neglected tropical diseases.Curr. Med. Chem.201926234355437910.2174/092986732566618030911482429521204
    [Google Scholar]
  54. JhaA.N. Editorial: Computational approaches to build therapeutic paradigms targeting genes, proteins and pathways against neglected tropical diseases (NTDs).Front. Genet.202314118303410.3389/fgene.2023.118303437265962
    [Google Scholar]
  55. FerreiraL.G. OlivaG. AndricopuloA.D. From medicinal chemistry to human health: Current approaches to drug discovery for cancer and neglected tropical diseases.An. Acad. Bras. Cienc.201890Suppl. 164566110.1590/0001‑376520182017050529451603
    [Google Scholar]
  56. YangS.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances.Drug Discov. Today20101511-1244445010.1016/j.drudis.2010.03.01320362693
    [Google Scholar]
  57. CogoR.M. PavaniT.F.A. MengardaA.C.A. CajasR.A. TeixeiraT.R. Fukui-SilvaL. SunY.U. LiuL.J. AmarasingheD.K. YoonM.C. Santos-FilhoO.A. de MoraesJ. CaffreyC.R. G G RandoD. Pharmacophore virtual screening identifies riboflavin as an inhibitor of the schistosome cathepsin B1 protease with antiparasitic activity.ACS Omega2024923253562536910.1021/acsomega.4c0337638882094
    [Google Scholar]
  58. AraujoS.C. de AngeloR.M. BarbosaH. Costa-SilvaT.A. TemponeA.G. LagoJ.H.G. HonorioK.M. Identification of inhibitors as drug candidates against Chagas disease.Eur. J. Med. Chem.202324811507410.1016/j.ejmech.2022.11507436623331
    [Google Scholar]
  59. AraujoS.C. SousaF.S. Costa-SilvaT.A. TemponeA.G. LagoJ.H.G. HonorioK.M. Discovery of new hits as antitrypanosomal agents by in silico and in vitro assays using neolignan-inspired natural products from Nectandra leucantha. Molecules20212614411610.3390/molecules2614411634299391
    [Google Scholar]
  60. KuntzI.D. BlaneyJ.M. OatleyS.J. LangridgeR. FerrinT.E. A geometric approach to macromolecule-ligand interactions.J. Mol. Biol.1982161226928810.1016/0022‑2836(82)90153‑X7154081
    [Google Scholar]
  61. KoshlandD.E.Jr. Application of a theory of enzyme specificity to protein synthesis.Proc. Natl. Acad. Sci. USA19584429810410.1073/pnas.44.2.9816590179
    [Google Scholar]
  62. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  63. SulimovA.V. ZheltkovD.A. OferkinI.V. KutovD.C. KatkovaE.V. TyrtyshnikovE.E. SulimovV.B. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.Comput. Struct. Biotechnol. J.20171527528510.1016/j.csbj.2017.02.00428377797
    [Google Scholar]
  64. CavasottoC. OrryA. AbagyanR. The challenge of considering receptor flexibility in ligand docking and virtual screening.Curr. Computeraided Drug Des.20051442344010.2174/157340905774330291
    [Google Scholar]
  65. XiaS. ChenE. ZhangY. Integrated molecular modeling and machine learning for drug design.J. Chem. Theory Comput.202319217478749510.1021/acs.jctc.3c0081437883810
    [Google Scholar]
  66. BallesterP.J. MitchellJ.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking.Bioinformatics20102691169117510.1093/bioinformatics/btq11220236947
    [Google Scholar]
  67. YangC. ChenE.A. ZhangY. Protein–ligand docking in the machine-learning era.Molecules20222714456810.3390/molecules2714456835889440
    [Google Scholar]
  68. CramponK. GiorkallosA. DeldossiM. BaudS. SteffenelL.A. Machine-learning methods for ligand–protein molecular docking.Drug Discov. Today202227115116410.1016/j.drudis.2021.09.00734560276
    [Google Scholar]
  69. BandeA.Y. BadayS. Accelerating molecular docking using machine learning methods.Mol. Inform.2024436e20230016710.1002/minf.20230016738850231
    [Google Scholar]
  70. XuX. HuangM. ZouX. Docking-based inverse virtual screening: Methods, applications, and challenges.Biophys. Rep.20184111610.1007/s41048‑017‑0045‑829577065
    [Google Scholar]
  71. WongF. KrishnanA. ZhengE.J. StärkH. MansonA.L. EarlA.M. JaakkolaT. CollinsJ.J. Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery.Mol. Syst. Biol.2022189e1108110.15252/msb.20221108136065847
    [Google Scholar]
  72. Ros-LucasA. Martinez-PeinadoN. BastidaJ. GascónJ. Alonso-PadillaJ. The use of alphafold for in silico exploration of drug targets in the parasite Trypanosoma cruzi. Front. Cell. Infect. Microbiol.20221294474810.3389/fcimb.2022.94474835909956
    [Google Scholar]
