Skip to content
2000
image of Identification of Ferroptosis-Related Prognostic Models and FDFT1 as a Potential Ferroptosis Driver in Colorectal Cancer

Abstract

Aims

We aimed to develop Ferroptosis-Related Gene (FRG) signatures to predict overall survival (OS) along with disease-free survival (DFS) in individuals with colorectal cancer (CRC).

Background

Prediction of CRC prognosis is challenging. Ferroptosis constitutes a newly reported kind of cell death, and its association with CRC prognosis remains unexplored.

Objective

This research endeavored to establish a prognostic risk signature for colorectal cancer by leveraging ferroptosis-related genes (FRGs), with the objective of refining prognostic precision in clinical settings.

Methods

The clinical data and mRNA expression profiles were obtained from The Cancer Genome Atlas (TCGA) colorectal cancer cohorts. The Lasso algorithm was employed to develop the overall survival (OS) and disease-free survival (DFS) prediction models. These models were subsequently validated using independent data from GSE38832.

Results

Our research unveiled a significant difference in the expression levels of 85% of ferroptosis-related genes (FRGs) between CRC tissues and paracancer tissues. Out of these, 11 prognostic genes were pinpointed through univariate Cox analysis. By employing two models, patients were stratified into low- and high-risk groups based on predicted risk scores, which were subsequently validated as independent prognostic factors multivariate Cox analysis. The robustness of these models was further confirmed through Receiver Operating Characteristic (ROC) curve analysis. Functional enrichment analysis indicated a predominance of cancer-associated pathways in the high-risk group, including WNT signaling, along with variations in immune status between the two risk categories. Leveraging the Connectivity Map (CMap) database, a total of sixteen potential therapeutic drugs were identified. Additionally, experiments corroborated that Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1) was underexpressed in CRC and exhibited tumor suppressive properties. More specifically, FDFT1 may augment ferroptosis in CRC by modulating the expression of the Iron-Sulfur Cluster Assembly Enzyme (ISCU).

