Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

We aimed to develop Ferroptosis-Related Gene (FRG) signatures to predict overall survival (OS) along with disease-free survival (DFS) in individuals with colorectal cancer (CRC).

Background

Prediction of CRC prognosis is challenging. Ferroptosis constitutes a newly reported kind of cell death, and its association with CRC prognosis remains unexplored.

Objective

This research endeavored to establish a prognostic risk signature for colorectal cancer by leveraging ferroptosis-related genes (FRGs), with the objective of refining prognostic precision in clinical settings.

Methods

The clinical data and mRNA expression profiles were obtained from The Cancer Genome Atlas (TCGA) colorectal cancer cohorts. The Lasso algorithm was employed to develop the overall survival (OS) and disease-free survival (DFS) prediction models. These models were subsequently validated using independent data from GSE38832.

Results

Our research unveiled a significant difference in the expression levels of 85% of ferroptosis-related genes (FRGs) between CRC tissues and paracancer tissues. Out of these, 11 prognostic genes were pinpointed through univariate Cox analysis. By employing two models, patients were stratified into low- and high-risk groups based on predicted risk scores, which were subsequently validated as independent prognostic factors multivariate Cox analysis. The robustness of these models was further confirmed through Receiver Operating Characteristic (ROC) curve analysis. Functional enrichment analysis indicated a predominance of cancer-associated pathways in the high-risk group, including WNT signaling, along with variations in immune status between the two risk categories. Leveraging the Connectivity Map (CMap) database, a total of sixteen potential therapeutic drugs were identified. Additionally, experiments corroborated that Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1) was underexpressed in CRC and exhibited tumor suppressive properties. More specifically, FDFT1 may augment ferroptosis in CRC by modulating the expression of the Iron-Sulfur Cluster Assembly Enzyme (ISCU).

