Skip to content
2000
image of An Innovative Telomere-associated Prognosis Model in AML: Predicting Immune Infiltration and Treatment Responsiveness

Abstract

Aims

To build an innovative telomere-associated scoring model to predict prognosis and treatment responsiveness in acute myeloid leukemia (AML).

Background

AML is a highly heterogeneous malignant hematologic disorder with a poor prognosis. While telomere maintenance is frequently observed in tumors, investigations into telomere-related genes (TRGs) in AML remain limited.

Objectives

This study aimed to identify prognostic TRGs using the least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression, evaluate their predictive value, explore the association between TRG scores and immune cell infiltration, and assess the sensitivity of high-scoring AML patients to chemotherapeutic agents.

Method

Univariate Cox regression analysis was conducted on the TCGA cohort to identify prognostic TRGs and to develop the TRG scoring model using LASSO-Cox and multivariate Cox regression. Validation was performed on the GSE37642 cohort. Immune cell infiltration patterns were assessed through computational analysis, and the sensitivity to chemotherapeutic agents was evaluated.

Results

Thirteen prognostic TRGs were identified, and a seven-TRG scoring model (including NOP10, OBFC1, PINX1, RPA2, SMG5, MAPKAPK5, and SMN1) was developed. Higher TRG scores were associated with a poorer prognosis, as confirmed in the GSE37642 cohort, and remained an independent prognostic factor even after adjusting for other clinical characteristics. The high-score group was characterized by elevated infiltration of B cells, T helper cells, natural killer cells, tumor-infiltrating lymphocytes, regulatory T (Treg) cells, M2 macrophages, neutrophils, and monocytes, along with reduced infiltration of gamma delta T cells, CD4- T cells, and resting mast cells. Moreover, high infiltration of M2 macrophages and Tregs was associated with poor overall survival compared to low infiltration. Notably, high-risk AML patients were resistant to Erlotinib, Parthenolide, and Nutlin-3a, but sensitive to AC220, Midostaurin, and Tipifarnib. Additionally, using RT-qPCR, we observed significantly higher expression of two model genes, OBFC1 and SMN1, in AML tissues compared to control tissues.

Conclusion

This innovative TRG scoring model demonstrates considerable predictive value for AML patient prognosis, offering valuable insights for optimizing treatment strategies and personalized medicine approaches. The identified TRGs and associated scoring models could aid in risk stratification and guide tailored therapeutic interventions in AML patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334218241021044800
2024-11-05
2024-12-27
Loading full text...

Full text loading...