Conclusion

Our study highlighted the significance of ferroptosis-related genes in the pathogenesis of CRC and underscored the potential of ferroptosis-related gene-based risk signatures as valuable tools for improving prognostic accuracy and tailoring therapeutic strategies. However, the validity of these predictive models required further validation through real-world studies to ensure their reliability and applicability.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673377428250131112647
2025-02-13
2025-04-01
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Guven D.C. Sahin T.K. Erul E. Rizzo A. Ricci A.D. Aksoy S. Yalcin S. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Mol. Biosci. 2022 9 1039121 10.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  3. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  4. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data. Supp. Care Canc. 2023 31 12 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  5. Brandi G. Ricci A.D. Rizzo A. Zanfi C. Tavolari S. Palloni A. De Lorenzo S. Ravaioli M. Cescon M. Is post‐transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun. (Lond.) 2020 40 9 461 464 10.1002/cac2.12072 32762027
    [Google Scholar]
  6. Keum N. Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019 16 12 713 732 10.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  7. Sahin T.K. Ayasun R. Rizzo A. Guven D.C. Prognostic Value of neutrophil-to-eosinophil ratio (NER) in cancer: a systematic review and meta-analysis. Cancers (Basel) 2024 16 21 3689 10.3390/cancers16213689 39518127
    [Google Scholar]
  8. Zhao L. Zhou X. Xie F. Zhang L. Yan H. Huang J. Zhang C. Zhou F. Chen J. Zhang L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond.) 2022 42 2 88 116 10.1002/cac2.12250 35133083
    [Google Scholar]
  9. Wang Y. Wu X. Ren Z. Li Y. Zou W. Chen J. Wang H. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist. Updat. 2023 66 100916 10.1016/j.drup.2022.100916 36610291
    [Google Scholar]
  10. Rodriguez R. Schreiber S.L. Conrad M. Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol. Cell 2022 82 4 728 740 10.1016/j.molcel.2021.12.001 34965379
    [Google Scholar]
  11. Yan H. Talty R. Johnson C.H. Targeting ferroptosis to treat colorectal cancer. Trends Cell Biol. 2023 33 3 185 188 10.1016/j.tcb.2022.11.003 36473802
    [Google Scholar]
  12. Lei S. Chen C. Han F. Deng J. Huang D. Qian L. Zhu M. Ma X. Lai M. Xu E. Zhang H. AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis. Cell Rep. 2023 42 9 113110 10.1016/j.celrep.2023.113110 37682704
    [Google Scholar]
  13. Chen C. Yang Y. Guo Y. He J. Chen Z. Qiu S. Zhang Y. Ding H. Pan J. Pan Y. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis. 2023 14 4 271 10.1038/s41419‑023‑05803‑2 37059712
    [Google Scholar]
  14. Yang J. Mo J. Dai J. Ye C. Cen W. Zheng X. Jiang L. Ye L. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 2021 12 11 1079 10.1038/s41419‑021‑04367‑3 34775496
    [Google Scholar]
  15. Wang J. Chen J. Wan L. Shao J. Lu Y. Zhu Y. Ou M. Yu S. Chen H. Jia L. Synthesis, spectral characterization, and in vitro cellular activities of metapristone, a potential cancer metastatic chemopreventive agent derived from mifepristone (RU486). AAPS J. 2014 16 2 289 298 10.1208/s12248‑013‑9559‑2 24442753
    [Google Scholar]
  16. Stockwell B.R. Friedmann Angeli J.P. Bayir H. Bush A.I. Conrad M. Dixon S.J. Fulda S. Gascón S. Hatzios S.K. Kagan V.E. Noel K. Jiang X. Linkermann A. Murphy M.E. Overholtzer M. Oyagi A. Pagnussat G.C. Park J. Ran Q. Rosenfeld C.S. Salnikow K. Tang D. Torti F.M. Torti S.V. Toyokuni S. Woerpel K.A. Zhang D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017 171 2 273 285 10.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  17. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  18. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  19. Simon N. Friedman J. Hastie T. Tibshirani R. Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 2011 39 5 1 13 10.18637/jss.v039.i05 27065756
    [Google Scholar]
  20. Chu M. Huang J. Wang Q. Fang Y. Cui D. Jin Y. A circadian rhythm-related signature to predict prognosis, immunei infiltration, and drug response in breast cancer. Curr. Med. Chem. 2024 32 3 608 626 10.2174/0109298673320179240803071001 39279697