Conclusion

Our study highlighted the significance of ferroptosis-related genes in the pathogenesis of CRC and underscored the potential of ferroptosis-related gene-based risk signatures as valuable tools for improving prognostic accuracy and tailoring therapeutic strategies. However, the validity of these predictive models required further validation through real-world studies to ensure their reliability and applicability.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673377428250131112647
2025-02-13
2026-02-20
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  3. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  4. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data.Supp. Care Canc.2023311262410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  5. BrandiG. RicciA.D. RizzoA. ZanfiC. TavolariS. PalloniA. De LorenzoS. RavaioliM. CesconM. Is post-transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases?Cancer Commun. (Lond.)202040946146410.1002/cac2.1207232762027
    [Google Scholar]
  6. KeumN. GiovannucciE. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑831455888
    [Google Scholar]
  7. SahinT.K. AyasunR. RizzoA. GuvenD.C. Prognostic Value of neutrophil-to-eosinophil ratio (NER) in cancer: a systematic review and meta-analysis.Cancers (Basel)20241621368910.3390/cancers1621368939518127
    [Google Scholar]
  8. ZhaoL. ZhouX. XieF. ZhangL. YanH. HuangJ. ZhangC. ZhouF. ChenJ. ZhangL. Ferroptosis in cancer and cancer immunotherapy.Cancer Commun. (Lond.)20224228811610.1002/cac2.1225035133083
    [Google Scholar]
  9. WangY. WuX. RenZ. LiY. ZouW. ChenJ. WangH. Overcoming cancer chemotherapy resistance by the induction of ferroptosis.Drug Resist. Updat.20236610091610.1016/j.drup.2022.10091636610291
    [Google Scholar]
  10. RodriguezR. SchreiberS.L. ConradM. Persister cancer cells: Iron addiction and vulnerability to ferroptosis.Mol. Cell202282472874010.1016/j.molcel.2021.12.00134965379
    [Google Scholar]
  11. YanH. TaltyR. JohnsonC.H. Targeting ferroptosis to treat colorectal cancer.Trends Cell Biol.202333318518810.1016/j.tcb.2022.11.00336473802
    [Google Scholar]
  12. LeiS. ChenC. HanF. DengJ. HuangD. QianL. ZhuM. MaX. LaiM. XuE. ZhangH. AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis.Cell Rep.202342911311010.1016/j.celrep.2023.11311037682704
    [Google Scholar]
  13. ChenC. YangY. GuoY. HeJ. ChenZ. QiuS. ZhangY. DingH. PanJ. PanY. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer.Cell Death Dis.202314427110.1038/s41419‑023‑05803‑237059712
    [Google Scholar]
  14. YangJ. MoJ. DaiJ. YeC. CenW. ZhengX. JiangL. YeL. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer.Cell Death Dis.20211211107910.1038/s41419‑021‑04367‑334775496
    [Google Scholar]
  15. WangJ. ChenJ. WanL. ShaoJ. LuY. ZhuY. OuM. YuS. ChenH. JiaL. Synthesis, spectral characterization, and in vitro cellular activities of metapristone, a potential cancer metastatic chemopreventive agent derived from mifepristone (RU486).AAPS J.201416228929810.1208/s12248‑013‑9559‑224442753
    [Google Scholar]
  16. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
  17. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  18. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  19. SimonN. FriedmanJ. HastieT. TibshiraniR. Regularization paths for cox’s proportional hazards model via coordinate descent.J. Stat. Softw.201139511310.18637/jss.v039.i0527065756
    [Google Scholar]
  20. ChuM. HuangJ. WangQ. FangY. CuiD. JinY. A circadian rhythm-related signature to predict prognosis, immunei infiltration, and drug response in breast cancer.Curr. Med. Chem.202432360862610.2174/010929867332017924080307100139279697
    [Google Scholar]
  21. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac96336300620
    [Google Scholar]