  73. MarianiV. BiasiniM. BarbatoA. SchwedeT. lDDT: A local superposition-free score for comparing protein structures and models using distance difference tests.Bioinformatics201329212722272810.1093/bioinformatics/btt47323986568
    [Google Scholar]
  74. ButtenschoenM. MorrisG.M. DeaneC.M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences.Chem. Sci.20241593130313910.1039/D3SC04185A38425520
    [Google Scholar]
  75. da MattaC.B.B. de QueirozA.C. SantosM.S. Alexandre-MoreiraM.S. GonçalvesV.T. Del CistiaC.N. Sant’AnnaC.M.R. DaCostaJ.B.N. Novel dialkylphosphorylhydrazones: Synthesis, leishmanicidal evaluation and theoretical investigation of the proposed mechanism of action.Eur. J. Med. Chem.201510111210.1016/j.ejmech.2015.06.01426107111
    [Google Scholar]
  76. LešnikS. BrenU. Mechanistic insights into biological activities of polyphenolic compounds from rosemary obtained by inverse molecular docking.Foods20211116710.3390/foods1101006735010191
    [Google Scholar]
  77. FineJ. KoncJ. SamudralaR. ChopraG. CANDOCK: Chemical atomic network-based hierarchical flexible docking algorithm using generalized statistical potentials.J. Chem. Inf. Model.20206031509152710.1021/acs.jcim.9b0068632069042
    [Google Scholar]
  78. KoncJ. LešnikS. ŠkrljB. SovaM. ProjM. KnezD. GobecS. JanežičD. ProBiS-dock: A hybrid multitemplate homology flexible docking algorithm enabled by protein binding site comparison.J. Chem. Inf. Model.20226261573158410.1021/acs.jcim.1c0117635289616
    [Google Scholar]
  79. SterlingT. IrwinJ.J. ZINC 15 – Ligand discovery for everyone.J. Chem. Inf. Model.201555112324233710.1021/acs.jcim.5b0055926479676
    [Google Scholar]
  80. ArwansyahA. ArifA.R. SyahputraG. SukartiS. KurniawanI. Theoretical studies of thiazolyl-pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation.Mol. Simul.20214712988100110.1080/08927022.2021.1935926
    [Google Scholar]
  81. Amin MirM. Manzer ManhasF. AndrewsK. HasnainS.M. IqbalA. SeharS. YounisA. Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine: Pyrogallol.Results in Chemistry2023510076310.1016/j.rechem.2023.100763
    [Google Scholar]
  82. CrisanL. Funar-TimofeiS. BorotaA. Homology modeling and molecular docking approaches for the proposal of novel insecticides against the african malaria mosquito (Anopheles gambiae).Molecules20222712384610.3390/molecules2712384635744972
    [Google Scholar]
  83. OmoboyowaD.A. Exploring molecular docking with E-pharmacophore and QSAR models to predict potent inhibitors of 14-α-demethylase protease from Moringa spp.Pharmacol Res - Mod Chin Med.2022410014710.1016/j.prmcm.2022.100147
    [Google Scholar]
  84. DassiL.K. KaneH. NkwateE. Computationally accelerating protein-ligand docking for neglected tropical diseases: a case study on drug repurposing for Leishmaniasis.ICLR 2021 Workshop202119
    [Google Scholar]
  85. Mercado-CamargoJ. Cervantes-CeballosL. Vivas-ReyesR. PedrettiA. Serrano-GarcíaM.L. Gómez-EstradaH. Homology modeling of leishmanolysin (gp63) from leishmania panamensis and molecular docking of flavonoids.ACS Omega2020524147411474910.1021/acsomega.0c0158432596611
    [Google Scholar]
  86. TéllezJ. AmarilloA. SuarezC. CardozoC. GuerraD. OchoaR. MuskusC. RomeroI. Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening.Acta Trop.202222510618210.1016/j.actatropica.2021.10618234627756
    [Google Scholar]
  87. EzebuoF.C. UzochukwuI.C. Drug repurposing for schistosomiasis: Molecular docking and dynamics investigations.J. Biomol. Struct. Dyn.2022403995100910.1080/07391102.2020.182038232924851
    [Google Scholar]
  88. AlazmiM. Molecular modeling and docking of aquaporin inhibitors to reveal new insights into schistosomiasis treatment.Curr. Computeraided Drug Des.202116677278510.2174/157340991566619100312494731580252
    [Google Scholar]
  89. AdekiyaT.A. ArulebaR.T. KleinA. FadakaA.O. In silico inhibition of SGTP4 as a therapeutic target for the treatment of schistosomiasis.J. Biomol. Struct. Dyn.20224083697370510.1080/07391102.2020.185036333225839
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327352240930040103
Loading
/content/journals/cmc/10.2174/0109298673327352240930040103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test