Skip to content
2000
image of Advancements in Structural Basis of Covalent Inhibitors Targeting SARS-CoV-2 Essential Proteins

Abstract

Covalent inhibitors play a pivotal role in the development of pharmaceutical therapies, as they form stable, irreversible bonds with target biomolecules, leading to prolonged therapeutic effects and enhanced efficacy. Since covalent inhibitors first appeared in the late 1800s, the field has become innovative rapidly, and covalent inhibitors now account for around 30% of all marketed therapeutics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the pandemic of Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 needs to be cured with a medicine that is beneficial and with the least side effects. It is necessary to formulate drug candidates to treat this pathogen. The predominance of covalent medications will be briefly discussed in this review, followed by an introduction to their methods of action, as well as more thorough discussions of the safe and effective covalent enzyme inhibitors against SARS-CoV-2. Our main concern is to study covalent inhibitors which are mainly involved in blocking the viral entry of the virus SARS-CoV-2 into the host cell along with its replication and translation process. In the development of anti-SARS-CoV-2 medicines researchers can use those reported drugs as prospective candidates.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323348241208080419
2025-01-03
2025-04-04
Loading full text...

Full text loading...

References

  1. SuH. YaoS. ZhaoW. ZhangY. LiuJ. ShaoQ. WangQ. LiM. XieH. ShangW. KeC. FengL. JiangX. ShenJ. XiaoG. JiangH. ZhangL. YeY. XuY. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease.Nat. Commun.2021121362310.1038/s41467‑021‑23751‑334131140
    [Google Scholar]
  2. CitarellaA. ScalaA. PipernoA. MicaleN. SARS- CoV-2 Mpro: A potential target for peptidomimetics and small-molecule inhibitors.Biomolecules202111460710.3390/biom1104060733921886
    [Google Scholar]
  3. YuY. WangL. NiS. LiD. LiuJ. ChuH.Y. ZhangN. SunM. LiN. RenQ. ZhuoZ. ZhongC. XieD. LiY. ZhangZ.K. ZhangH. LiM. ZhangZ. ChenL. PanX. XiaW. ZhangS. LuA. ZhangB.T. ZhangG. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation.Nat. Commun.2022131424110.1038/s41467‑022‑31997‑835869074
    [Google Scholar]
  4. ChenL. JiangZ. YangL. FangY. LuS. AkakuruO.U. HuangS. LiJ. MaS. WuA. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque.Chin. J. Chem.202341219920610.1002/cjoc.202200406
    [Google Scholar]
  5. ZhaoC. TangX. ChenX. JiangZ. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy.ACS Nano20241827178521786810.1021/acsnano.4c0402238939981
    [Google Scholar]
  6. GrygorenkoO.O. VolochnyukD.M. RyabukhinS.V. JuddD.B. The symbiotic relationship between drug discovery and organic chemistry.Chemistry20202661196123710.1002/chem.20190323231429510
    [Google Scholar]
  7. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  8. DanaD. PathakS.K. A review of small molecule inhibitors and functional probes of human cathepsin L.Molecules202025369810.3390/molecules2503069832041276
    [Google Scholar]
  9. RoskoskiR.Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update.Pharmacol. Res.202116510546310.1016/j.phrs.2021.10546333513356
    [Google Scholar]
  10. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  11. GhoshA.K. SamantaI. MondalA. LiuW.R. Covalent inhibition in drug discovery.ChemMedChem201914988990610.1002/cmdc.20190010730816012
    [Google Scholar]
  12. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.11414732653589
    [Google Scholar]
  13. ZaiedB.K. RashidM. NasrullahM. ZularisamA.W. PantD. SinghL. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process.Sci. Total Environ.202072613809510.1016/j.scitotenv.2020.13809532481207
    [Google Scholar]
  14. ShuN. LorentzenL.G. DaviesM.J. Reaction of quinones with proteins: Kinetics of adduct formation, effects on enzymatic activity and protein structure, and potential reversibility of modifications.Free Radic. Biol. Med.201913716918010.1016/j.freeradbiomed.2019.04.02631026584
    [Google Scholar]
  15. AbdeldayemA. RaoufY.S. ConstantinescuS.N. MorigglR. GunningP.T. Advances in covalent kinase inhibitors.Chem. Soc. Rev.20204992617268710.1039/C9CS00720B32227030
    [Google Scholar]
  16. IacopettaD. CeramellaJ. CatalanoA. SaturninoC. PellegrinoM. MaricondaA. LongoP. SinicropiM.S. AquaroS. COVID-19 at a glance: An up-to-date overview on variants, drug design and therapies.Viruses202214357310.3390/v1403057335336980
    [Google Scholar]
  17. De VitaE. 10 years into the resurgence of covalent drugs.Future Med. Chem.202113219321010.4155/fmc‑2020‑023633275063
    [Google Scholar]
  18. DouangamathA. FearonD. GehrtzP. KrojerT. LukacikP. OwenC.D. ResnickE. Strain-DamerellC. AimonA. Ábrányi-BaloghP. Brandão-NetoJ. CarberyA. DavisonG. DiasA. DownesT.D. DunnettL. FairheadM. FirthJ.D. JonesS.P. KeeleyA. KeserüG.M. KleinH.F. MartinM.P. NobleM.E.M. O’BrienP. PowellA. ReddiR.N. SkynerR. SneeM. WaringM.J. WildC. LondonN. von DelftF. WalshM.A. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease.Nat. Commun.2020111504710.1038/s41467‑020‑18709‑w33028810
    [Google Scholar]
  19. SutantoF. KonstantinidouM. DömlingA. Covalent inhibitors: A rational approach to drug discovery.RSC Medicinal Chemistry202011887688410.1039/D0MD00154F33479682
    [Google Scholar]
  20. XuH. LiL. WangS. WangZ. QuL. WangC. XuK. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites.Phytomedicine202311815494010.1016/j.phymed.2023.15494037453194
    [Google Scholar]
  21. HuangY. WangC. ZhouT. XieF. LiuZ. XuH. LiuM. WangS. LiL. ChiQ. ShiJ. DongN. XuK. Lumican promotes calcific aortic valve disease through H3 histone lactylation.Eur. Heart J.202445373871388510.1093/eurheartj/ehae40738976370
    [Google Scholar]
  22. MoH. Task autonomy of a flexible endoscopic system for laser-assisted surgery.Cyborg Bionic Syst20222022975950410.34133/2022/9759504
    [Google Scholar]
  23. KarajE. SindiS.H. KuganesanN. PereraL. TaylorW. TillekeratneL.M.V. Tunable cysteine-targeting electrophilic heteroaromatic warheads induce ferroptosis.J. Med. Chem.20226517117881181710.1021/acs.jmedchem.2c0090935984756
    [Google Scholar]
  24. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  25. MacipG. Garcia-SeguraP. Mestres-TruyolJ. Saldivar-EspinozaB. Ojeda-MontesM.J. GimenoA. Cereto-MassaguéA. Garcia-VallvéS. PujadasG. Haste makes waste: A critical review of docking‐based virtual screening in drug repurposing for SARS‐CoV‐2 main protease (M‐pro) inhibition.Med. Res. Rev.202242274476910.1002/med.2186234697818
    [Google Scholar]
  26. LotsbergM.L. Wnuk-LipinskaK. TerryS. TanT.Z. LuN. Trachsel-MonchoL. RøslandG.V. SirajiM.I. HellesøyM. RayfordA. JacobsenK. DitzelH.J. VintermyrO.K. BivonaT.G. MinnaJ. BrekkenR.A. BaguleyB. MicklemD. AkslenL.A. GausdalG. SimonsenA. ThieryJ.P. ChouaibS. LorensJ.B. EngelsenA.S.T. AXL targeting abrogates autophagic flux and induces immunogenic cell death in drug-resistant cancer cells.J. Thorac. Oncol.202015697399910.1016/j.jtho.2020.01.01532018052
    [Google Scholar]
