Skip to content
2000
image of Protective Effect of Curcumin on Metabolic Syndrome Components through the Microbiota

Abstract

Curcumin, a natural polyphenolic compound found in turmeric, has garnered increasing research interest due to its potential health benefits, particularly in the context of the rising global prevalence of metabolic syndrome (MetS). With MetS affecting a significant portion of the global population and serving as a precursor to chronic diseases, such as type 2 diabetes and cardiovascular diseases, identifying effective, accessible, and safe interventions has become a critical public health priority. This review explores curcumin’s role in regulating gut microbiota composition, enhancing intestinal barrier function, and reducing inflammation, which can collectively improve key components of MetS, such as hyperglycemia, dyslipidemia, obesity, and hypertension. Supplementation with curcumin has shown promising results in improving metabolic health by promoting the production of short-chain fatty acids (SCFAs), such as butyric and propionic acids. These effects may protect against dyslipidemia and reduce the risk of chronic conditions. Furthermore, curcumin has demonstrated potential in reducing hypertension through various mechanisms, including inflammation reduction, modulation of lipopolysaccharide (LPS) production, activation of G-protein-coupled receptor 43 (GPR43), and increased levels of SCFAs. Given the significant public health implications of MetS, understanding curcumin's impact on gut microbiota presents an opportunity for developing novel therapeutic strategies that address this urgent health challenge. Despite its promise, further research is necessary to fully comprehend the underlying mechanisms involved. Additionally, determining the optimal dosage and duration of curcumin supplementation for achieving its effects on metabolic syndrome is crucial for future therapeutic applications. This review highlights curcumin's potential as a natural compound with multifaceted health benefits, particularly in the context of metabolic syndrome and its associated complications, emphasizing the pressing need for clinical studies to validate findings and inform evidence-based therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673371503250210092741
2025-02-18
2025-04-01
Loading full text...

Full text loading...

References

  1. Hou K. Wu Z.X. Chen X.Y. Wang J.Q. Zhang D. Xiao C. Zhu D. Koya J.B. Wei L. Li J. Chen Z.S. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022 7 1 135 10.1038/s41392‑022‑00974‑4 35461318
    [Google Scholar]
  2. The integrative human microbiome project. Nature 2019 569 7758 641 648 10.1038/s41586‑019‑1238‑8 31142853
    [Google Scholar]
  3. Lu Z. Microbiota research: From history to advances. E3S Web of Conferences. London EDP Sciences 2020 01014 10.1051/e3sconf/202014501014
    [Google Scholar]
  4. Rochlani Y. Pothineni N.V. Kovelamudi S. Mehta J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017 11 8 215 225 10.1177/1753944717711379 28639538
    [Google Scholar]
  5. Wang P.X. Deng X.R. Zhang C.H. Yuan H.J. Gut microbiota and metabolic syndrome. Chin. Med. J. (Engl.) 2020 133 7 808 816 10.1097/CM9.0000000000000696 32106124
    [Google Scholar]
  6. Federico A. Dallio M. DI Sarno R. Giorgio V. Miele L. Gut microbiota, obesity and metabolic disorders. Minerva Gastroenterol. Dietol. 2017 63 4 337 344 10.1017/S0029665110001813 28927249
    [Google Scholar]