References

  1. Döhner H. Weisdorf D.J. Bloomfield C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015 373 12 1136 1152 10.1056/NEJMra1406184 26376137
    [Google Scholar]
  2. DiNardo C.D. Jonas B.A. Pullarkat V. Thirman M.J. Garcia J.S. Wei A.H. Konopleva M. Döhner H. Letai A. Fenaux P. Koller E. Havelange V. Leber B. Esteve J. Wang J. Pejsa V. Hájek R. Porkka K. Illés Á. Lavie D. Lemoli R.M. Yamamoto K. Yoon S.S. Jang J.H. Yeh S.P. Turgut M. Hong W.J. Zhou Y. Potluri J. Pratz K.W. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020 383 7 617 629 10.1056/NEJMoa2012971 32786187
    [Google Scholar]
  3. Oran B. Weisdorf D.J. Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 2012 97 12 1916 1924 10.3324/haematol.2012.066100 22773600
    [Google Scholar]
  4. Döhner H. Wei A.H. Appelbaum F.R. Craddock C. DiNardo C.D. Dombret H. Ebert B.L. Fenaux P. Godley L.A. Hasserjian R.P. Larson R.A. Levine R.L. Miyazaki Y. Niederwieser D. Ossenkoppele G. Röllig C. Sierra J. Stein E.M. Tallman M.S. Tien H.F. Wang J. Wierzbowska A. Löwenberg B. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022 140 12 1345 1377 10.1182/blood.2022016867 35797463
    [Google Scholar]
  5. Arber D.A. Orazi A. Hasserjian R.P. Borowitz M.J. Calvo K.R. Kvasnicka H.M. Wang S.A. Bagg A. Barbui T. Branford S. Bueso-Ramos C.E. Cortes J.E. Dal Cin P. DiNardo C.D. Dombret H. Duncavage E.J. Ebert B.L. Estey E.H. Facchetti F. Foucar K. Gangat N. Gianelli U. Godley L.A. Gökbuget N. Gotlib J. Hellström-Lindberg E. Hobbs G.S. Hoffman R. Jabbour E.J. Kiladjian J.J. Larson R.A. Le Beau M.M. Loh M.L.C. Löwenberg B. Macintyre E. Malcovati L. Mullighan C.G. Niemeyer C. Odenike O.M. Ogawa S. Orfao A. Papaemmanuil E. Passamonti F. Porkka K. Pui C.H. Radich J.P. Reiter A. Rozman M. Rudelius M. Savona M.R. Schiffer C.A. Schmitt-Graeff A. Shimamura A. Sierra J. Stock W.A. Stone R.M. Tallman M.S. Thiele J. Tien H.F. Tzankov A. Vannucchi A.M. Vyas P. Wei A.H. Weinberg O.K. Wierzbowska A. Cazzola M. Döhner H. Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022 140 11 1200 1228 10.1182/blood.2022015850 35767897
    [Google Scholar]
  6. Eisfeld A.K. Unbiased decision-making for acute myeloid leukemia still needed. Haematologica 2022 108 3 668 669 10.3324/haematol.2022.281144 35708138
    [Google Scholar]
  7. Palm W. de Lange T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008 42 1 301 334 10.1146/annurev.genet.41.110306.130350 18680434
    [Google Scholar]
  8. Blackburn E.H. Structure and function of telomeres. Nature 1991 350 6319 569 573 10.1038/350569a0 1708110
    [Google Scholar]
  9. De Vitis M. Berardinelli F. Sgura A. Telomere length maintenance in cancer: At the crossroad between telomerase and Alternative Lengthening of Telomeres (ALT). Int. J. Mol. Sci. 2018 19 2 606 10.3390/ijms19020606 29463031
    [Google Scholar]
  10. Kyo S. Takakura M. Fujiwara T. Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci. 2008 99 8 1528 1538 10.1111/j.1349‑7006.2008.00878.x 18754863
    [Google Scholar]
  11. Londoño-Vallejo J.A. Der-Sarkissian H. Cazes L. Bacchetti S. Reddel R.R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res. 2004 64 7 2324 2327 10.1158/0008‑5472.CAN‑03‑4035 15059879
    [Google Scholar]
