- Home
- A-Z Publications
- Current Medicinal Chemistry
- Issue Home
Current Medicinal Chemistry - Current Issue
Volume 32, Issue 3, 2025
-
-
Exploring the Potential Link between Aluminum-Containing Deodorants/Antiperspirants and Breast Cancer: A Comprehensive Review
Authors: Tony Hangan, Geir Bjørklund and Sergiu ChirilăThe potential association between aluminum-containing deodorants/antiperspirants and breast cancer has been investigated and debated. This paper comprehensively analyzes existing literature to examine the evidence and provide insights into this relationship. This comprehensive review discusses aspects related to the absorption and distribution of aluminum compounds, its effects on the induction of oxidative stress, the estrogenic activity of aluminum, and potential disruption of hormonal pathways, and the potential role in breast cancer induction. Currently, available research, consisting of epidemiological studies as well as clinical trials, together with meta-analyses and previously published reviews conducted on identifying the relationship between aluminum-containing deodorants/antiperspirants and the risk of breast cancer were also analyzed and discussed. Societal factors, personal hygiene considerations, and lifestyle changes contribute to the increased usage of antiperspirants, but they do not establish a direct causal connection with breast cancer. Further research employing larger-scale studies and rigorous methodologies must validate the existing findings and explore the underlying mechanisms involved. Continued multidisciplinary research efforts and collaboration between researchers, regulatory bodies, and public health authorities are vital to developing a more definitive understanding of this complex topic.
-
-
-
The Therapeutic Significance of HER3 in Non-small Cell Lung Cancer (NSCLC): A Review Study
Authors: Amelia Trinder, Ke Ding and Jinwei ZhangHER3 (Human Epidermal Growth Factor Receptor 3) is frequently overexpressed in various cancers, including non-small cell lung cancer (NSCLC), with a prevalence of 83% in primary tumors. Its involvement in tumorigenesis and resistance to targeted therapies makes HER3 a promising target for cancer treatment. Despite being initially considered “undruggable” due to its lack of catalytic activity, significant progress has been made in the development of anti-HER3 therapeutics. Monoclonal antibodies such as lumretuzumab, seribantumab, and patritumab have shown potential in targeting HER3 to overcome resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Additionally, antibody-drug conjugates (ADCs) like HER3-DXd (patritumab deruxtecan) are new drug candidates that have demonstrated selective delivery of cytotoxic chemicals to NSCLC cells by exploiting HER3's widespread expression, minimizing cytotoxicity. This review aims to evaluate the efficacy of current HER3 therapeutics in development and their therapeutic potential in NSCLC, incorporating evidence from clinical trials.
-
-
-
Curcumin Nanoparticles-related Non-invasive Tumor Therapy, and Cardiotoxicity Relieve
Authors: Yuhang Cheng, Qian Xu, Miao Yu, Chenwei Dang, Limei Deng and Huijun ChenNon-invasive antitumor therapy can treat tumor patients who cannot tolerate surgery or are unsuitable. However, tumor resistance to non-invasive antitumor therapy and cardiotoxicity caused by treatment seriously affect the quality of life and prognosis of patients. As a kind of polyphenol extracted from herbs, curcumin has many pharmacological effects, such as anti-inflammation, antioxidation, antitumor, etc. Curcumin plays the antitumor effect by directly promoting tumor cell death and reducing tumor cells' invasive ability. Curcumin exerts the therapeutic effect mainly by inhibiting the nuclear factor-κB (NF-κB) signal pathway, inhibiting the production of cyclooxygenase-2 (COX-2), promoting the expression of caspase-9, and directly inducing reactive oxygen species (ROS) production in tumor cells. Curcumin nanoparticles can solve curcumin's shortcomings, such as poor water solubility and high metabolic rate, and can be effectively used in antitumor therapy. Curcumin nanoparticles can improve the prognosis and quality of life of tumor patients by using as adjuvants to enhance the sensitivity of tumors to non-invasive therapy and reduce the side effects, especially cardiotoxicity. In this paper, we collect and analyze the literature of relevant databases. It is pointed out that future research on curcumin tends to alleviate the adverse reactions caused by treatment, which is of more significance to tumor patients.