  7. Zmora N. Suez J. Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019 16 1 35 56 10.1038/s41575‑018‑0061‑2 30262901
    [Google Scholar]
  8. Castro-Barquero S. Ruiz-León A.M. Sierra-Pérez M. Estruch R. Casas R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020 12 10 2983 10.3390/nu12102983 33003472
    [Google Scholar]
  9. Santos-Marcos J.A. Perez-Jimenez F. Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J. Nutr. Biochem. 2019 70 1 27 10.1016/j.jnutbio.2019.03.017 31082615
    [Google Scholar]
  10. Matijašić B.B. Obermajer T. Lipoglavšek L. Grabnar I. Avguštin G. Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur. J. Nutr. 2014 53 4 1051 1064 10.1007/s00394‑013‑0607‑6 24173964
    [Google Scholar]
  11. Sharma A. Kaur M. Katnoria J.K. Nagpal A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018 25 36 4740 4757 10.2174/0929867324666171006144208 28990504
    [Google Scholar]
  12. Pei R. Liu X. Bolling B. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020 61 153 159 10.1016/j.copbio.2019.12.018 31954357
    [Google Scholar]
  13. Oteiza P.I. Fraga C.G. Mills D.A. Taft D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med. 2018 61 41 49 10.1016/j.mam.2018.01.001 29317252
    [Google Scholar]
  14. Gil-Cardoso K. Ginés I. Pinent M. Ardévol A. Blay M. Terra X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr. Res. Rev. 2016 29 2 234 248 10.1017/S0954422416000159 27841104
    [Google Scholar]
  15. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  16. Abd Wahab N.A. Lajis N.H. Abas F. Othman I. Naidu R. Mechanism of anti-cancer activity of Curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients 2020 12 3 679 10.3390/nu12030679
    [Google Scholar]
  17. Shabbir U. Rubab M. Daliri E.B.M. Chelliah R. Javed A. Oh D.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients 2021 13 1 206 10.3390/nu13010206 33445760
    [Google Scholar]
  18. Aggarwal B. Deb L. Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014 20 1 185 205 10.3390/molecules20010185 25547723
    [Google Scholar]
  19. Lu K.H. Lu P.W.A. Lu E.W.H. Lin C.W. Yang S.F. Curcumin and its analogs and carriers: Potential therapeutic strategies for human osteosarcoma. Int. J. Biol. Sci. 2023 19 4 1241 1265 10.7150/ijbs.80590 36923933
    [Google Scholar]
  20. Goertz S. de Menezes A.B. Birtles R.J. Fenn J. Lowe A.E. MacColl A.D.C. Poulin B. Young S. Bradley J.E. Taylor C.H. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale. PLoS One 2019 14 9 e0222501 10.1371/journal.pone.0222501 31557179
    [Google Scholar]
  21. Zhang X. Zhong H. Li Y. Shi Z. Ren H. Zhang Z. Zhou X. Tang S. Han X. Lin Y. Yang F. Wang D. Fang C. Fu Z. Wang L. Zhu S. Hou Y. Xu X. Yang H. Wang J. Kristiansen K. Li J. Ji L. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 2021 1 1 87 100 10.1038/s43587‑020‑00014‑2 37118004
    [Google Scholar]
  22. Santos-Marcos J.A. Rangel-Zuñiga O.A. Jimenez-Lucena R. Quintana-Navarro G.M. Garcia-Carpintero S. Malagon M.M. Landa B.B. Tena-Sempere M. Perez-Martinez P. Lopez-Miranda J. Perez-Jimenez F. Camargo A. Influence of gender and menopausal status on gut microbiota. Maturitas 2018 116 43 53 10.1016/j.maturitas.2018.07.008 30244778
    [Google Scholar]
  23. Lippert K. Kedenko L. Antonielli L. Kedenko I. Gemeier C. Leitner M. Kautzky-Willer A. Paulweber B. Hackl E. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 2017 8 4 545 556 10.3920/BM2016.0184 28701081
    [Google Scholar]
  24. Kumar Singh A. Cabral C. Kumar R. Ganguly R. Kumar Rana H. Gupta A. Rosaria Lauro M. Carbone C. Reis F. Pandey A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019 11 9 2216 10.3390/nu11092216 31540270