  12. Artandi S.E. DePinho R.A. Telomeres and telomerase in cancer. Carcinogenesis 2010 31 1 9 18 10.1093/carcin/bgp268 19887512
    [Google Scholar]
  13. Shay J.W. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016 6 6 584 593 10.1158/2159‑8290.CD‑16‑0062 27029895
    [Google Scholar]
  14. Ramsay A.J. Quesada V. Foronda M. Conde L. Martínez-Trillos A. Villamor N. Rodríguez D. Kwarciak A. Garabaya C. Gallardo M. López-Guerra M. López-Guillermo A. Puente X.S. Blasco M.A. Campo E. López-Otín C. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 2013 45 5 526 530 10.1038/ng.2584 23502782
    [Google Scholar]
  15. de Miranda N.F.C.C. Peng R. Georgiou K. Wu C. Sörqvist E.F. Berglund M. Chen L. Gao Z. Lagerstedt K. Lisboa S. Roos F. van Wezel T. Teixeira M.R. Rosenquist R. Sundström C. Enblad G. Nilsson M. Zeng Y. Kipling D. Pan-Hammarström Q. DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J. Exp. Med. 2013 210 9 1729 1742 10.1084/jem.20122842 23960188
    [Google Scholar]
  16. Jiao X. Wood L.D. Lindman M. Jones S. Buckhaults P. Polyak K. Sukumar S. Carter H. Kim D. Karchin R. Sjöblom T. Somatic mutations in the notch, NF‐KB, PIK3CA, and hedgehog pathways in human breast cancers. Genes Chromosomes Cancer 2012 51 5 480 489 10.1002/gcc.21935 22302350
    [Google Scholar]
  17. Gilmore T.D. Kalaitzidis D. Liang M.C. Starczynowski D.T. The c-Rel transcription factor and B-cell proliferation: A deal with the devil. Oncogene 2004 23 13 2275 2286 10.1038/sj.onc.1207410 14755244
    [Google Scholar]
  18. Samper E. Goytisolo F.A. Slijepcevic P. van Buul P.P.W. Blasco M.A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G‐strand overhang. EMBO Rep. 2000 1 3 244 252 10.1093/embo‑reports/kvd051 11256607
    [Google Scholar]
  19. Celli G.B. Denchi E.L. de Lange T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 2006 8 8 885 890 10.1038/ncb1444 16845382
    [Google Scholar]
  20. Beneke S. Cohausz O. Malanga M. Boukamp P. Althaus F. Bürkle A. Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res. 2008 36 19 6309 6317 10.1093/nar/gkn615 18835851
    [Google Scholar]
  21. Akiyama M. Yamada O. Hideshima T. Yanagisawa T. Yokoi K. Fujisawa K. Eto Y. Yamada H. Anderson K.C. TNFα induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochem. Biophys. Res. Commun. 2004 316 2 528 532 10.1016/j.bbrc.2004.02.080 15020249
    [Google Scholar]
  22. Lansdorp P.M. Maintenance of telomere length in AML. Blood Adv. 2017 1 25 2467 2472 10.1182/bloodadvances.2017012112 29296896
    [Google Scholar]
  23. Wang Y. Fang M. Sun X. Sun J. Telomerase activity and telomere length in acute leukemia: Correlations with disease progression, subtypes and overall survival. Int. J. Lab. Hematol. 2010 32 2 230 238 10.1111/j.1751‑553X.2009.01178.x 19614710
    [Google Scholar]
  24. da Mota T.H.A. Camargo R. Biojone E.R. Guimarães A.F.R. Pittella-Silva F. de Oliveira D.M. The relevance of telomerase and telomere-associated proteins in b-acute lymphoblastic leukemia. Genes (Basel) 2023 14 3 691 10.3390/genes14030691 36980962
    [Google Scholar]
  25. Mengual Gomez D.L. Armando R.G. Cerrudo C.S. Ghiringhelli P.D. Gomez D.E. Telomerase as a Cancer Target. Development of New Molecules. Curr. Top. Med. Chem. 2016 16 22 2432 2440 10.2174/1568026616666160212122425 26873194
    [Google Scholar]