  27. SinghJ. PetterR.C. BaillieT.A. WhittyA. The resurgence of covalent drugs.Nat. Rev. Drug Discov.201110430731710.1038/nrd341021455239
    [Google Scholar]
  28. SchillingU. DingemanseJ. UferM. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists.Clin. Pharmacokinet.202059554556610.1007/s40262‑020‑00864‑432056160
    [Google Scholar]
  29. UddinT.M. ChakrabortyA.J. KhusroA. ZidanB.M.R.M. MitraS. EmranT.B. DhamaK. RiponM.K.H. GajdácsM. SahibzadaM.U.K. HossainM.J. KoiralaN. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.02034756812
    [Google Scholar]
  30. SrebroJ. BrniakW. MendykA. Formulation of dosage forms with proton pump inhibitors: State of the art, challenges and future perspectives.Pharmaceutics20221410204310.3390/pharmaceutics1410204336297478
    [Google Scholar]
  31. MuttenthalerM. KingG.F. AdamsD.J. AlewoodP.F. Trends in peptide drug discovery.Nat. Rev. Drug Discov.202120430932510.1038/s41573‑020‑00135‑833536635
    [Google Scholar]
  32. BeckH. HärterM. HaßB. SchmeckC. BaerfackerL. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer chemical research laboratory.Drug Discov. Today20222761560157410.1016/j.drudis.2022.02.01535202802
    [Google Scholar]
  33. BabinB.M. KellerL.J. PintoY. LiV.L. EneimA.S. VanceS.E. TerrellS.M. BhattA.S. LongJ.Z. BogyoM. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism.Cell Chem. Biol.2022295897909.e710.1016/j.chembiol.2021.08.01334599874
    [Google Scholar]
  34. ChiangY.C. WongM.T.Y. EssexJ.W. Molecular dynamics simulations of antibiotic ceftaroline at the allosteric site of penicillin-binding protein 2a (PBP2a).Isr. J. Chem.202060775476310.1002/ijch.202000012
    [Google Scholar]
  35. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.10835233035532
    [Google Scholar]
  36. SchlamI. SwainS.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now.NPJ Breast Cancer2021715610.1038/s41523‑021‑00265‑134016991
    [Google Scholar]
  37. MartoranaA. La MonicaG. LauriaA. Quinoline-based molecules targeting c-Met, EGF, and VEGF receptors and the proteins involved in related carcinogenic pathways.Molecules20202518427910.3390/molecules2518427932961977
    [Google Scholar]
  38. GalaniI. KaraiskosI. GiamarellouH. Multidrug-resistant Klebsiella pneumoniae : Mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations.Expert Rev. Anti Infect. Ther.202119111457146810.1080/14787210.2021.192467433945387
    [Google Scholar]
  39. TongL. ZhaoQ. DatanE. LinG.Q. MinnI. PomperM.G. YuB. RomoD. HeQ.L. LiuJ.O. Triptolide: Reflections on two decades of research and prospects for the future.Nat. Prod. Rep.202138484386010.1039/D0NP00054J33146205
    [Google Scholar]
  40. BoikeL. HenningN.J. NomuraD.K. Advances in covalent drug discovery.Nat. Rev. Drug Discov.2022211288189810.1038/s41573‑022‑00542‑z36008483
    [Google Scholar]
  41. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.10381132278207
    [Google Scholar]
  42. AluA. LeiH. HanX. WeiY. WeiX. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: Mechanisms and clinical studies.J. Hematol. Oncol.202215113810.1186/s13045‑022‑01353‑w36183125
    [Google Scholar]
  43. von HundelshausenP. SiessW. Bleeding by Bruton tyrosine kinase-inhibitors: Dependency on drug type and disease.Cancers2021135110310.3390/cancers1305110333806595
    [Google Scholar]
  44. Vargas-IbarraD. Velez-VasquezM. Bermudez-MunozM. Regulation of MAPK ERK1/2 signaling by phosphorylation: Implications in physiological and pathological contexts.Post-Translational Modifications in Cellular Functions and DiseasesIntechOpen2021
    [Google Scholar]
  45. LiuG.H. ChenT. ZhangX. MaX.L. ShiH.S. Small molecule inhibitors targeting the cancers.Med.Comm202234e18110.1002/mco2.18136254250
    [Google Scholar]
  46. GehringerM. Covalent kinase inhibitors: An overview.Proteinkinase InhibitorsSpringerCham2021364394
    [Google Scholar]
  47. HouW. LiuB. XuH. Triptolide: Medicinal chemistry, chemical biology and clinical progress.Eur. J. Med. Chem.201917637839210.1016/j.ejmech.2019.05.03231121546
    [Google Scholar]
  48. KamranS. SinniahA. AbdulghaniM.A.M. AlshawshM.A. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review.Cancers2022145110010.3390/cancers1405110035267408
    [Google Scholar]
  49. HeßlingM. Ultraviolet irradiation doses for coronavirus inactivation–review and analysis of coronavirus photoinactivation studies.GMS Hyg. Infect. Control202015
    [Google Scholar]
  50. DhamaK. KhanS. TiwariR. SircarS. BhatS. MalikY.S. SinghK.P. ChaicumpaW. Bonilla-AldanaD.K. Rodriguez-MoralesA.J. Coronavirus disease 2019–COVID-19.Clin. Microbiol. Rev.2020334e00028-2010.1128/CMR.00028‑2032580969
    [Google Scholar]
  51. GrelletE. L’HôteI. GouletA. ImbertI. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses.J. Biol. Chem.2022298510192310.1016/j.jbc.2022.10192335413290
    [Google Scholar]
  52. ZhangY. SuL. ChenY. YuS. ZhangD. MaoH. FangL. Etiology and clinical characteristics of SARS- CoV-2 and other human coronaviruses among children in Zhejiang Province, China 2017–2019.Virol. J.20211818910.1186/s12985‑021‑01562‑833931105
    [Google Scholar]
  53. BeirneP. Wildlife trade and COVID-19: Towards a criminology of anthropogenic pathogen spillover.Br. J. Criminol.202161360762610.1093/bjc/azaa084
    [Google Scholar]
  54. HaiderN. Rothman-OstrowP. OsmanA.Y. ArrudaL.B. Macfarlane-BerryL. EltonL. ThomasonM.J. Yeboah-ManuD. AnsumanaR. KapataN. MboeraL. RushtonJ. McHughT.D. HeymannD.L. ZumlaA. KockR.A. COVID-19—zoonosis or emerging infectious disease?Front. Public Health2020859694410.3389/fpubh.2020.59694433324602
    [Google Scholar]
  55. MemishZ.A. PerlmanS. Van KerkhoveM.D. ZumlaA. Middle East respiratory syndrome.Lancet2020395102291063107710.1016/S0140‑6736(19)33221‑032145185
    [Google Scholar]
  56. ContiniC. Di NuzzoM. BarpN. BonazzaA. De GiorgioR. TognonM. RubinoS. The novel zoonotic COVID-19 pandemic: An expected global health concern.J. Infect. Dev. Ctries.202014325426410.3855/jidc.1267132235085
    [Google Scholar]
  57. AbdelghanyT.M. GanashM. BakriM.M. QanashH. Al-RajhiA.M.H. ElhussienyN.I. SARS-CoV-2, the other face to SARS-CoV and MERS-CoV: Future predictions.Biomed. J.2021441869310.1016/j.bj.2020.10.00833602634
    [Google Scholar]
  58. MackenzieJ.S. SmithD.W. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t.Microbiol. Aust.20204114510.1071/MA2001332226946
    [Google Scholar]
  59. ChengZ. LuY. CaoQ. QinL. PanZ. YanF. YangW. Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China.AJR Am. J. Roentgenol.2020215112112610.2214/AJR.20.2295932174128
    [Google Scholar]
  60. ChamolaV. HassijaV. GuptaV. GuizaniM. A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact.IEEE Access20208902259026510.1109/ACCESS.2020.2992341
    [Google Scholar]
  61. AhmedT. Coronavirus disease 2019 assosiated pneumonia in China: Current status and future prospects.Preprints2020
    [Google Scholar]
  62. RahmanM.T. SoburM.A. IslamM.S. IevyS. HossainM.J. El ZowalatyM.E. RahmanA.M.M.T. AshourH.M. Zoonotic diseases: Etiology, impact, and control.Microorganisms202089140510.3390/microorganisms809140532932606