-
-
-
Drug Repurposing: Insights into Current Advances and Future Applications
Authors: Trisha Bhatia and Shweta SharmaDrug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be time- consuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
-
-
-
Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
-
-
-
Natural and Synthetic Coumarins as Potential Drug Candidates against SARS-CoV-2/COVID-19
COVID-19, an airborne disease caused by a betacoronavirus named SARS-CoV-2, was officially declared a pandemic in early 2020, resulting in more than 770 million confirmed cases and over 6.9 million deaths by September 2023. Although the introduction of vaccines in late 2020 helped reduce the number of deaths, the global effort to fight COVID-19 is far from over. While significant progress has been made in a short period, the fight against SARS-CoV-2/COVID-19 and other potential pandemic threats continues. Like AIDS and hepatitis C epidemics, controlling the spread of COVID-19 will require the development of multiple drugs to weaken the virus's resistance to different drug treatments. Therefore, it is essential to continue developing new drug candidates derived from natural or synthetic small molecules. Coumarins are a promising drug design and development scaffold due to their synthetic versatility and unique physicochemical properties. Numerous examples reported in scientific literature, mainly by in silico prospection, demonstrate their potential contribution to the rapid development of drugs against SARS-CoV-2/COVID-19 and other emergent and reemergent viruses.
-
-
-
The Efficacy of Dietary Approaches to Stop Hypertension (DASH) Diet on Lipid Profile: A Systematic Review and Meta-analysis of Clinical Controlled Trials
BackgroundDyslipidemia is considered a causal risk factor for coronary heart disease and stroke. Plant-based diets such as dietary approaches to stop hypertension (DASH) have beneficial effects on cardiovascular health. This meta-analysis was conducted to assess the effects of the DASH diet on lipid profiles based on clinical controlled trials.
MethodsAn inclusive online search was performed in medical databases including Web of Science, PubMed, Scopus, and Google Scholar up to October 2021 to identify trials assessing the effect of the DASH diet on lipid profiles.
ResultsSeventeen studies comprising 2218 individuals were included in this meta-analysis. In comparison to the control group, following the DASH diet resulted in a significant reduction in serum triglycerides (WMD: -5.539 mg/dl; 95% CI: -8.806, -2.272) and low-density lipoprotein cholesterol (WMD: -6.387 mg/dl; 95% CI: -12.272, -0.501). However, DASH diet could not reduce serum total cholesterol (WMD: -5.793 mg/dl; 95% CI: -12.84, 1.254), high-density lipoprotein cholesterol (WMD: 0.631 mg/dl; 95% CI: -0.749, 2.011), and total cholesterol/high-density lipoprotein cholesterol ratio (WMD: -0.11 mg/dl; 95% CI: -0.27, 0.05).
ConclusionFindings of this meta-analysis showed that following the DASH diet had beneficial effects on serum triglycerides and low-density lipoprotein cholesterol, however, it had no effect on serum total cholesterol and high-density lipoprotein cholesterol levels. Based on these results, the DASH diet can be considered a strategy for the prevention and complementary management of dyslipidemia.
-
-
-
Significance of Aneuploidy in Predicting Prognosis and Treatment Response of Uveal Melanoma
Authors: Xiaoqian Zhang, Ling Jin, Chenchen Zhou, Jinghua Liu and Qin JiangAimsThis study aimed to improve personalized treatment strategies and predict survival outcomes for patients with uveal melanoma (UM).
BackgroundCopy number aberrations (CNAs) have been considered as a main feature of metastatic UM.
ObjectiveThis study was designed to explore the feasibility of using copy number variation (CNV) in UM classification, prognosis stratification and treatment response.
MethodsThe CNV data in the TCGA-UVM cohort were used to classify the samples. The differentially expressed genes (DEGs) between subtypes were screened by the “Limma” package. The module and hub genes related to aneuploidy score were identified by performing weighted gene co-expression network analysis (WGCNA) on the DEGs. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to train the hub genes for developing a prognosis model for UM. Finally, the expression levels of the screened prognostic key genes were verified in UM cells, and the cell migration and invasion abilities were detected using real-time quantitative PCR (qRT-PCR) and transwell assay.