  26. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  27. Podlevsky J.D. Bley C.J. Omana R.V. Qi X. Chen J.J.L. The telomerase database. Nucleic Acids Res. 2007 36 Database D339 D343 10.1093/nar/gkm700 18073191
    [Google Scholar]
  28. Döhner H. Estey E. Grimwade D. Amadori S. Appelbaum F.R. Büchner T. Dombret H. Ebert B.L. Fenaux P. Larson R.A. Levine R.L. Lo-Coco F. Naoe T. Niederwieser D. Ossenkoppele G.J. Sanz M. Sierra J. Tallman M.S. Tien H.F. Wei A.H. Löwenberg B. Bloomfield C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017 129 4 424 447 10.1182/blood‑2016‑08‑733196 27895058
    [Google Scholar]
  29. Alimohammadi M. Rahimzadeh P. Khorrami R. Bonyadi M. Daneshi S. Nabavi N. Raesi R. Farani M.R. Dehkhoda F. Taheriazam A. Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol. Res. Pract. 2024 260 155401 10.1016/j.prp.2024.155401 38936094
    [Google Scholar]
  30. Mafi A. Rismanchi H. Malek Mohammadi M. Hedayati N. Ghorbanhosseini S.S. Hosseini S.A. Gholinezhad Y. Mousavi Dehmordi R. Ghezelbash B. Zarepour F. Taghavi S.P. Asemi Z. Alimohammadi M. Mirzaei H. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front. Oncol. 2023 13 1224138 10.3389/fonc.2023.1224138 37546393
    [Google Scholar]
  31. Alimohammadi M. Gholinezhad Y. Mousavi V. Circular RNAs: Novel actors of Wnt signaling pathway in lung cancer progression. EXCLI J. 2023 22 645 669 10.17179/EXCLI2023‑6209
    [Google Scholar]
  32. Mafi A. Khoshnazar S.M. Shahpar A. Nabavi N. Hedayati N. Alimohammadi M. Hashemi M. Taheriazam A. Farahani N. Mechanistic insights into circRNA-mediated regulation of PI3K signaling pathway in glioma progression. Pathol. Res. Pract. 2024 260 155442 10.1016/j.prp.2024.155442 38991456
    [Google Scholar]
  33. Cong P. Xu R. Tan Z. Wu X. Lian H. Li D. Molecular subtypes based on mitochondrial oxidative stress-related gene signature and tumor microenvironment infiltration characterization of colon adenocarcinoma. Curr. Med. Chem. 2024 31 10.2174/0109298673318692240829053543 39238391
    [Google Scholar]
  34. Li Y. Lyu G. Construction of a PANoptosis-related prognostic signature for predicting prognosis, tumor microenvironment, and immune response in ovarian cancer. Curr. Med. Chem. 2024 31 10.2174/0109298673314864240829064622 39248067
    [Google Scholar]
  35. Huang K. Xie L. Wang F. A novel defined pyroptosis-related gene signature for the prognosis of acute myeloid leukemia. Genes (Basel) 2022 13 12 2281 10.3390/genes13122281 36553549
    [Google Scholar]
  36. Aalami A. Abdeahad H. Mokhtari A. Aalami F. Amirabadi A. Aliabadi E.K. Pirzade O. Sahebkar A. Blood-based microRNAs as Potential Diagnostic Biomarkers for Melanoma: A Meta-Analysis. Curr. Med. Chem. 2024 31 31 5083 5096 10.2174/0929867330666230509110111 37165504
    [Google Scholar]
  37. Hou H. Wu Y. Guo J. Zhang W. Wang R. Yang H. Wang Z. The prognostic signature based on glycolysis-immune related genes for acute myeloid leukemia patients. Immunobiology 2023 228 3 152355 10.1016/j.imbio.2023.152355 36868006
    [Google Scholar]
  38. Chu M. Huang J. Wang Q. Fang Y. Cui D. Jin Y. A Circadian Rhythm-related Signature to Predict Prognosis, Immunei Infiltration, and Drug Response in Breast Cancer. Curr. Med. Chem. 2024 31 10.2174/0109298673320179240803071001 39279697