    [Google Scholar]
  63. LauringA.S. TenfordeM.W. ChappellJ.D. GaglaniM. GindeA.A. McNealT. GhamandeS. DouinD.J. TalbotH.K. CaseyJ.D. MohrN.M. ZepeskiA. ShapiroN.I. GibbsK.W. FilesD.C. HagerD.N. ShehuA. PrekkerM.E. EricksonH.L. ExlineM.C. GongM.N. MohamedA. JohnsonN.J. SrinivasanV. SteingrubJ.S. PeltanI.D. BrownS.M. MartinE.T. MontoA.S. KhanA. HoughC.L. BusseL.W. ten LohuisC.C. DuggalA. WilsonJ.G. GordonA.J. QadirN. ChangS.Y. MallowC. RivasC. BabcockH.M. KwonJ.H. HalasaN. GrijalvaC.G. RiceT.W. StubblefieldW.B. BaughmanA. WomackK.N. RhoadsJ.P. LindsellC.J. HartK.W. ZhuY. AdamsK. SchragS.J. OlsonS.M. KobayashiM. VeraniJ.R. PatelM.M. SelfW.H. Influenza and Other Viruses in the Acutely Ill (IVY) Network Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study.BMJ2022376e06976110.1136/bmj‑2021‑06976135264324
    [Google Scholar]
  64. LarijaniB. Foroughi-HeravaniN. AbediM. Tayanloo-BeikA. Rezaei-TaviraniM. AdibiH. ArjmandB. Recent advances of COVID-19 modeling based on regenerative medicine.Front. Cell Dev. Biol.2021968361910.3389/fcell.2021.68361934760882
    [Google Scholar]
  65. TegallyH. Genomic epidemiology of SARS-CoV-2 in Mauritius reveals a new wave of infections dominated by the B. 1.1. 318, a variant under investigation.medRxiv2021
    [Google Scholar]
  66. DengX. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation.MedRxiv202110.1101/2021.03.07.21252647
    [Google Scholar]
  67. HetemäkiI. KääriäinenS. AlhoP. MikkolaJ. Savolainen-KopraC. IkonenN. NohynekH. LyytikäinenO. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021.Euro Surveill.20212630210063610.2807/1560‑7917.ES.2021.26.30.210063634328076
    [Google Scholar]
  68. DaviesN.G. Increased hazard of death in community-tested cases of SARS-CoV-2 Variant of Concern 202012/01.MedRxiv2021
    [Google Scholar]
  69. WashingtonN.L. GangavarapuK. ZellerM. BolzeA. CirulliE.T. Schiabor BarrettK.M. LarsenB.B. AndersonC. WhiteS. CassensT. JacobsS. LevanG. NguyenJ. RamirezJ.M.III Rivera-GarciaC. SandovalE. WangX. WongD. SpencerE. Robles-SikisakaR. KurzbanE. HughesL.D. DengX. WangC. ServellitaV. ValentineH. De HoffP. SeaverP. SatheS. GietzenK. SicklerB. AnticoJ. HoonK. LiuJ. HardingA. BakhtarO. BaslerT. AustinB. MacCannellD. IsakssonM. FebboP.G. BeckerD. LaurentM. McDonaldE. YeoG.W. KnightR. LaurentL.C. de FeoE. WorobeyM. ChiuC.Y. SuchardM.A. LuJ.T. LeeW. AndersenK.G. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.Cell20211841025872594.e710.1016/j.cell.2021.03.05233861950
    [Google Scholar]
  70. TegallyH. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS- CoV-2) lineage with multiple spike mutations in South Africa.medrxiv202010.1101/2020.12.21.20248640
    [Google Scholar]
  71. de SouzaF.S.H. Hojo-SouzaN.S. da SilvaC.M. GuidoniD.L. Second wave of COVID-19 in Brazil: younger at higher risk.Eur. J. Epidemiol.202136444144310.1007/s10654‑021‑00750‑833881666
    [Google Scholar]
  72. WuK. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants.BioRxiv202110.1101/2021.01.25.427948
    [Google Scholar]
  73. CantónR. De Lucas RamosP. García-BotellaA. García-LledóA. Gómez-PavónJ. González del CastilloJ. Hernández-SampelayoT. Martín-DelgadoM.C. Martín SánchezF.J. Martínez-SellésM. Molero GarcíaJ.M. Moreno GuillénS. Rodríguez-ArtalejoF. Ruiz-GalianaJ. BouzaE. New variants of SARS-CoV-2.Rev. Esp. Quimioter.202134541942810.37201/req/071.202134076402
    [Google Scholar]
  74. Weekly epidemiological update on COVID-19 - 22 June 2021.2021Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-june-2021#:~:text=Globally%2C%20mortality%20remains%20high%20with,Mediterranean%20and%20the%20African%20Regions.
  75. Abdool KarimS.S. de OliveiraT. New SARS-CoV-2 variants—clinical, public health, and vaccine implications.N. Engl. J. Med.2021384191866186810.1056/NEJMc210036233761203
    [Google Scholar]
  76. MistryP. BarmaniaF. MelletJ. PetaK. StrydomA. ViljoenI.M. JamesW. GordonS. PepperM.S. SARS- CoV-2 variants, vaccines, and host immunity.Front. Immunol.20221280924410.3389/fimmu.2021.80924435046961
    [Google Scholar]
  77. BurkiT. Understanding variants of SARS-CoV-2.Lancet20213971027346210.1016/S0140‑6736(21)00298‑133549181
    [Google Scholar]
  78. BritoA.F. SemenovaE. DudasG. HasslerG.W. KalinichC.C. KraemerM.U.G. HoJ. TegallyH. GithinjiG. AgotiC.N. MatkinL.E. WhittakerC. HowdenB.P. SintchenkoV. ZuckermanN.S. MorO. BlankenshipH.M. de OliveiraT. LinR.T.P. SiqueiraM.M. ResendeP.C. VasconcelosA.T.R. SpilkiF.R. AguiarR.S. AlexievI. IvanovI.N. PhilipovaI. CarringtonC.V.F. SahadeoN.S.D. BrandaB. GurryC. Maurer-StrohS. NaidooD. von EijeK.J. PerkinsM.D. van KerkhoveM. HillS.C. SabinoE.C. PybusO.G. DyeC. BhattS. FlaxmanS. SuchardM.A. GrubaughN.D. BaeleG. FariaN.R. Bulgarian SARS-CoV-2 sequencing groupCommunicable Diseases Genomics Network (Australia and New Zealand)COVID-19 Impact ProjectDanish Covid-19 Genome ConsortiumFiocruz COVID-19 Genomic Surveillance NetworkGISAID core curation teamNetwork for Genomic Surveillance in South Africa (NGS-SA) Swiss SARS-CoV-2 Sequencing Consortium Global disparities in SARS-CoV-2 genomic surveillance.Nat. Commun.2022131700310.1038/s41467‑022‑33713‑y36385137
    [Google Scholar]
  79. GardnerB.J. KilpatrickA.M. Third doses of COVID-19 vaccines reduce infection and transmission of SARS -CoV-2 and could prevent future surges in some populations: A modeling study.Medrxiv202110.1101/2021.10.25.21265500
    [Google Scholar]
  80. ZhangW. DavisB.D. ChenS.S. Sincuir MartinezJ.M. PlummerJ.T. VailE. Emergence of a novel SARS-CoV-2 variant in Southern California.JAMA2021325131324132610.1001/jama.2021.161233571356
    [Google Scholar]
  81. KustinT. HarelN. FinkelU. PerchikS. HarariS. TahorM. CaspiI. LevyR. LeshchinskyM. Ken DrorS. BergerzonG. GadbanH. GadbanF. EliassianE. ShimronO. SalehL. Ben-ZviH. Keren TaradayE. AmichayD. Ben-DorA. SagasD. StraussM. Shemer AvniY. HuppertA. KeptenE. BalicerR.D. NetzerD. Ben-ShacharS. SternA. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals.Nat. Med.20212781379138410.1038/s41591‑021‑01413‑734127854
    [Google Scholar]
  82. AltmannD.M. BoytonR.J. BealeR. Immunity to SARS-CoV-2 variants of concern.Science202137165341103110410.1126/science.abg740433707254
    [Google Scholar]
  83. HuJ. PengP. WangK. FangL. LuoF. JinA. LiuB. TangN. HuangA. Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies.Cell. Mol. Immunol.20211841061106310.1038/s41423‑021‑00648‑133633321
    [Google Scholar]
  84. COVID-19 Genomics UK (COG-UK) consortiumcontact@cogconsortium.uk An integrated national scale SARS-CoV-2 genomic surveillance network.Lancet Microbe202013e99e10010.1016/S2666‑5247(20)30054‑932835336
    [Google Scholar]
  85. SreeharshaN. An integrative network pharmacology and bioinformatics approach for deciphering the multi-target effect of Nyctanthes arbortristis L. against COVID-19.Curr Pharm Des2024
    [Google Scholar]
  86. ChallenR. Brooks-PollockE. ReadJ.M. DysonL. Tsaneva-AtanasovaK. DanonL. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: Matched cohort study.BMJ2021372n57910.1136/bmj.n57933687922
    [Google Scholar]
