- Home
- A-Z Publications
- Current Pharmaceutical Design
- Fast Track Listing
Current Pharmaceutical Design - Online First
Description text for Online First listing goes here...
1 - 20 of 28 results
-
-
Predicting microRNAs and their Target Genes Involved in Sepsis Pathogenesis by using Bioinformatics Methods
Available online: 01 January 2025More LessIntroductionSepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression. Such miRNAs are registered in the miRNA databases, such as Gene Expression Omnibus (GEO), with a specific identifier and unique characteristics. There is also computational software, such as TargetScan, that are broadly employed for the analysis of miRNAs, including their identification, target prediction, and functional analysis.
MethodsThe current in-silico study aimed to predict miRNAs involved in sepsis progression. To this end, the GEO database was employed to find the sepsis-related genome profile. Afterward, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased sepsis progression. The miRNAs complementary to the selected genes were then predicted using TargetScan software. Based on the current in-silico analysis, seven miRNAs, including hsa-miR-325-3p, hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-145-5p, and has-miR-181 family, were predicted to participate in sepsis pathogenesis. Among the predicted miRNAs, hsa-miR-325-3p has not been previously predicted or validated to be involved in septic conditions.
ResultsOur prediction results showed that hsa-miR-325-3p may target genes implicating in both anti-(ETFB gene) and pro-inflammatory (TCEA1 and PTPN1 genes) responses, suggesting it is an immune hemostasis regulator during sepsis inflammation. Although the role of other predicted miRNAs has been already validated in the sepsis pathogenesis, the current study predicted new targets of these miRNAs, which have not been reported by previous in-silico or experimental studies on sepsis and other pathogenic conditions. Notably, other miRNAs, including hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, and hsa-miR-145-5p were predicted to target genes participating in inflammatory responses, including BLOC1S1, POLR2G, PTPN1, TCEA1, and CCT3.
ConclusionIn conclusion, the results of the present study can provide promising targets as therapeutic and diagnostic tools to treat and manage inflammation sepsis, such as neutropenic sepsis. However, these findings should be further evaluated in experimental studies to find their exact effects and underlying mechanisms.
-
-
-
Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections
Authors: Yuhang Liu, Fan Peng, Jie Shu, Xiaolan Li and Chengfu YuanAvailable online: 01 January 2025More LessBackgroundThe Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets.
MethodsThis review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as “Prickle2,” “epilepsy,” and “PCP pathway,” focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature.
ResultsAlthough there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer.
ConclusionDue to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.
-
-
-
Application of Chitosan-based Nanogel in Cancer Nanomedicine
Authors: Yue Wang, Xiaoli Lou, Liyuan Yang and Yanqiang HouAvailable online: 01 January 2025More LessChitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods. These novel CS-NGs are applied in cancer nanomedicine serving as drug delivery, gene delivery, and bioimaging. Besides, we proposed our perspectives regarding the clinical development of CS-NGs cancer nanomedicine applications.
-
-
-
Mechanistic Insights on Cardioprotective Properties of Ursolic Acid: Regulation of Mitochondrial and Non-mitochondrial Pathways
Available online: 20 December 2024More LessUrsolic acid, a natural pentacyclic triterpenoid compound, has been shown to have significant cardioprotective effects in various preclinical studies. This article reviews the various mechanisms by which ursolic acid achieves its cardioprotective effects, highlighting its potent anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Ursolic acid upregulates anti-oxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), effectively reducing oxidative stress, thereby decreasing reactive oxygen species (ROS) and improving lipid peroxidation levels. Furthermore, ursolic acid downregulates pro-inflammatory cytokines and inhibits key inflammatory pathways, such as nuclear factor kappa B (NF-κB), which results in its anti-inflammatory effects. These actions help in protecting cardiac tissues from acute and chronic inflammation. Ursolic acid also promotes mitochondrial function and energy metabolism by enhancing mitochondrial biogenesis and reducing dysfunction, which is critical during ischemia-reperfusion (I/R) injury. Additionally, ursolic acid influences multiple molecular pathways, including B-cell leukemia/lymphoma 2 protein (Bcl-2)/Bcl-2 associated x-protein (Bax), miR-21/extracellular signal-regulated kinase (ERK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), to reduce cardiomyocyte apoptosis. Collectively, these properties make ursolic acid a promising therapeutic agent for cardiovascular diseases (CVDs), warranting further research and clinical trials to harness its potential fully.