    [Google Scholar]
  39. Hu J. Zhu W. Wang W. Yue X. Zhao P. Kong D. Comprehensive analysis of ligand-receptor interactions in colon adenocarcinoma to identify of tumor microenvironment oxidative stress and prognosis model. Curr. Med. Chem. 2024 31 30 4912 4934 10.2174/0929867331666230821092346 37605402
    [Google Scholar]
  40. Kishtagari A. Watts J. Biological and clinical implications of telomere dysfunction in myeloid malignancies. Ther. Adv. Hematol. 2017 8 11 317 326 10.1177/2040620717731549 29093807
    [Google Scholar]
  41. Swiggers S.J.J. Kuijpers M.A. de Cort M.J.M. Beverloo H.B. Zijlmans J.M.J.M. Critically short telomeres in acute myeloid leukemia with loss or gain of parts of chromosomes. Genes Chromosomes Cancer 2006 45 3 247 256 10.1002/gcc.20286 16281260
    [Google Scholar]
  42. Jones C.H. Pepper C. Baird D.M. Telomere dysfunction and its role in haematological cancer. Br. J. Haematol. 2012 156 5 573 587 10.1111/j.1365‑2141.2011.09022.x 22233151
    [Google Scholar]
  43. Day J.W. Howell K. Place A. Long K. Rossello J. Kertesz N. Nomikos G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 2022 22 1 632 10.1186/s12887‑022‑03671‑x 36329412
    [Google Scholar]
  44. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  45. Miyake Y. Nakamura M. Nabetani A. Shimamura S. Tamura M. Yonehara S. Saito M. Ishikawa F. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 2009 36 2 193 206 10.1016/j.molcel.2009.08.009 19854130
    [Google Scholar]
  46. Ding H. Schertzer M. Wu X. Gertsenstein M. Selig S. Kammori M. Pourvali R. Poon S. Vulto I. Chavez E. Tam P.P.L. Nagy A. Lansdorp P.M. Regulation of murine telomere length by Rtel: An essential gene encoding a helicase-like protein. Cell 2004 117 7 873 886 10.1016/j.cell.2004.05.026 15210109
    [Google Scholar]
  47. Barber L.J. Youds J.L. Ward J.D. McIlwraith M.J. O’Neil N.J. Petalcorin M.I.R. Martin J.S. Collis S.J. Cantor S.B. Auclair M. Tissenbaum H. West S.C. Rose A.M. Boulton S.J. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 2008 135 2 261 271 10.1016/j.cell.2008.08.016 18957201
    [Google Scholar]
  48. Han P. Dang Z. Shen Z. Dai H. Bai Y. Li B. Shao Y. Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population. Int. J. Clin. Oncol. 2019 24 9 1042 1048 10.1007/s10147‑019‑01442‑w 31016429
    [Google Scholar]
  49. Grozdanov P.N. Roy S. Kittur N. Meier U.T. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 2009 15 6 1188 1197 10.1261/rna.1532109 19383767
    [Google Scholar]
  50. Elsharawy K.A. Althobiti M. Mohammed O.J. Aljohani A.I. Toss M.S. Green A.R. Rakha E.A. Nucleolar protein 10 (NOP10) predicts poor prognosis in invasive breast cancer. Breast Cancer Res. Treat. 2021 185 3 615 627 10.1007/s10549‑020‑05999‑3 33161513
    [Google Scholar]
  51. Monteagudo M. Martínez P. Leandro-García L.J. Martínez-Montes Á.M. Calsina B. Pulgarín-Alfaro M. Díaz-Talavera A. Mellid S. Letón R. Gil E. Pérez-Martínez M. Megías D. Torres-Ruiz R. Rodriguez-Perales S. González P. Caleiras E. Jiménez-Villa S. Roncador G. Álvarez-Escolá C. Regojo R.M. Calatayud M. Guadalix S. Currás-Freixes M. Rapizzi E. Canu L. Nölting S. Remde H. Fassnacht M. Bechmann N. Eisenhofer G. Mannelli M. Beuschlein F. Quinkler M. Rodríguez-Antona C. Cascón A. Blasco M.A. Montero-Conde C. Robledo M. Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021 13 19 4758 10.3390/cancers13194758 34638246