  22. LiangW. ZhangL. JiangG. WangQ. LiuL. LiuD. WangZ. ZhuZ. DengQ. XiongX. ShaoW. ShiX. HeJ. Development and validation of a nomogram for predicting survival in patients with resected non-small- cell lung cancer.J. Clin. Oncol.201533886186910.1200/JCO.2014.56.666125624438
    [Google Scholar]
  23. LambJ. CrawfordE.D. PeckD. ModellJ.W. BlatI.C. WrobelM.J. LernerJ. BrunetJ.P. SubramanianA. RossK.N. ReichM. HieronymusH. WeiG. ArmstrongS.A. HaggartyS.J. ClemonsP.A. WeiR. CarrS.A. LanderE.S. GolubT.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.Science200631357951929193510.1126/science.113293917008526
    [Google Scholar]
  24. WangW. GreenM. ChoiJ.E. GijónM. KennedyP.D. JohnsonJ.K. LiaoP. LangX. KryczekI. SellA. XiaH. ZhouJ. LiG. LiJ. LiW. WeiS. VatanL. ZhangH. SzeligaW. GuW. LiuR. LawrenceT.S. LambC. TannoY. CieslikM. StoneE. GeorgiouG. ChanT.A. ChinnaiyanA. ZouW. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019569775527027410.1038/s41586‑019‑1170‑y31043744
    [Google Scholar]
  25. DuanL. YangW. WangX. ZhouW. ZhangY. LiuJ. ZhangH. ZhaoQ. HongL. FanD. Advances in prognostic markers for colorectal cancer.Expert Rev. Mol. Diagn.201919431332410.1080/14737159.2019.159267930907673
    [Google Scholar]
  26. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  27. HassanniaB. VandenabeeleP. Vanden BergheT. Targeting ferroptosis to iron out cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.00231105042
    [Google Scholar]
  28. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  29. ZhengZ. LiY. JinG. HuangT. ZouM. DuanS. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases.Biomed. Pharmacoth.202012911035410.1016/j.biopha.2020.11035432540644
    [Google Scholar]
  30. RuanG.T. GongY.Z. ZhuL.C. GaoF. LiaoX.W. WangX.K. ZhuG.Z. LiaoC. WangS. YanL. XieH.L. ZhouX. LiuJ.Q. ShaoM.N. GanJ.L. The perspective of diagnostic and prognostic values of lipoxygenases mRNA expression in colon adenocarcinoma.OncoTargets Ther.2020139389940510.2147/OTT.S25196533061426
    [Google Scholar]
  31. ZengC.M. ChangL.L. YingM.D. CaoJ. HeQ.J. ZhuH. YangB. Aldo–Keto reductase AKR1C1– AKR1C4: functions, regulation, and intervention for anti-cancer therapy.Front. Pharmacol.2017811910.3389/fphar.2017.0011928352233
    [Google Scholar]
  32. GagliardiM. CotellaD. SantoroC. CoràD. BarlevN.A. PiacentiniM. CorazzariM. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis.Cell Death Dis.2019101290210.1038/s41419‑019‑2143‑731780644
    [Google Scholar]
  33. MatsunagaT. HojoA. YamaneY. EndoS. El-KabbaniO. HaraA. Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.Chem. Biol. Interact.20132021-323424210.1016/j.cbi.2012.09.02423165153
    [Google Scholar]
  34. WengM. ChenW. ChenX. LuH. SunZ. YuQ. SunP. XuY. ZhuM. JiangN. ZhangJ. ZhangJ. SongY. MaD. ZhangX. MiaoC. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression.Nat. Commun.2020111186910.1038/s41467‑020‑15795‑832313017
    [Google Scholar]
  35. HuangR. ZhangC. WangX. ZouX. XiangZ. WangZ. GuiB. LinT. HuH. Identification of FDFT1 as a potential biomarker associated with ferroptosis in ccRCC.Cancer Med.202211213993400410.1002/cam4.471635322581
    [Google Scholar]
  36. YeL. ZhangT. KangZ. GuoG. SunY. LinK. HuangQ. ShiX. NiZ. DingN. ZhaoK.N. ChangW. WangJ. LinF. XueX. Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer.Front. Immunol.201910236810.3389/fimmu.2019.0236831681276
    [Google Scholar]
  37. ZhangJ. LiuJ. WuJ. LiW. ChenZ. YangL. Progression of the role of CRYAB in signaling pathways and cancers.OncoTargets Ther.2019124129413910.2147/OTT.S20179931239701
    [Google Scholar]
  38. ShiC. HeZ. HouN. NiY. XiongL. ChenP. Alpha B-crystallin correlates with poor survival in colorectal cancer.Int. J. Clin. Exp. Pathol.2014796056606325337251
    [Google Scholar]
  39. ShiC. YangX. BuX. HouN. ChenP. Alpha B-crystallin promotes the invasion and metastasis of colorectal cancer via epithelial-mesenchymal transition.Biochem. Biophys. Res. Commun.2017489436937410.1016/j.bbrc.2017.05.07028506831
    [Google Scholar]