    [Google Scholar]
  25. Merra G. Noce A. Marrone G. Cintoni M. Tarsitano M.G. Capacci A. De Lorenzo A. Influence of mediterranean diet on human gut microbiota. Nutrients 2020 13 1 7 10.3390/nu13010007 33375042
    [Google Scholar]
  26. Org E. Blum Y. Kasela S. Mehrabian M. Kuusisto J. Kangas A.J. Soininen P. Wang Z. Ala-Korpela M. Hazen S.L. Laakso M. Lusis A.J. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017 18 1 70 10.1186/s13059‑017‑1194‑2 28407784
    [Google Scholar]
  27. Baldi S. Pagliai G. Dinu M. Di Gloria L. Nannini G. Curini L. Pallecchi M. Russo E. Niccolai E. Danza G. Benedettelli S. Ballerini G. Colombini B. Bartolucci G. Ramazzotti M. Sofi F. Amedei A. Effect of ancient Khorasan wheat on gut microbiota, inflammation, and short-chain fatty acid production in patients with fibromyalgia. World J. Gastroenterol. 2022 28 18 1965 1980 10.3748/wjg.v28.i18.1965 35664958
    [Google Scholar]
  28. Moughaizel M. Dagher E. Jablaoui A. Thorin C. Rhimi M. Desfontis J.C. Mallem Y. Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS One 2022 17 2 e0264215 10.1371/journal.pone.0264215 35196347
    [Google Scholar]
  29. Sergeev I.N. Aljutaily T. Walton G. Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020 12 1 222 10.3390/nu12010222 31952249
    [Google Scholar]
  30. Kassaian N. Aminorroaya A. Feizi A. Jafari P. Amini M. The effects of probiotic and synbiotic supplementation on metabolic syndrome indices in adults at risk of type 2 diabetes: Study protocol for a randomized controlled trial. Trials 2017 18 1 148 10.1186/s13063‑017‑1885‑8 28356129
    [Google Scholar]
  31. Ghiamati Yazdi F. Soleimanian-Zad S. van den Worm E. Folkerts G. Turmeric extract: Potential use as a prebiotic and anti-inflammatory compound? Plant Foods Hum. Nutr. 2019 74 3 293 299 10.1007/s11130‑019‑00733‑x 31098880
    [Google Scholar]
  32. Shen L. Liu L. Ji H.F. Regulative effects of Curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr. Res. 2017 61 1 1361780 10.1080/16546628.2017.1361780 28814952
    [Google Scholar]
  33. Hong T. Zou J. Jiang X. Yang J. Cao Z. He Y. Feng D. Curcumin supplementation ameliorates bile cholesterol supersaturation in hamsters by modulating gut microbiota and cholesterol absorption. Nutrients 2022 14 9 1828 10.3390/nu14091828 35565795
    [Google Scholar]
  34. Xu X. Wang H. Guo D. Man X. Liu J. Li J. Luo C. Zhang M. Zhen L. Liu X. Curcumin modulates gut microbiota and improves renal function in rats with uric acid nephropathy. Ren. Fail. 2021 43 1 1063 1075 10.1080/0886022X.2021.1944875 34187292
    [Google Scholar]
  35. Neyrinck A.M. Sánchez C.R. Rodriguez J. Cani P.D. Bindels L.B. Delzenne N.M. Prebiotic effect of berberine and Curcumin is associated with the improvement of obesity in mice. Nutrients 2021 13 5 1436 10.3390/nu13051436 33923174
    [Google Scholar]
  36. Winiarska-Mieczan A. Tomaszewska E. Donaldson J. Jachimowicz K. The role of nutritional factors in the modulation of the composition of the gut microbiota in people with autoimmune diabetes. Nutrients 2022 14 12 2498 10.3390/nu14122498 35745227
    [Google Scholar]
  37. Li S. You J. Wang Z. Liu Y. Wang B. Du M. Zou T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res. Int. 2021 143 110270 10.1016/j.foodres.2021.110270 33992371
    [Google Scholar]