  87. WangG.L. WangZ.Y. DuanL.J. MengQ.C. JiangM.D. CaoJ. YaoL. ZhuK.L. CaoW.C. MaM.J. Susceptibility of circulating SARS-CoV-2 variants to neutralization.N. Engl. J. Med.2021384242354235610.1056/NEJMc210302233822491
    [Google Scholar]
  88. SinghJ. SamalJ. KumarV. SharmaJ. AgrawalU. EhteshamN.Z. SundarD. RahmanS.A. HiraS. HasnainS.E. Structure-function analyses of new SARS-CoV-2 variants B. 1.1. 7, B. 1.351 and B. 1.1. 28.1: Clinical, diagnostic, therapeutic and public health implications.Viruses202113343910.3390/v1303043933803400
    [Google Scholar]
  89. RamanathanM. FergusonI.D. MiaoW. KhavariP.A. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity.Lancet Infect. Dis.2021218107010.1016/S1473‑3099(21)00262‑034022142
    [Google Scholar]
  90. WangP. NairM.S. LiuL. IketaniS. LuoY. GuoY. WangM. YuJ. ZhangB. KwongP.D. GrahamB.S. MascolaJ.R. ChangJ.Y. YinM.T. SobieszczykM. KyratsousC.A. ShapiroL. ShengZ. HuangY. HoD.D. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.Nature2021593785713013510.1038/s41586‑021‑03398‑233684923
    [Google Scholar]
  91. LeungK. ShumM.H.H. LeungG.M. LamT.T.Y. WuJ.T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020.Euro Surveill.2021261200210610.2807/1560‑7917.ES.2020.26.1.200210633413740
    [Google Scholar]
  92. RambautA. HolmesE.C. O’TooleÁ. HillV. McCroneJ.T. RuisC. du PlessisL. PybusO.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology.Nat. Microbiol.20205111403140710.1038/s41564‑020‑0770‑532669681
    [Google Scholar]
  93. VolzE. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity.Cell202118416475
    [Google Scholar]
  94. HoffmannM. AroraP. GroßR. SeidelA. HörnichB.F. HahnA.S. KrügerN. GraichenL. Hofmann-WinklerH. KempfA. WinklerM.S. SchulzS. JäckH.M. JahrsdörferB. SchrezenmeierH. MüllerM. KlegerA. MünchJ. PöhlmannS. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies.Cell2021184923842393.e1210.1016/j.cell.2021.03.03633794143
    [Google Scholar]
  95. Rees-SpearC. MuirL. GriffithS.A. HeaneyJ. AldonY. SnitselaarJ.L. ThomasP. GrahamC. SeowJ. LeeN. RosaA. RoustanC. HoulihanC.F. SandersR.W. GuptaR.K. CherepanovP. StaussH.J. NastouliE. DooresK.J. van GilsM.J. McCoyL.E. SAFER Investigators The effect of spike mutations on SARS-CoV-2 neutralization.Cell Rep.2021341210889010.1016/j.celrep.2021.10889033713594
    [Google Scholar]
  96. La RosaG. ManciniP. Bonanno FerraroG. VeneriC. IaconelliM. LucentiniL. BonadonnaL. BrusaferroS. BrandtnerD. FasanellaA. PaceL. ParisiA. GalanteD. SuffrediniE. Rapid screening for SARS-CoV-2 variants of concern in clinical and environmental samples using nested RT-PCR assays targeting key mutations of the spike protein.Water Res.202119711710410.1016/j.watres.2021.11710433857895
    [Google Scholar]
  97. BoehmE. KronigI. NeherR.A. EckerleI. VetterP. KaiserL. Geneva Centre for Emerging Viral Diseases Novel SARS-CoV-2 variants: The pandemics within the pandemic.Clin. Microbiol. Infect.20212781109111710.1016/j.cmi.2021.05.02234015535
    [Google Scholar]
  98. WibmerC.K. AyresF. HermanusT. MadzivhandilaM. KgagudiP. OosthuysenB. LambsonB.E. de OliveiraT. VermeulenM. van der BergK. RossouwT. BoswellM. UeckermannV. MeiringS. von GottbergA. CohenC. MorrisL. BhimanJ.N. MooreP.L. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.Nat. Med.202127462262510.1038/s41591‑021‑01285‑x33654292
    [Google Scholar]
  99. ZhouD. DejnirattisaiW. SupasaP. LiuC. MentzerA.J. GinnH.M. ZhaoY. DuyvesteynH.M.E. TuekprakhonA. NutalaiR. WangB. PaesenG.C. Lopez-CamachoC. Slon-CamposJ. HallisB. CoombesN. BewleyK. CharltonS. WalterT.S. SkellyD. LumleyS.F. DoldC. LevinR. DongT. PollardA.J. KnightJ.C. CrookD. LambeT. ClutterbuckE. BibiS. FlaxmanA. BittayeM. Belij-RammerstorferS. GilbertS. JamesW. CarrollM.W. KlenermanP. BarnesE. DunachieS.J. FryE.E. MongkolsapayaJ. RenJ. StuartD.I. ScreatonG.R. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera.Cell2021184923482361.e610.1016/j.cell.2021.02.03733730597
    [Google Scholar]
  100. CandidoD.S. ClaroI.M. de JesusJ.G. SouzaW.M. MoreiraF.R.R. DellicourS. MellanT.A. du PlessisL. PereiraR.H.M. SalesF.C.S. ManuliE.R. ThézéJ. AlmeidaL. MenezesM.T. VolochC.M. FumagalliM.J. ColettiT.M. da SilvaC.A.M. RamundoM.S. AmorimM.R. HoeltgebaumH.H. MishraS. GillM.S. CarvalhoL.M. BussL.F. PreteC.A.Jr AshworthJ. NakayaH.I. PeixotoP.S. BradyO.J. NichollsS.M. TanuriA. RossiÁ.D. BragaC.K.V. GerberA.L. de C GuimarãesA.P. GaburoN.Jr AlencarC.S. FerreiraA.C.S. LimaC.X. LeviJ.E. GranatoC. FerreiraG.M. FranciscoR.S.Jr GranjaF. GarciaM.T. MorettiM.L. PerroudM.W.Jr CastiñeirasT.M.P.P. LazariC.S. HillS.C. de Souza SantosA.A. SimeoniC.L. ForatoJ. SpositoA.C. SchreiberA.Z. SantosM.N.N. de SáC.Z. SouzaR.P. Resende-MoreiraL.C. TeixeiraM.M. HubnerJ. LemeP.A.F. MoreiraR.G. NogueiraM.L. FergusonN.M. CostaS.F. Proenca-ModenaJ.L. VasconcelosA.T.R. BhattS. LemeyP. WuC.H. RambautA. LomanN.J. AguiarR.S. PybusO.G. SabinoE.C. FariaN.R. Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE) Genomic Network Evolution and epidemic spread of SARS-CoV-2 in Brazil.Science202036965081255126010.1126/science.abd216132703910
    [Google Scholar]
  101. DaviesN.G. AbbottS. BarnardR.C. JarvisC.I. KucharskiA.J. MundayJ.D. PearsonC.A.B. RussellT.W. TullyD.C. WashburneA.D. WenseleersT. GimmaA. WaitesW. WongK.L.M. van ZandvoortK. SilvermanJ.D. Diaz-OrdazK. KeoghR. EggoR.M. FunkS. JitM. AtkinsK.E. EdmundsW.J. CMMID COVID-19 Working Group COVID-19 Genomics UK (COG-UK) Consortium Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.Science20213726538eabg305510.1126/science.abg305533658326
    [Google Scholar]
  102. TegallyH. WilkinsonE. GiovanettiM. IranzadehA. FonsecaV. GiandhariJ. DoolabhD. PillayS. SanE.J. MsomiN. MlisanaK. von GottbergA. WalazaS. AllamM. IsmailA. MohaleT. GlassA.J. EngelbrechtS. Van ZylG. PreiserW. PetruccioneF. SigalA. HardieD. MaraisG. HsiaoN. KorsmanS. DaviesM.A. TyersL. MudauI. YorkD. MasloC. GoedhalsD. AbrahamsS. Laguda-AkingbaO. Alisoltani-DehkordiA. GodzikA. WibmerC.K. SewellB.T. LourençoJ. AlcantaraL.C.J. Kosakovsky PondS.L. WeaverS. MartinD. LessellsR.J. BhimanJ.N. WilliamsonC. de OliveiraT. Detection of a SARS-CoV-2 variant of concern in South Africa.Nature2021592785443844310.1038/s41586‑021‑03402‑933690265
    [Google Scholar]
  103. JungnickS. HobmaierB. MautnerL. HoyosM. HaaseM. BaikerA. LahneH. EberleU. WimmerC. HepnerS. SprengerA. BergerC. DangelA. WildnerM. LieblB. AckermannN. SingA. FingerleV. Bavarian SARS-CoV-2-Public Health Laboratory Team Bavarian SARS-CoV-Public Health Laboratory Team Detection of the new SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in five SARS-CoV-2 rapid antigen tests (RATs), Germany, March 2021.Euro Surveill.20212616210041310.2807/1560‑7917.ES.2021.26.16.210041333890568
    [Google Scholar]
  104. YadavP.D. GuptaN. NyayanitD.A. SahayR.R. SheteA.M. MajumdarT. PatilS. KaurH. NikamC. PethaniJ. PatilD.Y. AggarwalN. VijayN. NarayanJ. Imported SARS-CoV-2 V501Y.V2 variant (B.1.351) detected in travelers from South Africa and Tanzania to India.Travel Med. Infect. Dis.20214110202310.1016/j.tmaid.2021.10202333727176
    [Google Scholar]