    [Google Scholar]
  21. Kanehisa M. Furumichi M. Sato Y. Kawashima M. Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023 51 D1 D587 D592 10.1093/nar/gkac963 36300620
    [Google Scholar]
  22. Liang W. Zhang L. Jiang G. Wang Q. Liu L. Liu D. Wang Z. Zhu Z. Deng Q. Xiong X. Shao W. Shi X. He J. Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer. J. Clin. Oncol. 2015 33 8 861 869 10.1200/JCO.2014.56.6661 25624438
    [Google Scholar]
  23. Lamb J. Crawford E.D. Peck D. Modell J.W. Blat I.C. Wrobel M.J. Lerner J. Brunet J.P. Subramanian A. Ross K.N. Reich M. Hieronymus H. Wei G. Armstrong S.A. Haggarty S.J. Clemons P.A. Wei R. Carr S.A. Lander E.S. Golub T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006 313 5795 1929 1935 10.1126/science.1132939 17008526
    [Google Scholar]
  24. Wang W. Green M. Choi J.E. Gijón M. Kennedy P.D. Johnson J.K. Liao P. Lang X. Kryczek I. Sell A. Xia H. Zhou J. Li G. Li J. Li W. Wei S. Vatan L. Zhang H. Szeliga W. Gu W. Liu R. Lawrence T.S. Lamb C. Tanno Y. Cieslik M. Stone E. Georgiou G. Chan T.A. Chinnaiyan A. Zou W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019 569 7755 270 274 10.1038/s41586‑019‑1170‑y 31043744
    [Google Scholar]
  25. Duan L. Yang W. Wang X. Zhou W. Zhang Y. Liu J. Zhang H. Zhao Q. Hong L. Fan D. Advances in prognostic markers for colorectal cancer. Expert Rev. Mol. Diagn. 2019 19 4 313 324 10.1080/14737159.2019.1592679 30907673
    [Google Scholar]
  26. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  27. Hassannia B. Vandenabeele P. Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell 2019 35 6 830 849 10.1016/j.ccell.2019.04.002 31105042
    [Google Scholar]
  28. Lei G. Zhuang L. Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022 22 7 381 396 10.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  29. Zheng Z. Li Y. Jin G. Huang T. Zou M. Duan S. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed. Pharmacoth. 2020 129 110354 10.1016/j.biopha.2020.110354 32540644
    [Google Scholar]
  30. Ruan G.T. Gong Y.Z. Zhu L.C. Gao F. Liao X.W. Wang X.K. Zhu G.Z. Liao C. Wang S. Yan L. Xie H.L. Zhou X. Liu J.Q. Shao M.N. Gan J.L. The perspective of diagnostic and prognostic values of lipoxygenases mRNA expression in colon adenocarcinoma. OncoTargets Ther. 2020 13 9389 9405 10.2147/OTT.S251965 33061426
    [Google Scholar]
  31. Zeng C.M. Chang L.L. Ying M.D. Cao J. He Q.J. Zhu H. Yang B. Aldo–Keto reductase AKR1C1–AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front. Pharmacol. 2017 8 119 10.3389/fphar.2017.00119 28352233
    [Google Scholar]
  32. Gagliardi M. Cotella D. Santoro C. Corà D. Barlev N.A. Piacentini M. Corazzari M. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis. 2019 10 12 902 10.1038/s41419‑019‑2143‑7 31780644
    [Google Scholar]
  33. Matsunaga T. Hojo A. Yamane Y. Endo S. El-Kabbani O. Hara A. Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chem. Biol. Interact. 2013 202 1-3 234 242 10.1016/j.cbi.2012.09.024 23165153
    [Google Scholar]
  34. Weng M. Chen W. Chen X. Lu H. Sun Z. Yu Q. Sun P. Xu Y. Zhu M. Jiang N. Zhang J. Zhang J. Song Y. Ma D. Zhang X. Miao C. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat. Commun. 2020 11 1 1869 10.1038/s41467‑020‑15795‑8 32313017
    [Google Scholar]
  35. Huang R. Zhang C. Wang X. Zou X. Xiang Z. Wang Z. Gui B. Lin T. Hu H. Identification of FDFT1 as a potential biomarker associated with ferroptosis in ccRCC. Cancer Med. 2022 11 21 3993 4004 10.1002/cam4.4716 35322581
    [Google Scholar]
  36. Ye L. Zhang T. Kang Z. Guo G. Sun Y. Lin K. Huang Q. Shi X. Ni Z. Ding N. Zhao K.N. Chang W. Wang J. Lin F. Xue X. Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front. Immunol. 2019 10 2368 10.3389/fimmu.2019.02368 31681276
    [Google Scholar]
  37. Zhang J. Liu J. Wu J. Li W. Chen Z. Yang L. Progression of the role of CRYAB in signaling pathways and cancers. OncoTargets Ther. 2019 12 4129 4139 10.2147/OTT.S201799 31239701
    [Google Scholar]
  38. Shi C. He Z. Hou N. Ni Y. Xiong L. Chen P. Alpha B-crystallin correlates with poor survival in colorectal cancer. Int. J. Clin. Exp. Pathol. 2014 7 9 6056 6063 25337251
    [Google Scholar]