  38. Luo M. Han Y. Chen Y. Du H. Chen B. Gao Z. Wang Q. Cao Y. Xiao H. Unveiling the role of gut microbiota in Curcumin metabolism using antibiotic-treated mice. Food Chem. 2024 460 Pt 2 140706 10.1016/j.foodchem.2024.140706 39096800
    [Google Scholar]
  39. Pluta R. Januszewski S. Ułamek-Kozioł M. Mutual two-way interactions of Curcumin and gut microbiota. Int. J. Mol. Sci. 2020 21 3 1055 10.3390/ijms21031055 32033441
    [Google Scholar]
  40. Zam W. Gut microbiota as a prospective therapeutic target for curcumin: A review of mutual influence. J. Nutr. Metab. 2018 2018 1 11 10.1155/2018/1367984 30647970
    [Google Scholar]
  41. Cui C. Han Y. Li H. Yu H. Zhang B. Li G. Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson’s disease. Front. Cell. Infect. Microbiol. 2022 12 887407 10.3389/fcimb.2022.887407 36034698
    [Google Scholar]
  42. He L. Alterations of gut microbiota by overnutrition impact gluconeogenic gene expression and insulin signaling. Int. J. Mol. Sci. 2021 22 4 2121 10.3390/ijms22042121 33672754
    [Google Scholar]
  43. Motiani K.K. Collado M.C. Eskelinen J.J. Virtanen K.A. Löyttyniemi E. Salminen S. Nuutila P. Kalliokoski K.K. Hannukainen J.C. Exercise training modulates gut microbiota profile and improves endotoxemia. Med. Sci. Sports Exerc. 2020 52 1 94 104 10.1249/MSS.0000000000002112 31425383
    [Google Scholar]
  44. Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006 444 7121 860 867 10.1038/nature05485 17167474
    [Google Scholar]
  45. Shoelson S.E. Lee J. Goldfine A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006 116 7 1793 1801 10.1172/JCI29069 16823477
    [Google Scholar]
  46. Kern P.A. Ranganathan S. Li C. Wood L. Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001 280 5 E745 E751 10.1152/ajpendo.2001.280.5.E745 11287357
    [Google Scholar]
  47. Kawano Y. Nakae J. Watanabe N. Kikuchi T. Tateya S. Tamori Y. Kaneko M. Abe T. Onodera M. Itoh H. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metab. 2016 24 2 295 310 10.1016/j.cmet.2016.07.009 27508875
    [Google Scholar]
  48. Murdolo G. Nowotny B. Celi F. Donati M. Bini V. Papi F. Gornitzka G. Castellani S. Roden M. Falorni A. Herder C. Falorni A. Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: A population-based survey in prepubertal schoolchildren. PLoS One 2011 6 2 e17264 10.1371/journal.pone.0017264 21365005
    [Google Scholar]
  49. Phillips A. Cobbold C. A comparison of the effects of aerobic and intense exercise on the type 2 diabetes mellitus risk marker adipokines, adiponectin and retinol binding protein-4. Int. J. Chronic Dis. 2014 2014 1 5 10.1155/2014/358058 26464853
    [Google Scholar]
  50. Strycharz J. Wróblewski A. Zieleniak A. Świderska E. Matyjas T. Rucińska M. Pomorski L. Czarny P. Szemraj J. Drzewoski J. Śliwińska A. Visceral adipose tissue of prediabetic and diabetic females shares a set of similarly upregulated microRNAs functionally annotated to inflammation, oxidative stress and insulin signaling. Antioxidants 2021 10 1 101 10.3390/antiox10010101 33445738
    [Google Scholar]
  51. Li R. Andreu-Sánchez S. Kuipers F. Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021 35 3 101493 10.1016/j.beem.2021.101493 33707081
    [Google Scholar]
  52. Zhong Y. Xiao Y. Gao J. Zheng Z. Zhang Z. Yao L. Li D. Curcumin improves insulin sensitivity in high-fat diet-fed mice through gut microbiota. Nutr. Metab. (Lond.) 2022 19 1 76 10.1186/s12986‑022‑00712‑1 36348361
    [Google Scholar]
  53. Yuan T. Yin Z. Yan Z. Hao Q. Zeng J. Li L. Zhao J. Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fitoterapia 2020 146 104665 10.1016/j.fitote.2020.104665 32531320