    [Google Scholar]
  52. Li H.L. Song J. Yong H.M. Hou P.F. Chen Y.S. Song W.B. Bai J. Zheng J.N. PinX1: Structure, regulation and its functions in cancer. Oncotarget 2016 7 40 66267 66275 10.18632/oncotarget.11411 27556185
    [Google Scholar]
  53. Zhou X.Z. Lu K.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 2001 107 3 347 359 10.1016/S0092‑8674(01)00538‑4 11701125
    [Google Scholar]
  54. Liao C. Zhao M.J. Zhao J. Jia D. Song H. Li Z.P. Over-expression of LPTS-L in hepatocellular carcinoma cell line SMMC-7721 induces crisis. World J. Gastroenterol. 2002 8 6 1050 1052 10.3748/wjg.v8.i6.1050 12439923
    [Google Scholar]
  55. Qian D. Zhang B. He L.R. Cai M.Y. Mai S.J. Liao Y.J. Liu Y.H. Lin M.C. Bian X.W. Zeng Y.X. Huang J.J. Kung H.F. Xie D. The telomere/telomerase binding factor PinX1 is a new target to improve the radiotherapy effect of oesophageal squamous cell carcinomas. J. Pathol. 2013 229 5 765 774 10.1002/path.4163 23341363
    [Google Scholar]
  56. Tian X.P. Qian D. He L.R. Huang H. Mai S.J. Li C.P. Huang X.X. Cai M.Y. Liao Y.J. Kung H. Zeng Y.X. Xie D. The telomere/telomerase binding factor PinX1 regulates paclitaxel sensitivity depending on spindle assembly checkpoint in human cervical squamous cell carcinomas. Cancer Lett. 2014 353 1 104 114 10.1016/j.canlet.2014.07.012 25045845
    [Google Scholar]
  57. Wold M.S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 1997 66 1 61 92 10.1146/annurev.biochem.66.1.61 9242902
    [Google Scholar]
  58. Fanning E. Klimovich V. Nager A.R. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 2006 34 15 4126 4137 10.1093/nar/gkl550 16935876
    [Google Scholar]
  59. Kanakis D. Levidou G. Gakiopoulou H. Eftichiadis C. Thymara I. Fragkou P. Trigka E.A. Boviatsis E. Patsouris E. Korkolopoulou P. Replication protein A: A reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors. Hum. Pathol. 2011 42 10 1545 1553 10.1016/j.humpath.2010.12.018 21496876
    [Google Scholar]
  60. Nicholson P. Gkratsou A. Josi C. Colombo M. Mühlemann O. Dissecting the functions of SMG5, SMG7, and PNRC2 in nonsense-mediated mRNA decay of human cells. RNA 2018 24 4 557 573 10.1261/rna.063719.117 29348139
    [Google Scholar]
  61. Tang B. Zhu J. Zhao Z. Lu C. Liu S. Fang S. Zheng L. Zhang N. Chen M. Xu M. Yu R. Ji J. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden. J. Adv. Res. 2021 33 153 165 10.1016/j.jare.2021.01.018 34603786
    [Google Scholar]
  62. Li S.C. Jia Z.K. Yang J.J. Ning X. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer. Front. Immunol. 2022 13 975057 10.3389/fimmu.2022.975057 36189312
    [Google Scholar]
  63. Zhao Z. Shen X. Zhao S. Wang J. Tian Y. Wang X. Tang B. A novel telomere-related genes model for predicting prognosis and treatment responsiveness in diffuse large B-cell lymphoma. Aging (Albany NY) 2023 15 22 12927 12951 10.18632/aging.205211 37976136
    [Google Scholar]
  64. Ustun C. Miller J.S. Munn D.H. Weisdorf D.J. Blazar B.R. Regulatory T cells in acute myelogenous leukemia: Is it time for immunomodulation? Blood 2011 118 19 5084 5095 10.1182/blood‑2011‑07‑365817 21881045
    [Google Scholar]