  39. Shi C. Yang X. Bu X. Hou N. Chen P. Alpha B-crystallin promotes the invasion and metastasis of colorectal cancer via epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 2017 489 4 369 374 10.1016/j.bbrc.2017.05.070 28506831
    [Google Scholar]
  40. Sun L. Wan A. Zhou Z. Chen D. Liang H. Liu C. Yan S. Niu Y. Lin Z. Zhan S. Wang S. Bu X. He W. Lu X. Xu A. Wan G. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut 2021 70 9 1698 1712 10.1136/gutjnl‑2020‑320652 33219048
    [Google Scholar]
  41. Gao M. Monian P. Pan Q. Zhang W. Xiang J. Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016 26 9 1021 1032 10.1038/cr.2016.95 27514700
    [Google Scholar]
  42. Sebastián V.P. Salazar G.A. Coronado-Arrázola I. Schultz B.M. Vallejos O.P. Berkowitz L. Álvarez-Lobos M.M. Riedel C.A. Kalergis A.M. Bueno S.M. Heme oxygenase-1 as a modulator of intestinal inflammation development and progression. Front. Immunol. 2018 9 1956 10.3389/fimmu.2018.01956 30258436
    [Google Scholar]
  43. Andrés N.C. Fermento M.E. Gandini N.A. Romero A.L. Ferro A. Donna L.G. Curino A.C. Facchinetti M.M. Heme oxygenase-1 has antitumoral effects in colorectal cancer: Involvement of p53. Exp. Mol. Pathol. 2014 97 3 321 331 10.1016/j.yexmp.2014.09.012 25236576
    [Google Scholar]
  44. Zhang M. Miao F. Huang R. Liu W. Zhao Y. Jiao T. Lu Y. Wu F. Wang X. Wang H. Zhao H. Ju H. Miao S. Wang L. Song W. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1. J. Exp. Clin. Cancer Res. 2018 37 1 22 10.1186/s13046‑018‑0687‑5 29426364
    [Google Scholar]
  45. de Barrios O. Sanchez-Moral L. Cortés M. Ninfali C. Profitós-Pelejà N. Martínez-Campanario M.C. Siles L. del Campo R. Fernández-Aceñero M.J. Darling D.S. Castells A. Maurel J. Salas A. Dean D.C. Postigo A. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 2019 68 12 2129 2141 10.1136/gutjnl‑2018‑317294 31366457
    [Google Scholar]
  46. Lu X.Y. Shi X.J. Hu A. Wang J.Q. Ding Y. Jiang W. Sun M. Zhao X. Luo J. Qi W. Song B.L. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature 2020 588 7838 479 484 10.1038/s41586‑020‑2928‑y 33177714
    [Google Scholar]
  47. Sharma B. Gupta V. Dahiya D. Kumar H. Vaiphei K. Agnihotri N. Clinical relevance of cholesterol homeostasis genes in colorectal cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 10 1314 1327 10.1016/j.bbalip.2019.06.008 31202724
    [Google Scholar]
  48. Zhang L. Liu W. Liu F. Wang Q. Song M. Yu Q. Tang K. Teng T. Wu D. Wang X. Han W. Li Y. Corrigendum to “IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/MTOR pathway in colorectal cancer”. Oxid. Med. Cell. Longev. 2020 2020 1 2 10.1155/2020/6901472 32322334
    [Google Scholar]
  49. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 168 6 960 976 10.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  50. Kang R. Kroemer G. Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 2019 133 162 168 10.1016/j.freeradbiomed.2018.05.074 29800655
    [Google Scholar]
  51. Calais G. Hirst D.G. In situ tumour radio sensitization induced by clofibrate administration: single dose and fractionated studies. Radiother. Oncol. 1991 22 2 99 103 10.1016/0167‑8140(91)90004‑Z 1957008
    [Google Scholar]
  52. Lei G. Zhang Y. Koppula P. Liu X. Zhang J. Lin S.H. Ajani J.A. Xiao Q. Liao Z. Wang H. Gan B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020 30 2 146 162 10.1038/s41422‑019‑0263‑3 31949285
    [Google Scholar]
  53. Gelfo V. Pontis F. Mazzeschi M. Sgarzi M. Mazzarini M. Solmi R. D’Uva G. Lauriola M. Glucocorticoid receptor modulates EGFR feedback upon acquisition of resistance to monoclonal antibodies. J. Clin. Med. 2019 8 5 600 10.3390/jcm8050600 31052457
    [Google Scholar]
  54. Khambata-Ford S. Garrett C.R. Meropol N.J. Basik M. Harbison C.T. Wu S. Wong T.W. Huang X. Takimoto C.H. Godwin A.K. Tan B.R. Krishnamurthi S.S. Burris H.A. III Poplin E.A. Hidalgo M. Baselga J. Clark E.A. Mauro D.J. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 2007 25 22 3230 3237 10.1200/JCO.2006.10.5437 17664471
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673377428250131112647
Loading
/content/journals/cmc/10.2174/0109298673377428250131112647
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: ferroptosis ; prognosis ; bioinformatics ; FDFT1 ; Colorectal cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test