    [Google Scholar]
  54. Tsai Y.Z. Tsai M.L. Hsu L.Y. Ho C.T. Lai C.S. Tetrahydrocurcumin upregulates the adiponectin-AdipoR pathway and improves insulin signaling and pancreatic β-cell function in high-fat diet/streptozotocin-induced diabetic obese mice. Nutrients 2021 13 12 4552 10.3390/nu13124552 34960104
    [Google Scholar]
  55. Xiao Q.P. Zhong Y.B. Kang Z.P. Huang J.Q. Fang W.Y. Wei S.Y. Long J. Li S.S. Zhao H.M. Liu D.Y. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother. Res. 2022 36 4 1708 1723 10.1002/ptr.7404 35234309
    [Google Scholar]
  56. Ghosh S.S. Bie J. Wang J. Ghosh S. Oral supplementation with non-absorbable antibiotics or Curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One 2014 9 9 e108577 10.1371/journal.pone.0108577 25251395
    [Google Scholar]
  57. Ghosh S.S. He H. Wang J. Gehr T.W. Ghosh S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers 2018 6 1 e1425085 10.1080/21688370.2018.1425085 29420166
    [Google Scholar]
  58. Wang J. Ghosh S.S. Ghosh S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol. 2017 312 4 C438 C445 10.1152/ajpcell.00235.2016 28249988
    [Google Scholar]
  59. Huang J. Guan B. Lin L. Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered 2021 12 2 11947 11958 10.1080/21655979.2021.2009322 34818970
    [Google Scholar]
  60. Takikawa M. Kurimoto Y. Tsuda T. Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem. Biophys. Res. Commun. 2013 435 2 165 170 10.1016/j.bbrc.2013.04.092 23660191
    [Google Scholar]
  61. Kato M. Nishikawa S. Ikehata A. Dochi K. Tani T. Takahashi T. Imaizumi A. Tsuda T. Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol. Nutr. Food Res. 2017 61 3 1600471 10.1002/mnfr.201600471 27990751
    [Google Scholar]
  62. Yang J. Miao X. Yang F.J. Cao J.F. Liu X. Fu J.L. Su G.F. Therapeutic potential of Curcumin in diabetic retinopathy (Review). Int. J. Mol. Med. 2021 47 5 75 10.3892/ijmm.2021.4908 33693955
    [Google Scholar]
  63. Servida S. Panzeri E. Tomaino L. Marfia G. Garzia E. Appiani G.C. Moroncini G. Colonna V.D.G. Vecchia C.L. Vigna L. Overview of Curcumin and piperine effects on glucose metabolism: The case of an insulinoma patient’s loss of consciousness. Int. J. Mol. Sci. 2023 24 7 6621 10.3390/ijms24076621 37047589
    [Google Scholar]
  64. Xu Z. Zhu W. Xu D. Amevor F.K. Wu Y. Ma D. Cao X. Wei S. Shu G. Zhao X. Supplementation of Curcumin promotes the intestinal structure, immune barrier function and cecal microbiota composition of laying hens in early laying period. Poult. Sci. 2024 103 12 104355 10.1016/j.psj.2024.104355 39423789
    [Google Scholar]
  65. Lamichhane G. Olawale F. Liu J. Lee D.Y. Lee S.J. Chaffin N. Alake S. Lucas E.A. Zhang G. Egan J.M. Kim Y. Curcumin mitigates gut dysbiosis and enhances gut barrier function to alleviate metabolic dysfunction in obese, aged mice. Biology (Basel) 2024 13 12 955 10.3390/biology13120955 39765622
    [Google Scholar]
  66. Aziz M.A. El-Asmar M.F. Rezq A.M. Wassef M.A. Fouad H. Roshdy N.K. Ahmed H.H. Rashed L.A. Sabry D. Taha F.M. Hassouna A. Effects of a novel Curcumin derivative on insulin synthesis and secretion in streptozotocin-treated rat pancreatic islets in vitro. Chin. Med. 2014 9 1 3 10.1186/1749‑8546‑9‑3 24422903
    [Google Scholar]
  67. Thota R.N. Acharya S.H. Garg M.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. Lipids Heal. Dis. 2019 18 1 31 10.1186/s12944‑019‑0967‑x 30684965
    [Google Scholar]