-
-
-
Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems
Authors: Rabinarayan Parhi and Anuj GargAvailable online: 19 December 2024More LessResearch on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.
-
-
-
In Vitro Bioassay and In silico Pharmacokinetic Characteristics of Xanthium strumarium Plant Extract as Possible Acaricidal Agent
Available online: 17 December 2024More LessBackgroundEffective management strategies against tick infestations are necessary because tick-borne diseases represent serious hazards to the health of humans and animals worldwide. The aim of this study was to examine the larvicidal and ovicidal properties of Xanthium strumarium extract against a notorious tick species, Rhipicephalus microplus.
MethodologyThe maceration method was used to prepare the ethanolic extract of X. strumarium. The extract was then used in an adult immersion test (AIT) and larval packet test (LPT) to asses the plants toxicity. To elucidate the mode of action, molecular modeling and docking studies were conducted. ADMET analysis was then carried out to find out the drug-likeness profiles of the plant phytochemicals.
ResultsSignificant death rates and egg inhibition were found at different extract doses using the larval packet test (LPT) and adult immersion test (AIT). A concentration-dependent impact was observed at a concentration of 40 mg/mL, which resulted in the maximum larval mortality (92 ± 2.646) and egg inhibition (77.057 ± 2.186). Additionally, the potency of the extract against R. microplus was determined by calculating its fatal concentrations (LC50, LC90, and LC99). A three-dimensional model of the R. microplus octopamine receptor was created, and docking studies showed that the receptor and possible ligands, most notably Xanthatin and Xanthosin, interacted well. The potential of compounds as tick control agents was highlighted by their pharmacokinetic characteristics and toxicity profiles, as revealed by drug-likeness and ADMET studies. Molecular dynamic simulations further demonstrated the stability of the protein-ligand complex, indicating the consistent association between the ligand and the target protein.
ConclusionOverall, this study provides valuable insights into the potential use of X. strumarium extract and its compounds as larvicidal and ovicidal agents against R. microplus, paving the way for further research on tick control strategies.
-
-
-
Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis
Available online: 17 December 2024More LessCordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.
-
-
-
Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems
Available online: 17 December 2024More LessType 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen-specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.
-
-
-
Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis
Authors: Fanfan Zeng, Yu Zhang, Ting Luo, Chengman Wang, Denggang Fu and Xin WangAvailable online: 02 December 2024More LessIntroductionNon-Small-Cell Lung Cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.
MethodsWe developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched.
ResultsFurther analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC versus normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data.
ConclusionIn summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.
-
-
-
The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far
Authors: Md Sadique Hussain and Gaurav GuptaAvailable online: 14 November 2024More Less
-
-
-
Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant
Available online: 13 November 2024More LessBackgroundThe COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.
AimThis review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.
Results and DiscussionNeutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.
ConclusionBebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.
-
-
-
Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review
Authors: Kave Moloudi, Heidi Abrahamse and Blassan P. GeorgeAvailable online: 08 November 2024More LessPolymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to co-delivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio-photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in co- drugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.
-
-
-
Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome
Authors: Pavithra Lakshmi Narayanan and Chitra VellapandianAvailable online: 07 November 2024More LessBackgroundPolycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.
ObjectiveThe present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of in silico techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.
MethodsMolecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.
ResultsConstituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the in silico techniques showed that Sarsasapogenin from Asparagus racemosus exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable drug-likeness profile and non-toxic effects across all screened parameters.
ConclusionFrom the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.
-
-
-
Mechanistic Studies on the Antidiabetic Properties of Gallotannins
Authors: Xueqing Li, Wei Wu, Yuting Liu, Jiale Zhao, Yibei Gui, Hailin Wang, Lijun Wang, Yiyang Luo, Gang Zhou, Yumin He and Chengfu YuanAvailable online: 04 November 2024More LessThe escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.
-
-
-
Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease
Available online: 01 November 2024More LessAlzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially ground-breaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
-
-
-
Network Pharmacological Analysis of Hydroxychloroquine Intervention in the Treatment of Iga Nephropathy
Authors: Mengxiao Zou, Gang Xu, Shuwang Ge, Kanglin Guo, Qian Duo and Yichun ChengAvailable online: 01 November 2024More LessBackgroundIgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network pharmacology was used to investigate the mechanism.
MethodsPubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cytoscape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.
Results167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. At the same time, the molecular docking results showed that the core targets all combined with hydroxychloroquine closely.
ConclusionThis study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment.
-
-
-
Galangin Regulates Astrocyte Phenotypes to Ameliorate Cerebral Ischemia-reperfusion Injury by Inhibiting the RhoA/ROCK/LIMK Pathway
Authors: Nannuan Liu, Yue Xu, Yao Liu, Tao Chen and Wenli HuAvailable online: 31 October 2024More LessPurposeThis study aimed to explore whether Galangin (Gal) could improve cerebral Ischemia-reperfusion (I/R) injury by regulating astrocytes, and clarify its potential molecular mechanism.
MethodsAn I/R injury model of rats was established using the Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) method, followed by the administration of Gal (25, 50, 100 mg/kg) via gavage for 14 consecutive days. Besides, astrocytes were isolated from the rats to construct an Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) cell model, with treatments of Gal or the Ras homolog gene family member A (RhoA)/Rho-associated Coiled-coil containing protein Kinase (ROCK) inhibitor Y-27632. Subsequently, the severity of nerve injury was assessed using the modified Neurological Severity Score (mNSS) test; behavioral disorders in I/R rats were observed through the open field and ladder-climbing tests. Pathological damages and neuron survival in the peri-infarct zone were examined by hematoxylin and eosin staining and NeuN staining, respectively. Additionally, immunofluorescence staining was employed to determine astrocyte polarization and TUNEL staining was carried out to measure the level of cell apoptosis; also, western blot was performed to detect the expression of proteins related to the RhoA/ROCK/LIM domain Kinase (LIMK) pathway.
ResultsGal significantly ameliorated the neurological and motor dysfunctions caused by I/R in rats, reduced pathological damage in the peri-infarct zone, and promoted neuronal survival. Additionally, Gal increased the number of A2 astrocytes, while it decreased the number of A1 astrocytes. In vitro experiments revealed that the effect of Gal was consistent with that of Y-27632. Additionally, Gal significantly enhanced the survival of OGD/R cells, increased the number of A2 astrocytes, and inhibited the expression of proteins associated with the RhoA/ROCK pathway.
ConclusionGal could reduce the level of apoptosis, promote the polarization of A2 astrocytes, and improve cerebral I/R injury, and its mechanism may be related to the inhibition of the RhoA/ROCK pathway.
-
-
-
Nano Revolution: Harnessing Nanoparticles to Combat Antibiotic-resistant Bacterial Infections
Authors: Akash Vikal, Rashmi Maurya, Preeti Patel and Balak Das KurmiAvailable online: 31 October 2024More LessNanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like Strep throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of Reactive Oxygen Species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.
-
-
-
Chitosan-grafted Graphene Materials for Drug Delivery in Wound Healing
Available online: 30 October 2024More LessThe effective and prompt treatment of wounds remains a significant challenge in clinical settings. Consequently, recent investigations have led to the development of a novel wound dressing production designed to expedite the process of wound healing with minimal adverse complications. Chitosan, identified as a natural biopolymer, emerges as an appealing option for fabricating environmentally friendly dressings due to its biologically degradable, nonpoisonous, and inherent antimicrobial properties. Concurrently, graphene oxide has garnered attention from researchers as an economical, biocompatible material with non-toxic attributes for applications in wound healing. Chitosan (CS) has been extensively studied in agglutination owing to its advantageous properties, such as Non-toxicity biological compatibility, degradability, and facilitation of collagen precipitation. Nonetheless, its limited Medium mechanical and antibacterial strength characteristics impede its widespread clinical application. In addressing these shortcomings, numerous researchers have embraced nanotechnology, specifically incorporating Metal nanoparticles (MNPs), to enhance the mechanical power and targeted germicide features of chitosan multistructures, yielding hopeful outcomes. Additionally, chitosan is a decreasing factor for MNPs, contributing to reduced cytotoxicity. Consequently, the combination of CS with MNPs manifests antibacterial function, superior mechanical power, and anti-inflammatory features, holding significant potential to expedite wound healing. This study delves into Based on chitosan graphene materials in the context of wound healing.
-
-
-
Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies
Authors: Sina Soleymani, Seyed Morteza Naghib and M.R. MozafariAvailable online: 29 October 2024More LessIn recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.
-