  105. FederK.A. PearlowitzM. GoodeA. DuwellM. WilliamsT.W. Chen-CarringtonP.A. PatelA. DominguezC. KellerE.N. KleinL. Rivera-ColonA. MostafaH.H. MorrisC.P. PatelN. SchauerA.M. MyersR. BlytheD. FeldmanK.A. Linked clusters of SARS-COV-2 variant B. 1.351—maryland, January–February 2021.MMWR Morb. Mortal. Wkly. Rep.2021701762763110.15585/mmwr.mm7017a533914724
    [Google Scholar]
  106. TegallyH. WilkinsonE. LessellsR.J. GiandhariJ. PillayS. MsomiN. MlisanaK. BhimanJ.N. von GottbergA. WalazaS. FonsecaV. AllamM. IsmailA. GlassA.J. EngelbrechtS. Van ZylG. PreiserW. WilliamsonC. PetruccioneF. SigalA. GazyI. HardieD. HsiaoN. MartinD. YorkD. GoedhalsD. SanE.J. GiovanettiM. LourençoJ. AlcantaraL.C.J. de OliveiraT. Sixteen novel lineages of SARS-CoV-2 in South Africa.Nat. Med.202127344044610.1038/s41591‑021‑01255‑333531709
    [Google Scholar]
  107. ChakrabortyC. BhattacharyaM. SharmaA.R. LeeS.S. AgoramoorthyG. SARS-CoV-2 Brazil variants in Latin America: More serious research urgently needed on public health and vaccine protection.Ann. Med. Surg.20216610242810.1016/j.amsu.2021.10242834109031
    [Google Scholar]
  108. ChengM.H. Cheng, MH.; Krieger, JM.; Kaynak, B.; Arditi, M.; Bahar. Impact of South African 501. V2 variant on SARS-CoV-2 spike infectivity and neutralization: a structure-based computational assessment.BioRxiv.2021202101
    [Google Scholar]
  109. SabinoE.C. BussL.F. CarvalhoM.P.S. PreteC.A.Jr CrispimM.A.E. FraijiN.A. PereiraR.H.M. ParagK.V. da Silva PeixotoP. KraemerM.U.G. OikawaM.K. SalomonT. CucunubaZ.M. CastroM.C. de Souza SantosA.A. NascimentoV.H. PereiraH.S. FergusonN.M. PybusO.G. KucharskiA. BuschM.P. DyeC. FariaN.R. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence.Lancet20213971027345245510.1016/S0140‑6736(21)00183‑533515491
    [Google Scholar]
  110. RehmanA. Role of small molecules as drug candidates for reprogramming somatic cells into induced pluripotent stem cells: A comprehensive review.Comput Biol Med2024177108661
    [Google Scholar]
  111. PanzeraY. GoñiN. CallerosL. RamosN. FrabasileS. MarandinoA. TomásG. TecheraC. GreccoS. FuquesE. RamasV. CoppolaL. FliellerM.R. MorelN. CortinasM.N. MogdasyC. ArbizaJ. DelfraroA. PérezR. ChiparelliH. Genome sequences of SARS-CoV-2 P. 1 (variant of concern) and P. 2 (variant of interest) identified in Uruguay.Microbiol. Resour. Announc.20211021e00410-2110.1128/MRA.00410‑2134042476
    [Google Scholar]
  112. HirotsuY. OmataM. Discovery of a SARS-CoV-2 variant from the P.1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan.J. Infect.202182627631610.1016/j.jinf.2021.03.01333766552
    [Google Scholar]
  113. WangP. CasnerR.G. NairM.S. WangM. YuJ. CeruttiG. LiuL. KwongP.D. HuangY. ShapiroL. HoD.D. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization.Cell Host Microbe2021295747751.e410.1016/j.chom.2021.04.00733887205
    [Google Scholar]
  114. TwohigK.A. NybergT. ZaidiA. ThelwallS. SinnathambyM.A. AliabadiS. SeamanS.R. HarrisR.J. HopeR. Lopez-BernalJ. GallagherE. CharlettA. De AngelisD. PresanisA.M. DabreraG. COVID-19 Genomics UK (COG-UK) consortium Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: A cohort study.Lancet Infect. Dis.2022221354210.1016/S1473‑3099(21)00475‑834461056
    [Google Scholar]
  115. The Lancet India’s COVID-19 emergency.Lancet202139710286168310.1016/S0140‑6736(21)01052‑733965073
    [Google Scholar]
  116. KhateebJ. LiY. ZhangH. Emerging SARS-CoV-2 variants of concern and potential intervention approaches.Crit. Care202125124410.1186/s13054‑021‑03662‑x34253247
    [Google Scholar]
  117. ElbeS. Buckland-MerrettG. Data, disease and diplomacy: GISAID’s innovative contribution to global health.Glob. Chall.201711334610.1002/gch2.101831565258
    [Google Scholar]
  118. GrahamM.S. SudreC.H. MayA. AntonelliM. MurrayB. VarsavskyT. KläserK. CanasL.S. MolteniE. ModatM. DrewD.A. NguyenL.H. PolidoriL. SelvachandranS. HuC. CapdevilaJ. HammersA. ChanA.T. WolfJ. SpectorT.D. StevesC.J. OurselinS. KoshyC. AshA. WiseE. MooreN. MoriM. CortesN. LynchJ. KiddS. FairleyD.J. CurranT. McKennaJ.P. AdamsH. FraserC. GolubchikT. BonsallD. Hassan-IbrahimM.O. MaloneC.S. CoggerB.J. WantochM. ReynoldsN. WarneB. MaksimovicJ. SpellmanK. McCluggageK. JohnM. BeerR. AfifiS. MorganS. MarchbankA. PriceA. KitchenC. GulliverH. MerrickI. SouthgateJ. GuestM. MunnR. WorkmanT. ConnorT.R. FullerW. BresnerC. SnellL.B. PatelA. CharalampousT. NebbiaG. BatraR. EdgeworthJ. RobsonS.C. BeckettA.H. AanensenD.M. UnderwoodA.P. YeatsC.A. AbudahabK. TaylorB.E.W. MenegazzoM. ClarkG. SmithW. KhakhM. FlemingV.M. ListerM.M. Howson-WellsH.C. BerryL. BoswellT. JosephA. WillinghamI. JonesC. HolmesC. BirdP. HelmerT. FallonK. TangJ. RaviprakashV. CampbellS. SheriffN. BlakeyV. WilliamsL-A. LooseM.W. HolmesN. MooreC. CarlileM. WrightV. SangF. DebebeJ. CollF. SignellA.W. BetancorG. WilsonH.D. EldirdiriS. KenyonA. DavisT. PybusO.G. du PlessisL. ZarebskiA.E. RaghwaniJ. KraemerM.U.G. FrancoisS. AttwoodS.W. VasylyevaT.I. Escalera ZamudioM. GutierrezB. TorokM.E. HamiltonW.L. GoodfellowI.G. HallG. JahunA.S. ChaudhryY. HosmilloM. PinckertM.L. GeorganaI. MosesS. LoweH. BedfordL. MooreJ. StonehouseS. FisherC.L. AwanA.R. BoYesJ. BreuerJ. HarrisK.A. BrownJ.R. ShahD. AtkinsonL. LeeJ.C.D. StoreyN. FlavianiF. Alcolea-MedinaA. WilliamsR. VernetG. ChapmanM.R. LevettL.J. HeaneyJ. ChattertonW. PusokM. Xu-McCraeL. SmithD.L. BashtonM. YoungG.R. HolmesA. RandellP.A. CoxA. MadonaP. BoltF. PriceJ. MookerjeeS. Ragonnet-CroninM. NascimentoF.F. JorgensenD. SiveroniI. JohnsonR. BoydO. GeidelbergL. VolzE.M. RowanA. TaylorG.P. SmollettK.L. LomanN.J. QuickJ. McMurrayC. StocktonJ. NichollsS. RoweW. PoplawskiR. McNallyA. Martinez NunezR.T. MasonJ. RobinsonT.I. O’TooleE. WattsJ. BreenC. CowellA. SlugaG. MachinN.W. AhmadS.S.Y. GeorgeR.P. HalsteadF. SivaprakasamV. HogsdenW. IllingworthC.J. JacksonC. ThomsonE.C. ShepherdJ.G. AsamaphanP. NiebelM.O. LiK.K. ShahR.N. JesudasonN.G. TongL. BroosA. MairD. NicholsJ. CarmichaelS.N. NomikouK. Aranday-CortesE. JohnsonN. StarinskijI. da Silva FilipeA. RobertsonD.L. OrtonR.J. HughesJ. VattipallyS. SingerJ.B. NickbakhshS. HaleA.D. Macfarlane-SmithL.R. HarperK.L. CardenH. TahaY. PayneB.A.I. Burton-FanningS. WaughS. CollinsJ. EltringhamG. RushtonS. O’BrienS. BradleyA. MacleanA. MollettG. BlacowR. TempletonK.E. McHughM.P. DewarR. WastengeE. DervisevicS. StanleyR. MeaderE.J. CouplandL. SmithL. GrahamC. BartonE. PadgettD. ScottG. SwindellsE. GreenawayJ. NelsonA. McCannC.M. YewW.C. AnderssonM. PetoT. JusticeA. EyreD. CrookD. SloanT.J. DuckworthN. WalshS. ChauhanA.J. GlaysherS. BicknellK. WyllieS. ElliottS. LloydA. ImpeyR. LeveneN. MonaghanL. BradleyD.T. WyattT. AllaraE. PearsonC. OsmanH. BosworthA. RobinsonE. MuirP. VipondI.B. HopesR. PymontH.M. HutchingsS. CurranM.D. ParmarS. LackenbyA. MbisaT. PlattS. MiahS. BibbyD. MansoC. HubbJ. ChandM. DabreraG. RamsayM. BradshawD. ThorntonA. MyersR. SchaeferU. GrovesN. GallagherE. LeeD. WilliamsD. EllabyN. HarrisonI. HartmanH. ManesisN. PatelV. BishopC. ChalkerV. LedesmaJ. TwohigK.A. HoldenM.T.G. ShaabanS. BirchleyA. AdamsA. DaviesA. GaskinA. PlimmerA. Gatica-WilcoxB. McKerrC. MooreC. WilliamsC. HeyburnD. De