  68. Mohammadi A. Sahebkar A. Iranshahi M. Amini M. Khojasteh R. Ghayour-Mobarhan M. Ferns G.A. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial. Phytother. Res. 2013 27 3 374 379 10.1002/ptr.4715 22610853
    [Google Scholar]
  69. Vamanu E. Gatea F. Sârbu I. Pelinescu D. An in vitro study of the influence of Curcuma longa extracts on the microbiota modulation process, in patients with hypertension. Pharmaceutics 2019 11 4 191 10.3390/pharmaceutics11040191 31003502
    [Google Scholar]
  70. Mariadason J.M. Corner G.A. Augenlicht L.H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and Curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000 60 16 4561 4572 10969808
    [Google Scholar]
  71. Feng W. Wang H. Zhang P. Gao C. Tao J. Ge Z. Zhu D. Bi Y. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 7 1801 1812 10.1016/j.bbagen.2017.03.017 28341485
    [Google Scholar]
  72. Recharla N. Balasubramanian B. Song M. Puligundla P. Kim S. Jeong J.Y. Park S. Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets. J. Anim. Sci. Technol. 2021 63 3 575 592 10.5187/jast.2021.e55 34189506
    [Google Scholar]
  73. Alvaro A. Solà R. Rosales R. Ribalta J. Anguera A. Masana L. Vallvé J.C. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life 2008 60 11 757 764 10.1002/iub.110 18642346
    [Google Scholar]
  74. Zhao Y. He Z. Hao W. Zhu H. Liu J. Ma K.Y. He W.S. Chen Z.Y. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids. Food Funct. 2021 12 22 11557 11567 10.1039/D1FO02906A 34709262
    [Google Scholar]
  75. Müller M. Hernández M.A.G. Goossens G.H. Reijnders D. Holst J.J. Jocken J.W.E. van Eijk H. Canfora E.E. Blaak E.E. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci. Rep. 2019 9 1 12515 10.1038/s41598‑019‑48775‑0 31467327
    [Google Scholar]
  76. Moro C. Bajpeyi S. Smith S.R. Determinants of intramyocellular triglyceride turnover: Implications for insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2008 294 2 E203 E213 10.1152/ajpendo.00624.2007 18003718
    [Google Scholar]
  77. Xiong Y. Miyamoto N. Shibata K. Valasek M.A. Motoike T. Kedzierski R.M. Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. USA 2004 101 4 1045 1050 10.1073/pnas.2637002100 14722361
    [Google Scholar]
  78. Zhang W. Kong L. Zhong Z. Lin L. Li J. Zheng G. Short chain fatty acids increase fat oxidation and promote browning through β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3T3-L1 adipocytes. J. Funct. Foods 2023 103 105488 10.1016/j.jff.2023.105488
    [Google Scholar]
  79. den Besten G. Gerding A. van Dijk T.H. Ciapaite J. Bleeker A. van Eunen K. Havinga R. Groen A.K. Reijngoud D.J. Bakker B.M. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS One 2015 10 8 e0136364 10.1371/journal.pone.0136364 26292284
    [Google Scholar]
  80. Liu L. Fu Q. Li T. Shao K. Zhu X. Cong Y. Zhao X. Gut microbiota and butyrate contribute to nonalcoholic fatty liver disease in premenopause due to estrogen deficiency. PLoS One 2022 17 2 e0262855 10.1371/journal.pone.0262855 35108315
    [Google Scholar]
  81. De Vadder F. Kovatcheva-Datchary P. Goncalves D. Vinera J. Zitoun C. Duchampt A. Bäckhed F. Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014 156 1-2 84 96 10.1016/j.cell.2013.12.016 24412651
    [Google Scholar]
  82. Amabebe E. Robert F.O. Agbalalah T. Orubu E.S.F. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr. 2020 123 10 1127 1137 10.1017/S0007114520000380 32008579
    [Google Scholar]