  65. Williams P. Basu S. Garcia-Manero G. Hourigan C.S. Oetjen K.A. Cortes J.E. Ravandi F. Jabbour E.J. Al-Hamal Z. Konopleva M. Ning J. Xiao L. Hidalgo Lopez J. Kornblau S.M. Andreeff M. Flores W. Bueso-Ramos C. Blando J. Galera P. Calvo K.R. Al-Atrash G. Allison J.P. Kantarjian H.M. Sharma P. Daver N.G. The distribution of T‐cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 2019 125 9 1470 1481 10.1002/cncr.31896 30500073
    [Google Scholar]
  66. Szczepanski M.J. Szajnik M. Czystowska M. Mandapathil M. Strauss L. Welsh A. Foon K.A. Whiteside T.L. Boyiadzis M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin. Cancer Res. 2009 15 10 3325 3332 10.1158/1078‑0432.CCR‑08‑3010 19417016
    [Google Scholar]
  67. Delia M. Carluccio P. Mestice A. Brunetti C. Albano F. Specchia G. Impact of Bone Marrow Aspirate Tregs on the Response Rate of Younger Newly Diagnosed Acute Myeloid Leukemia Patients. J. Immunol. Res. 2018 2018 1 7 10.1155/2018/9325261 30069492
    [Google Scholar]
  68. Takeuchi Y. Nishikawa H. Roles of regulatory T cells in cancer immunity. Int. Immunol. 2016 28 8 401 409 10.1093/intimm/dxw025 27160722
    [Google Scholar]
  69. Xu Z.J. Gu Y. Wang C.Z. Jin Y. Wen X.M. Ma J.C. Tang L.J. Mao Z.W. Qian J. Lin J. The M2 macrophage marker CD206 : A novel prognostic indicator for acute myeloid leukemia. OncoImmunology 2020 9 1 1683347 10.1080/2162402X.2019.1683347 32002295
    [Google Scholar]
  70. Miari K.E. Guzman M.L. Wheadon H. Williams M.T.S. Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes. Front. Cell Dev. Biol. 2021 9 692800 10.3389/fcell.2021.692800 34249942
    [Google Scholar]
  71. Jiang X. Wang J. Deng X. Xiong F. Ge J. Xiang B. Wu X. Ma J. Zhou M. Li X. Li Y. Li G. Xiong W. Guo C. Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer 2019 18 1 10 10.1186/s12943‑018‑0928‑4 30646912
    [Google Scholar]
  72. Stone R.M. Mandrekar S.J. Sanford B.L. Laumann K. Geyer S. Bloomfield C.D. Thiede C. Prior T.W. Döhner K. Marcucci G. Lo-Coco F. Klisovic R.B. Wei A. Sierra J. Sanz M.A. Brandwein J.M. de Witte T. Niederwieser D. Appelbaum F.R. Medeiros B.C. Tallman M.S. Krauter J. Schlenk R.F. Ganser A. Serve H. Ehninger G. Amadori S. Larson R.A. Döhner H. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017 377 5 454 464 10.1056/NEJMoa1614359 28644114
    [Google Scholar]
  73. Zhou F. Ge Z. Chen B. Quizartinib (AC220): A promising option for acute myeloid leukemia. Drug Des. Devel. Ther. 2019 13 1117 1125 10.2147/DDDT.S198950 31114157
    [Google Scholar]
  74. Boehrer S. Adès L. Braun T. Galluzzi L. Grosjean J. Fabre C. Le Roux G. Gardin C. Martin A. de Botton S. Fenaux P. Kroemer G. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: A preclinical study. Blood 2008 111 4 2170 2180 10.1182/blood‑2007‑07‑100362 17925489
    [Google Scholar]
  75. Cao Z.X. Guo C.J. Song X. He J.L. Tan L. Yu S. Zhang R.Q. Peng F. Peng C. Li Y.Z. Erlotinib is effective against FLT3‐ITD mutant AML and helps to overcome intratumoral heterogeneity via targeting FLT3 and Lyn. FASEB J. 2020 34 8 10182 10190 10.1096/fj.201902922RR 32543003
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334218241021044800
Loading
/content/journals/cmc/10.2174/0109298673334218241021044800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test