LacyE. HilversE. DowningF. ShankarG. JonesH. AsadH. CoombesJ. WatkinsJ. EvansJ.M. FinaL. GiffordL. GilbertL. GrahamL. PerryM. MorganM. BullM. CroninM. PacchiariniN. CraineN. JonesR. HoweR. CordenS. ReyS. Kumziene-SummerhaYesS. TaylorS. CottrellS. JonesS. EdwardsS. O’GradyJ. PageA.J. MatherA.E. BakerD.J. RudderS. AydinA. KayG.L. TrotterA.J. AlikhanN-F. de Oliveira MartinsL. Le-VietT. MeadowsL. CaseyA. RatcliffeL. SimpsonD.A. MolnarZ. ThompsonT. AchesonE. MasoliJ.A.H. KnightB.A. EllardS. AucklandC. JonesC.R. MahunguT.W. Irish-TavaresD. HaqueT. HartJ. WiteleE. FentonM.L. DadrahA. SymmondsA. SalujaT. BourgeoisY. ScarlettG.P. LovesonK.F. GoudarziS. FearnC. CookK. DentH. PaulH. PartridgeD.G. RazaM. EvansC. JohnsonK. LiggettS. BakerP. BonnerS. EssexS. LyonsR.A. SaeedK. MahanamaA.I.K. SamaraweeraB. SilveiraS. PelosiE. Wilson-DaviesE. WilliamsR.J. KristiansenM. RoyS. WilliamsC.A. CoticM. BayzidN. WesthorpeA.P. HartleyJ.A. JannooR. LoweH.L. KaramaniA. EnsellL. PrietoJ.A. JeremiahS. GrammatopoulosD. PandeyS. BerryL. JonesK. RichterA. BeggsA. BestA. PercivalB. MirzaJ. MegramO. MayhewM. CrawfordL. AshcroftF. Moles-GarciaE. CumleyN. SmithC.P. BuccaG. HeskethA.R. BlaneB. GirgisS.T. LeekD. SridharS. ForrestS. CormieC. GillH.K. DiasJ. HigginsonE.E. MaesM. YoungJ. KermackL.M. GuptaR.K. LuddenC. PeacockS.J. PalmerS. ChurcherC.M. HadjirinN.F. CarabelliA.M. BrooksE. SmithK.S. GalaiK. McManusG.M. RuisC. DavidsonR.K. RambautA. WilliamsT. BalcazarC.E. GallagherM.D. O’TooleÁ. RookeS. HillV. WilliamsonK.A. StantonT.D. MichellS.L. BewsheaC.M. TempertonB. MichelsenM.L. Warwick-DugdaleJ. ManleyR. FarbosA. HarrisonJ.W. SamblesC.M. StudholmeD.J. JeffriesA.R. DarbyA.C. HiscoxJ.A. PatersonS. Iturriza-GomaraM. JacksonK.A. LucaciA.O. VamosE.E. HughesM. RainbowL. EcclesR. NelsonC. WhiteheadM. TurtleL. HaldenbyS.T. GregoryR. GemmellM. WierzbickiC. WebsterH.J. de SilvaT.I. SmithN. AngyalA. LindseyB.B. GrovesD.C. GreenL.R. WangD. FreemanT.M. ParkerM.D. KeeleyA.J. ParsonsP.J. TuckerR.M. BrownR. WylesM. WhiteleyM. ZhangP. GallisM. LoukaS.F. ConstantinidouC. UnnikrishnanM. OttS. ChengJ.K.J. BridgewaterH.E. FrostL.R. Taylor-JoyceG. StarkR. BaxterL. AlamM.T. BrownP.E. AggarwalD. CerdaA.C. MerrillT.V. WilsonR.E. McClureP.C. ChappellJ.G. TsoleridisT. BallJ. BuckD. ToddJ.A. GreenA. TrebesA. MacIntyre-CockettG. de CesareM. AldertonA. AmatoR. ArianiC.V. BealeM.A. BeaverC. BellisK.L. BetteridgeE. BonfieldJ. DaneshJ. DormanM.J. DruryE. FarrB.W. FoulserL. GoncalvesS. GoodwinS. GourtovaiaM. HarrisonE.M. JacksonD.K. JamrozyD. JohnstonI. KaneL. KayS. KeatleyJ-P. KwiatkowskiD. LangfordC.F. LawniczakM. LetchfordL. LivettR. LoS. MartincorenaI. McGuiganS. NelsonR. PalmerS. ParkN.R. PatelM. PrestwoodL. PuetheC. QuailM.A. RajatilekaS. ScottC. ShirleyL. SillitoeJ. Spencer ChapmanM.H. ThurstonS.A.J. Tonkin-HillG. WeldonD. RajanD. BronnerI.F. AigrainL. RedshawN.M. LensingS.V. DaviesR. WhitwhamA. LiddleJ. LewisK. Tovar-CoronaJ.M. LeonardS. DurhamJ. BassettA.R. McCarthyS. MollR.J. JamesK. OliverK. MakuninA. BarrettJ. GunsonR.N. COVID-19 Genomics UK (COG-UK) Consortium Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study.Lancet Public Health202165e335e34510.1016/S2468‑2667(21)00055‑433857453
    [Google Scholar]
  119. ShiehzadeganS. AlaghemandN. FoxM. VenketaramanV. Analysis of the delta variant b.1.617.2 COVID-19.Clin. Pract.202111477878410.3390/clinpract1104009334698149
    [Google Scholar]
  120. LiuZ. VanBlarganL.A. BloyetL.M. RothlaufP.W. ChenR.E. StumpfS. ZhaoH. ErricoJ.M. TheelE.S. LiebeskindM.J. AlfordB. BuchserW.J. EllebedyA.H. FremontD.H. DiamondM.S. WhelanS.P.J. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization.Cell Host Microbe2021293477488.e410.1016/j.chom.2021.01.01433535027
    [Google Scholar]
  121. TchesnokovaV. KulasekaraH. LarsonL. BowersV. RechkinaE. KisielaD. SlednevaY. ChoudhuryD. MaslovaI. DengK. KutumbakaK. GengH. FowlerC. GreeneD. RalstonJ. SamadpourM. SokurenkoE. Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants.J. Clin. Microbiol.20215911e00921-2110.1128/JCM.00921‑2134379531
    [Google Scholar]
  122. McCallumM. BassiJ. De MarcoA. ChenA. WallsA.C. Di IulioJ. TortoriciM.A. NavarroM.J. Silacci-FregniC. SalibaC. SprouseK.R. AgostiniM. PintoD. CulapK. BianchiS. JaconiS. CameroniE. BowenJ.E. TillesS.W. PizzutoM.S. GuastallaS.B. BonaG. PellandaA.F. GarzoniC. Van VoorhisW.C. RosenL.E. SnellG. TelentiA. VirginH.W. PiccoliL. CortiD. VeeslerD. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern.Science2021373655564865410.1126/science.abi799434210893
    [Google Scholar]
  123. DavisC. LoganN. TysonG. OrtonR. HarveyW.T. PerkinsJ.S. MollettG. BlacowR.M. PeacockT.P. BarclayW.S. CherepanovP. PalmariniM. MurciaP.R. PatelA.H. RobertsonD.L. HaughneyJ. ThomsonE.C. WillettB.J. COVID-19 Genomics UK (COG-UK) Consortium COVID-19 DeplOyed VaccinE (DOVE) Cohort Study investigators Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination.PLoS Pathog.20211712e101002210.1371/journal.ppat.101002234855916
    [Google Scholar]
  124. RehmanA. Unveiling the multi-target compounds of Rhazya stricta: Discovery and inhibition of novel target genes for the treatment of clear cell renal cell carcinoma.Comput Biol Med202316510742410.1016/j.compbiomed.2023.107424
    [Google Scholar]
  125. CovidW. Weekly epidemiological update on COVID-19 - 21 December 2021.2021Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---21-december-2021
  126. RehmanA. NoorF. FatimaI. QasimM. LiaoM. Identification of molecular mechanisms underlying the therapeutic effects of Celosia Cristata on immunoglobulin nephropathy.Comput. Biol. Med.2022151Pt A10629010.1016/j.compbiomed.2022.10629036379189
    [Google Scholar]
  127. WinkP.L. VolpatoF.C.Z. MonteiroF.L. WilligJ.B. ZavasckiA.P. BarthA.L. MartinsA.F. First identification of SARS-CoV-2 lambda (C.37) variant in Southern Brazil.Infect. Control Hosp. Epidemiol.202243121996199710.1017/ice.2021.39034470685
    [Google Scholar]
  128. RomeroP.E. C. 37: Novel lineage expanding in Peru and Chile, with a convergent deletion in the ORF1a gene (Δ3675-3677) and a novel deletion in the Spike gene (Δ246-252, G75V, T76I, L452Q, F490S, T859N).2021Available from: https://virological. org/t/novel-sublineage-within-b-1-1-1-currently-expanding-in-peru-and-chile-with-a-convergent-deletion-in-the-orf1a-gene-3675-3677-and-a-novel-deletion-in-the-spike-gene-246-252-g75v-t76i-l452q-f490s-t859n/685
  129. IslamM.M. SreeharshaN. AlshabrmiF.M. AsifA.H. AldhubiabB. AnwerM.K. KrishnasamyR. RehmanA. From seeds to survival rates: Investigating Linum usitatissimum’s potential against ovarian cancer through network pharmacology.Front. Pharmacol.202314128525810.3389/fphar.2023.128525837964873
    [Google Scholar]
  130. PereiraF. TostaS. LimaM.M. Reboredo de Oliveira da SilvaL. NardyV.B. GómezM.K.A. LimaJ.G. FonsecaV. de OliveiraT. LourençoJ. AlcantaraL.C.Jr GiovanettiM. LealA. Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report.J. Med. Virol.20219395523552610.1002/jmv.2708633990970
    [Google Scholar]
  131. OzerE.A. High prevalence of SARS-CoV-2 B. 1.1. 7 (UK variant) and the novel B. 1.5. 2.5 lineage in Oyo State, Nigeria.Medrxiv2021