ResultsThe UM samples were divided into 3 CNV subtypes, which differed significantly in overall survival (OS) and disease-specific survival (DSS). C1 had the shortest OS and DSS and the highest level of immune infiltration. A total of 2036 DEGs were obtained from the three subtypes. Eighty hub genes with the closest correlation with aneuploidy scores were selected by WGCNA. Univariate Cox and LASSO regression-based analyses finally determined eight genes as the key prognostic genes, including HES6, RNASEH2C, NQO1, NUDT14, TTYH3, GJC1, FKBP10, and MRPL24. A prognostic model was developed using the eight genes, demonstrating a strong prediction power. Differences in the response to immunotherapy among patients in different risk groups were significant. We found that high-risk patients were more sensitive to two drugs (Palbociclib_1054 and Ribociclib_1632), while low-risk patients were more sensitive to AZD1208_1449, ERK_2440_1713, Mirin_1048, and Selumetinib_1736.
ConclusionUM in this study was divided into three CNV subtypes, and a model based on eight aneuploidy score-related genes was established to evaluate the prognosis and drug treatment efficacy of UM patients. The current results may have the potential to help the clinical decision-making process for UM management.
-
-
-
Circulating Immune Cells Predict Prognosis and Clinical Response to Chemotherapy in Cholangiocarcinoma
Authors: Huina Shi, Zhaosheng Li and Mingchen ZhuBackgroundThe immune system is linked to the prognosis and response to treatment of patients with cancer. However, the clinical implication of peripheral blood immune cells in cholangiocarcinoma (CCA) remains vague. Thus, we aimed to assess whether peripheral circulating immune cells could be used as an indicator for prognosis and chemotherapeutic efficacy in CCA.
MethodsThe distributions of immune subsets were analyzed in peripheral blood samples from 141 patients with CCA and 131 healthy volunteers by using flow cytometry. The variation in the subset distribution in the two groups and the relationship between clinicopathological features and the subpopulations were investigated. Meanwhile, we assessed the implications of lymphocyte subsets as predictors of chemotherapy outcomes and overall survival (OS).
ResultsThe proportion of total lymphocytes decreased, while the percentages of activated T cells as well as CD4+CD25+ regulatory T cells (Tregs) increased in CCA. Notably, lymphocyte proportion decreased in patients with regional lymph node (N) (p=0.016) and distant metastasis (M) (p= 0.001). Furthermore, our study showed that peripheral blood lymphocyte subsets were significantly correlated with chemotherapy efficacy, with increased proportions of CD3+ cells (p=0.021) and CD4+ cells (p=0.016) in the effective group. Finally, the Kaplan-Meier analysis indicated that patients with high natural killer (NK) cell proportion might have prolonged OS (p = 0.028).
ConclusionThe relationship between circulating immune cells with prognosis and chemotherapy response in patients with CCA highlights their potential application as an indicator of CCA prognosis and stratification of chemotherapy response.
-
-
-
A Circadian Rhythm-related Signature to Predict Prognosis, Immune Infiltration, and Drug Response in Breast Cancer
Authors: Mingyu Chu, Jing Huang, Qianyu Wang, Yaqun Fang, Dina Cui and Yucui JinPurposeCircadian rhythm-related genes (CRRGs) play essential roles in cancer occurrence and development. However, the prognostic significance of CRRGs in breast cancer (BC) has not been fully elucidated. Our study aimed to develop a prognostic gene signature based on CRRGs that can accurately and stably predict the prognosis of BC.
MethodsThe transcriptome data and clinical information for BC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A consensus unsupervised clustering analysis was carried out to investigate the roles of CRRGs in BC. A CRRGs-related prognostic risk model was established by using logistic least absolute shrinkage and selection operator (LASSO) Cox regression and univariate Cox regression analyses. Kaplan-Meier (KM) curves analysis, time-dependent receptor operation characteristics (ROC) curves analysis, and nomogram were plotted to evaluate the predictive efficacy of the model. The relevance of risk score to the immune cell infiltration, tumor burden mutation (TMB), and therapeutic response was assessed.
ResultsA risk model comprising six CRRGs (SLC44A4, SLC16A6, TPRG1, FABP7, GLYATL2, and FDCSP) was constructed and validated, demonstrating an effective predictor for the prognosis of BC. The low-risk group displayed a higher expression of immune checkpoint genes and a lower burden of tumor mutation. Additionally, drug sensitivity analysis demonstrated that the prognostic signature may serve as a potential chemosensitivity predictor.
ConclusionWe established a CRRGs-related risk signature, which is of great value in predicting the prognosis of patients with BC and guiding the treatment for BC.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)