  83. Islam T. Koboziev I. Albracht-Schulte K. Mistretta B. Scoggin S. Yosofvand M. Moussa H. Zabet-Moghaddam M. Ramalingam L. Gunaratne P.H. Moustaid-Moussa N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol. Nutr. Food Res. 2021 65 22 2100274 10.1002/mnfr.202100274 34510720
    [Google Scholar]
  84. Li H.B. Xu M.L. Du M.M. Yu X.J. Bai J. Xia W.J. Dai Z.M. Li C.X. Li Y. Su Q. Wang X.M. Dong Y.Y. Kang Y.M. Curcumin ameliorates hypertension via gut-brain communication in spontaneously hypertensive rat. Toxicol. Appl. Pharmacol. 2021 429 115701 10.1016/j.taap.2021.115701 34453990
    [Google Scholar]
  85. Matsubara F. Ueno H. Tadano K. Effects of GABA supplementation on blood pressure and safety in adults with mild hypertension. Jpn. Pharmacol. Ther. 2002 30 963 972
    [Google Scholar]
  86. Onyszkiewicz M. Gawrys-Kopczynska M. Konopelski P. Aleksandrowicz M. Sawicka A. Koźniewska E. Samborowska E. Ufnal M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch. 2019 471 11-12 1441 1453 10.1007/s00424‑019‑02322‑y 31728701
    [Google Scholar]
  87. Najmanová I. Pourová J. Vopršalová M. Pilařová V. Semecký V. Nováková L. Mladěnka P. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol. Nutr. Food Res. 2016 60 5 981 991 10.1002/mnfr.201500761 26790841
    [Google Scholar]
  88. Grylls A. Seidler K. Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother. 2021 137 111334 10.1016/j.biopha.2021.111334 33556874
    [Google Scholar]
  89. Steib C.J. Hartmann A.C. Hesler C. Benesic A. Hennenberg M. Bilzer M. Gerbes A.L. Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis. Lab. Invest. 2010 90 7 1024 1032 10.1038/labinvest.2010.60 20212458
    [Google Scholar]
  90. Ejaz A. Wu D. Kwan P. Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 2009 139 5 919 925 10.3945/jn.108.100966 19297423
    [Google Scholar]
  91. Han Z. Yao L. Zhong Y. Xiao Y. Gao J. Zheng Z. Fan S. Zhang Z. Gong S. Chang S. Cui X. Cai J. Gut microbiota mediates the effects of Curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Food Funct. 2021 12 14 6558 6575 10.1039/D1FO00671A 34096956
    [Google Scholar]
  92. Gao X. Jia R. Xie L. Kuang L. Feng L. Wan C. Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: A case–control study. BMC Pediatr. 2015 15 1 64 10.1186/s12887‑015‑0384‑x 26024884
    [Google Scholar]
  93. Adamczak A. Ożarowski M. Karpiński T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel) 2020 13 7 153 10.3390/ph13070153 32708619
    [Google Scholar]
  94. Packiavathy I.A.S.V. Priya S. Pandian S.K. Ravi A.V. Inhibition of biofilm development of uropathogens by Curcumin – An anti-quorum sensing agent from Curcuma longa. Food Chem. 2014 148 453 460 10.1016/j.foodchem.2012.08.002 24262582
    [Google Scholar]
  95. Adeyemi O.S. Obeme-Imom J.I. Akpor B.O. Rotimi D. Batiha G.E. Owolabi A. Altered redox status, DNA damage and modulation of L-tryptophan metabolism contribute to antimicrobial action of curcumin. Heliyon 2020 6 3 e03495 10.1016/j.heliyon.2020.e03495 32154425
    [Google Scholar]
  96. Wikene K.O. Hegge A.B. Bruzell E. Tønnesen H.H. Formulation and characterization of lyophilized Curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): Studies on Curcumin and curcuminoids LII. Drug Dev. Ind. Pharm. 2015 41 6 969 977 10.3109/03639045.2014.919315 24842546
    [Google Scholar]
  97. Mounce B.C. Cesaro T. Carrau L. Vallet T. Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017 142 148 157 10.1016/j.antiviral.2017.03.014 28343845
    [Google Scholar]
  98. Šudomová M. Hassan S.T.S. Nutraceutical Curcumin with promising protection against herpesvirus infections and their associated inflammation: Mechanisms and pathways. Microorganisms 2021 9 2 292 10.3390/microorganisms9020292 33572685