    [Google Scholar]
  132. FerrazM.V.F. MoreiraE.G. CoêlhoD.F. WallauG.L. LinsR.D. Immune evasion of SARS-CoV-2 variants of concern is driven by low affinity to neutralizing antibodies.Chem. Commun.202157496094609710.1039/D1CC01747K34037640
    [Google Scholar]
  133. VaidyanathanG. Coronavirus variants are spreading in India — what scientists know so far.Nature2021593785932132210.1038/d41586‑021‑01274‑733976409
    [Google Scholar]
  134. ShinD. MukherjeeR. GreweD. BojkovaD. BaekK. BhattacharyaA. SchulzL. WideraM. MehdipourA.R. TascherG. GeurinkP.P. WilhelmA. van der Heden van NoortG.J. OvaaH. MüllerS. KnobelochK.P. RajalingamK. SchulmanB.A. CinatlJ. HummerG. CiesekS. DikicI. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity.Nature2020587783565766210.1038/s41586‑020‑2601‑532726803
    [Google Scholar]
  135. DeDiegoM.L. ÁlvarezE. AlmazánF. RejasM.T. LamirandeE. RobertsA. ShiehW.J. ZakiS.R. SubbaraoK. EnjuanesL. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo.J. Virol.20078141701171310.1128/JVI.01467‑0617108030
    [Google Scholar]
  136. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  137. NeumanB.W. KissG. KundingA.H. BhellaD. BakshM.F. ConnellyS. DroeseB. KlausJ.P. MakinoS. SawickiS.G. SiddellS.G. StamouD.G. WilsonI.A. KuhnP. BuchmeierM.J. A structural analysis of M protein in coronavirus assembly and morphology.J. Struct. Biol.20111741112210.1016/j.jsb.2010.11.02121130884
    [Google Scholar]
  138. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑633116300
    [Google Scholar]
  139. CongY. UlasliM. SchepersH. MautheM. V’kovskiP. KriegenburgF. ThielV. de HaanC.A.M. ReggioriF. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle.J. Virol.2020944e01925-1910.1128/JVI.01925‑1931776274
    [Google Scholar]
  140. ZhuY. YuD. YanH. ChongH. HeY. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity.J. Virol.20209414e00635-2010.1128/JVI.00635‑2032376627
    [Google Scholar]
  141. XiaS. ZhuY. LiuM. LanQ. XuW. WuY. YingT. LiuS. ShiZ. JiangS. LuL. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.Cell. Mol. Immunol.202017776576710.1038/s41423‑020‑0374‑232047258
    [Google Scholar]
  142. TangT. BidonM. JaimesJ.A. WhittakerG.R. DanielS. Coronavirus membrane fusion mechanism offers a potential target for antiviral development.Antiviral Res.202017810479210.1016/j.antiviral.2020.10479232272173
    [Google Scholar]
  143. WrappD. WangN. CorbettK.S. GoldsmithJ.A. HsiehC.L. AbionaO. GrahamB.S. McLellanJ.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.Science202036764831260126310.1126/science.abb250732075877
    [Google Scholar]
  144. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  145. HoffmannM. Hofmann-WinklerH. PöhlmannS. Priming time: How cellular proteases arm coronavirus spike proteins. Activation of viruses by host proteases.20187198
    [Google Scholar]
  146. HeurichA. Hofmann-WinklerH. GiererS. LiepoldT. JahnO. PöhlmannS. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.J. Virol.20148821293130710.1128/JVI.02202‑1324227843
    [Google Scholar]
  147. FehrA.R. PerlmanS. Coronaviruses: An overview of their replication and pathogenesis.Methods Mol Biol.20151282123
    [Google Scholar]
  148. LiQ. WangZ. ZhengQ. LiuS. Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2.Comput. Struct. Biotechnol. J.2020182200220810.1016/j.csbj.2020.08.01632868983
    [Google Scholar]
  149. RabaanA.A. Al-AhmedS.H. HaqueS. SahR. TiwariR. MalikY.S. DhamaK. YatooM.I. Bonilla-AldanaD.K. Rodriguez-MoralesA.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview.Infez. Med.202028217418432275259
    [Google Scholar]
  150. HoffmannM. Kleine-WeberH. PöhlmannS. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells.Mol. Cell2020784779784.e510.1016/j.molcel.2020.04.02232362314
    [Google Scholar]
  151. AiY. YuL. TanX. ChaiX. LiuS. Discovery of covalent ligands via noncovalent docking by dissecting covalent docking based on a “steric-clashes alleviating receptor (SCAR)” strategy.J. Chem. Inf. Model.20165681563157510.1021/acs.jcim.6b0033427411028
    [Google Scholar]
  152. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  153. KjellinM. Study of resistance in hepatitis C virus prior to treatment with direct acting antivirals.J Univ Uppsala2020
    [Google Scholar]
  154. KumarV. DhanjalJ.K. BhargavaP. KaulA. WangJ. ZhangH. KaulS.C. WadhwaR. SundarD. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells.J. Biomol. Struct. Dyn.202240111310.1080/07391102.2020.177570432469279
    [Google Scholar]
  155. OsipiukJ. AziziS.A. DvorkinS. EndresM. JedrzejczakR. JonesK.A. KangS. KathayatR.S. KimY. LisnyakV.G. MakiS.L. NicolaescuV. TaylorC.A. TesarC. ZhangY.A. ZhouZ. RandallG. MichalskaK. SnyderS.A. DickinsonB.C. JoachimiakA. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors.Nat. Commun.202112174310.1038/s41467‑021‑21060‑333531496
    [Google Scholar]
  156. OzsahinD.U. GelisenM.I. TaiwoM. AgachanY. RahiD. UzunB. Decision analysis of the COVID-19 vaccines.EuroBiotech J20215s1202510.2478/ebtj‑2021‑0017
    [Google Scholar]
  157. LeiJ. KusovY. HilgenfeldR. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein.Antiviral Res.2018149587410.1016/j.antiviral.2017.11.00129128390
    [Google Scholar]
  158. GuzenkoD. BurleyS.K. DuarteJ.M. Real time structural search of the Protein Data Bank.PLOS Comput. Biol.2020167e100797010.1371/journal.pcbi.100797032639954
    [Google Scholar]
  159. LeeH. RenJ. PesaventoR.P. OjedaI. RiceA.J. LvH. KwonY. JohnsonM.E. Identification and design of novel small molecule inhibitors against MERS-CoV papain-like protease via high-throughput screening and molecular modeling.Bioorg. Med. Chem.201927101981198910.1016/j.bmc.2019.03.05030940566
    [Google Scholar]
  160. Weglarz-TomczakE. TomczakJ.M. TalmaM. Burda-GrabowskaM. GiurgM. BrulS. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2.Sci. Rep.2021111364010.1038/s41598‑021‑83229‑633574416
    [Google Scholar]
  161. HatcherH. PlanalpR. ChoJ. TortiF.M. TortiS.V. Curcumin: From ancient medicine to current clinical trials.Cell. Mol. Life Sci.200865111631165210.1007/s00018‑008‑7452‑418324353
    [Google Scholar]
  162. DelreP. CaporuscioF. SavianoM. MangiatordiG.F. Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease.Front Chem.2020859400910.3389/fchem.2020.59400933304884
    [Google Scholar]
  163. GradišarH. KeberM.M. PristovšekP. JeralaR. MD-2 as the target of curcumin in the inhibition of response to LPS.J. Leukoc. Biol.200782496897410.1189/jlb.120672717609337
    [Google Scholar]
  164. HahnY.I. KimS.J. ChoiB.Y. ChoK.C. BanduR. KimK.P. KimD.H. KimW. ParkJ.S. HanB.W. LeeJ. NaH.K. ChaY.N. SurhY.J. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells.Sci. Rep.201881640910.1038/s41598‑018‑23840‑229686295
    [Google Scholar]
  165. DeeksE.D. KeatingG.M. Afatinib in advanced NSCLC: A profile of its use.Drugs Ther. Perspect.2018343899810.1007/s40267‑018‑0482‑629540977
    [Google Scholar]
  166. MirzaM.U. AhmadS. AbdullahI. FroeyenM. Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease.Comput. Biol. Chem.20208910737610.1016/j.compbiolchem.2020.10737632979815