  40. SunL. WanA. ZhouZ. ChenD. LiangH. LiuC. YanS. NiuY. LinZ. ZhanS. WangS. BuX. HeW. LuX. XuA. WanG. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer.Gut20217091698171210.1136/gutjnl‑2020‑32065233219048
    [Google Scholar]
  41. GaoM. MonianP. PanQ. ZhangW. XiangJ. JiangX. Ferroptosis is an autophagic cell death process.Cell Res.20162691021103210.1038/cr.2016.9527514700
    [Google Scholar]
  42. SebastiánV.P. SalazarG.A. Coronado-ArrázolaI. SchultzB.M. VallejosO.P. BerkowitzL. Álvarez-LobosM.M. RiedelC.A. KalergisA.M. BuenoS.M. Heme oxygenase-1 as a modulator of intestinal inflammation development and progression.Front. Immunol.20189195610.3389/fimmu.2018.0195630258436
    [Google Scholar]
  43. AndrésN.C. FermentoM.E. GandiniN.A. RomeroA.L. FerroA. DonnaL.G. CurinoA.C. FacchinettiM.M. Heme oxygenase-1 has antitumoral effects in colorectal cancer: Involvement of p53.Exp. Mol. Pathol.201497332133110.1016/j.yexmp.2014.09.01225236576
    [Google Scholar]
  44. ZhangM. MiaoF. HuangR. LiuW. ZhaoY. JiaoT. LuY. WuF. WangX. WangH. ZhaoH. JuH. MiaoS. WangL. SongW. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1.J. Exp. Clin. Cancer Res.20183712210.1186/s13046‑018‑0687‑529426364
    [Google Scholar]
  45. de BarriosO. Sanchez-MoralL. CortésM. NinfaliC. Profitós-PelejàN. Martínez-CampanarioM.C. SilesL. del CampoR. Fernández-AceñeroM.J. DarlingD.S. CastellsA. MaurelJ. SalasA. DeanD.C. PostigoA. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells.Gut201968122129214110.1136/gutjnl‑2018‑31729431366457
    [Google Scholar]
  46. LuX.Y. ShiX.J. HuA. WangJ.Q. DingY. JiangW. SunM. ZhaoX. LuoJ. QiW. SongB.L. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis.Nature2020588783847948410.1038/s41586‑020‑2928‑y33177714
    [Google Scholar]
  47. SharmaB. GuptaV. DahiyaD. KumarH. VaipheiK. AgnihotriN. Clinical relevance of cholesterol homeostasis genes in colorectal cancer.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864101314132710.1016/j.bbalip.2019.06.00831202724
    [Google Scholar]
  48. ZhangL. LiuW. LiuF. WangQ. SongM. YuQ. TangK. TengT. WuD. WangX. HanW. LiY. Corrigendum to “IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/MTOR pathway in colorectal cancer”.Oxid. Med. Cell. Longev.202020201210.1155/2020/690147232322334
    [Google Scholar]
  49. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017168696097610.1016/j.cell.2017.02.00428283069
    [Google Scholar]
  50. KangR. KroemerG. TangD. The tumor suppressor protein p53 and the ferroptosis network.Free Radic. Biol. Med.201913316216810.1016/j.freeradbiomed.2018.05.07429800655
    [Google Scholar]
  51. CalaisG. HirstD.G. In situ tumour radio sensitization induced by clofibrate administration: single dose and fractionated studies.Radiother. Oncol.19912229910310.1016/0167‑8140(91)90004‑Z1957008
    [Google Scholar]
  52. LeiG. ZhangY. KoppulaP. LiuX. ZhangJ. LinS.H. AjaniJ.A. XiaoQ. LiaoZ. WangH. GanB. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression.Cell Res.202030214616210.1038/s41422‑019‑0263‑331949285
    [Google Scholar]
  53. GelfoV. PontisF. MazzeschiM. SgarziM. MazzariniM. SolmiR. D’UvaG. LauriolaM. Glucocorticoid receptor modulates EGFR feedback upon acquisition of resistance to monoclonal antibodies.J. Clin. Med.20198560010.3390/jcm805060031052457
    [Google Scholar]
  54. Khambata-FordS. GarrettC.R. MeropolN.J. BasikM. HarbisonC.T. WuS. WongT.W. HuangX. TakimotoC.H. GodwinA.K. TanB.R. KrishnamurthiS.S. BurrisH.A.III PoplinE.A. HidalgoM. BaselgaJ. ClarkE.A. MauroD.J. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab.J. Clin. Oncol.200725223230323710.1200/JCO.2006.10.543717664471
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673377428250131112647
Loading
/content/journals/cmc/10.2174/0109298673377428250131112647
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatics; Colorectal cancer; disease-free survival; FDFT1; ferroptosis; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test