    [Google Scholar]
  99. Lou Y. Zheng J. Hu H. Lee J. Zeng S. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify Curcumin metabolites produced by human intestinal bacteria. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 985 38 47 10.1016/j.jchromb.2015.01.014 25658514
    [Google Scholar]
  100. Sun Z.Z. Li X.Y. Wang S. Shen L. Ji H.F. Bidirectional interactions between Curcumin and gut microbiota in transgenic mice with Alzheimer’s disease. Appl. Microbiol. Biotechnol. 2020 104 8 3507 3515 10.1007/s00253‑020‑10461‑x 32095862
    [Google Scholar]
  101. Ganji A. Farahani I. Saeedifar A.M. Mosayebi G. Ghazavi A. Majeed M. Jamialahmadi T. Sahebkar A. Protective effects of Curcumin against lipopolysaccharide-induced toxicity. Curr. Med. Chem. 2021 28 33 6915 6930 10.2174/0929867328666210525124707 34036908
    [Google Scholar]
  102. Jin B. Li Y.P. Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss. J. Cell. Biochem. 2007 100 4 960 969 10.1002/jcb.21060 17131360
    [Google Scholar]
  103. Pivari F. Mingione A. Piazzini G. Ceccarani C. Ottaviano E. Brasacchio C. Dei Cas M. Vischi M. Cozzolino M.G. Fogagnolo P. Riva A. Petrangolini G. Barrea L. Di Renzo L. Borghi E. Signorelli P. Paroni R. Soldati L. Curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients 2022 14 1 231 10.3390/nu14010231 35011106
    [Google Scholar]
  104. Peterson C.T. Vaughn A.R. Sharma V. Effects of turmeric and Curcumin dietary supplementation on human gut microbiota: A double-blind, randomized, placebo-controlled pilot study. J. Evid.-Bas. Integra. Med. 2018 23 725 10.1177/2515690X18790725
    [Google Scholar]
  105. Bereswill S. Muñoz M. Fischer A. Plickert R. Haag L.M. Otto B. Kühl A.A. Loddenkemper C. Göbel U.B. Heimesaat M.M. Anti-inflammatory effects of resveratrol, Curcumin and simvastatin in acute small intestinal inflammation. PLoS One 2010 5 12 e15099 10.1371/journal.pone.0015099 21151942
    [Google Scholar]
  106. Li Y. Effects of Curcumin on gut microbiota of interval sleep deprivation rats. Chin. Tradit. Herbal Drugs 2016 24 794 798 10.7501/j.issn.0253‑2670.2016.05.018
    [Google Scholar]
  107. McFadden R.M.T. Larmonier C.B. Shehab K.W. Midura-Kiela M. Ramalingam R. Harrison C.A. Besselsen D.G. Chase J.H. Caporaso J.G. Jobin C. Ghishan F.K. Kiela P.R. The role of Curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm. Bowel Dis. 2015 21 11 2483 2494 10.1097/MIB.0000000000000522 26218141
    [Google Scholar]
  108. Campbell M.S. Carlini N.A. Fleenor B.S. Influence of Curcumin on performance and post-exercise recovery. Crit. Rev. Food Sci. Nutr. 2021 61 7 1152 1162 10.1080/10408398.2020.1754754 32319320
    [Google Scholar]
  109. Zhang Z. Chen Y. Xiang L. Wang Z. Xiao G. Hu J. Effect of Curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients 2017 9 10 1146 10.3390/nu9101146 29048369
    [Google Scholar]
  110. Reda F.M. El-Saadony M.T. Elnesr S.S. Alagawany M. Tufarelli V. Effect of dietary supplementation of biological Curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals (Basel) 2020 10 5 754 10.3390/ani10050754 32357410
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673371503250210092741
Loading
/content/journals/cmc/10.2174/0109298673371503250210092741
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: metabolic syndrome ; Curcumin ; gut microbiota ; short-chain fatty acids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test