    [Google Scholar]
  167. SivakumarD. SteinM. Binding of SARS-CoV-2 covalent non-covalent inhibitors to the SARS-CoV-2 papain-like protease and ovarian tumor domain deubiquitinases.Biomolecules202111680210.3390/biom1106080234071582
    [Google Scholar]
  168. YanW. ZhengY. ZengX. HeB. ChengW. Structural biology of SARS-CoV-2: Open the door for novel therapies.Signal Transduct. Target. Ther.2022712610.1038/s41392‑022‑00884‑535087058
    [Google Scholar]
  169. BanerjeeR. PereraL. TillekeratneL.M.V. Potential SARS-CoV-2 main protease inhibitors.Drug Discov. Today202126380481610.1016/j.drudis.2020.12.00533309533
    [Google Scholar]
  170. UllrichS. NitscheC. The SARS-CoV-2 main protease as drug target.Bioorg. Med. Chem. Lett.2020301712737710.1016/j.bmcl.2020.12737732738988
    [Google Scholar]
  171. DaiW. ZhangB. JiangX.M. SuH. LiJ. ZhaoY. XieX. JinZ. PengJ. LiuF. LiC. LiY. BaiF. WangH. ChengX. CenX. HuS. YangX. WangJ. LiuX. XiaoG. JiangH. RaoZ. ZhangL.K. XuY. YangH. LiuH. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease.Science202036864971331133510.1126/science.abb448932321856
    [Google Scholar]
  172. ZhangL. LinD. SunX. CurthU. DrostenC. SauerheringL. BeckerS. RoxK. HilgenfeldR. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb340532198291
    [Google Scholar]
  173. GhoshA.K. BrindisiM. ShahabiD. ChapmanM.E. MesecarA.D. Drug development and medicinal chemistry efforts toward SARS-CoV-2 and COVID-19 therapeutics.ChemMedChem2020151190793210.1002/cmdc.20200022332324951
    [Google Scholar]
  174. ZhangY. KutateladzeT.G. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2.Nat. Commun.2020111292010.1038/s41467‑020‑16779‑432523109
    [Google Scholar]
  175. ZhengB. SulemanM. ZafarZ. AliS.S. NasirS.N. Namra HussainZ. WaseemM. KhanA. HassanF. WangY. WeiD. Towards an ensemble vaccine against the pegivirus using computational modelling approaches and its validation through in silico cloning and immune simulation.Vaccines20219881810.3390/vaccines908081834451943
    [Google Scholar]
  176. KhanA. AliS.S. KhanM.T. SaleemS. AliA. SulemanM. BabarZ. ShafiqA. KhanM. WeiD.Q. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro).J. Biomol. Struct. Dyn.202139134659467010.1080/07391102.2020.177912832552361
    [Google Scholar]
  177. KhanA. HengW. WangY. QiuJ. WeiX. PengS. SaleemS. KhanM. AliS.S. WeiD.Q. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease ( 3CLpro ).Phytother. Res.20213562841284510.1002/ptr.699833448101
    [Google Scholar]
  178. GlaabE. ManoharanG.B. AbankwaD. Pharmacophore model for SARS-CoV-2 3CLpro small-molecule inhibitors and in vitro experimental validation of computationally screened inhibitors.J. Chem. Inf. Model.20216184082409610.1021/acs.jcim.1c0025834348021
    [Google Scholar]
  179. ShawanM.M.A.K. HalderS.K. HasanM.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak.Bull. Natl. Res. Cent.20214512710.1186/s42269‑020‑00479‑633495684
    [Google Scholar]
  180. CherrakS.A. MerzoukH. Mokhtari-SoulimaneN. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies.PLoS One20201510e024065310.1371/journal.pone.024065333057452
    [Google Scholar]
  181. HassabM.A.E. FaresM. AminM.K.A-H. Al-RashoodS.T. AlharbiA. EskandraniR.O. AlkahtaniH.M. EldehnaW.M. Toward the identification of potential α-ketoamide covalent inhibitors for SARS-CoV-2 main protease: Fragment-based drug design and MM-PBSA calculations.Processes202196100410.3390/pr9061004
    [Google Scholar]
  182. FuL. YeF. FengY. YuF. WangQ. WuY. ZhaoC. SunH. HuangB. NiuP. SongH. ShiY. LiX. TanW. QiJ. GaoG.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.Nat. Commun.2020111441710.1038/s41467‑020‑18233‑x32887884
    [Google Scholar]
  183. KirchdoerferR.N. WardA.B. Structure of the SARS- CoV-2 nsp12 polymerase bound to nsp7 and nsp8 co-factors.Nat. Commun.2019101234210.1038/s41467‑019‑10280‑331138817
    [Google Scholar]
  184. GaoY. YanL. HuangY. LiuF. ZhaoY. CaoL. WangT. SunQ. MingZ. ZhangL. GeJ. ZhengL. ZhangY. WangH. ZhuY. ZhuC. HuT. HuaT. ZhangB. YangX. LiJ. YangH. LiuZ. XuW. GuddatL.W. WangQ. LouZ. RaoZ. Structure of the RNA-dependent RNA polymerase from COVID-19 virus.Science2020368649277978210.1126/science.abb749832277040
    [Google Scholar]
  185. ShannonA. LeN.T.T. SeliskoB. EydouxC. AlvarezK. GuillemotJ.C. DecrolyE. PeersenO. FerronF. CanardB. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites.Antiviral Res.202017810479310.1016/j.antiviral.2020.10479332283108
    [Google Scholar]
  186. RibaudoG. OngaroA. OselladoreE. ZagottoG. MemoM. GianoncelliA. A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp).J. Biomol. Struct. Dyn.20224031101110810.1080/07391102.2020.182220932948103
    [Google Scholar]
  187. PrasadK. KumarV. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2.Curr. Res. Pharmacol. Drug. Discov.2021210004210.1016/j.crphar.2021.10004234870150
    [Google Scholar]
  188. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. An updated review of computer-aided drug design and its application to COVID-19.BioMed Res. Int.2021202111810.1155/2021/885305634258282
    [Google Scholar]
  189. AnusuyaS. VelmuruganD. GromihaM.M. Identification of dengue viral RNA-dependent RNA polymerase inhibitor using computational fragment-based approaches and molecular dynamics study.J. Biomol. Struct. Dyn.20163471512153210.1080/07391102.2015.108162026262439
    [Google Scholar]
  190. KnetemanN.M. HoweA.Y.M. GaoT. LewisJ. PevearD. LundG. DouglasD. MercerD.F. TyrrellD.L.J. ImmermannF. ChaudharyI. SpethJ. VillanoS.A. O’ConnellJ. CollettM. HCV796: A selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus.Hepatology200949374575210.1002/hep.2271719072827
    [Google Scholar]
  191. FengF. WuJ. ChiQ. WangS. LiuW. YangL. SongG. PanL. XuK. WangC. Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells.Adv. Sci.20241138240597510.1002/advs.20240597539099416
    [Google Scholar]
  192. TanT. FengY. WangW. WangR. YinL. ZengY. ZengZ. XieT. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer.Cancer Nanotechnol.20231417010.1186/s12645‑023‑00194‑7
    [Google Scholar]
  193. ZhuJ. JiangX. LuoX. ZhaoR. LiJ. CaiH. YeX.Y. BaiR. XieT. Combination of chemotherapy and gaseous signaling molecular therapy: Novel β-elemene nitric oxide donor derivatives against leukemia.Drug Dev. Res.202384471873510.1002/ddr.2205136988106
    [Google Scholar]
  194. TangL. ZhangW. ChenL. Brain radiotherapy combined with targeted therapy for her2-positive breast cancer patients with brain metastases.Breast Cancer: Targets Ther202437939210.2147/BCTT.S460856
    [Google Scholar]
  195. YangW. WangX. GeZ. YuH. Magnetically controlled millipede inspired soft robot for releasing drugs on target area in stomach.IEEE Robot. Autom. Lett.2024943846385310.1109/LRA.2024.3372467
    [Google Scholar]
  196. ZhouH. Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model.Cyborg Bionic Syst20234001010.34133/cbsystems.0010
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323348241208080419
Loading
/content/journals/cmc/10.2174/0109298673323348241208080419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test