Skip to content
2000
image of The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far
Preview this fast track article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355749241111045626
2024-11-14
2025-01-08
Loading full text...

Full text loading...

References

  1. Donnelly S.C. FLiRT a dominant COVID variant responsible for a summer surge in COVID infections. QJM 2024 117 483 10.1093/qjmed/hcae127
    [Google Scholar]
  2. Aden D. Zaheer S. Investigating the FLiRT variants of COVID-19: Is it an emerging concern? Pathol. Res. Pract. 2024 262 155542 10.1016/j.prp.2024.155542 39178510
    [Google Scholar]
  3. Kumar P. Jayan J. Sharma R.K. Gaidhane A.M. Zahiruddin Q.S. Rustagi S. The emerging challenge of FLiRT variants: KP.1.1 and KP.2 in the global pandemic landscape. QJM 2024 117 485 487
    [Google Scholar]
  4. Yang W.T. Huang W.H. Liao T.L. Hsiao T.H. Chuang H.N. Liu P.Y. SARS-CoV-2 E484K mutation narrative review: Epidemiology, immune escape, clinical implications, and future considerations. Infect. Drug Resist. 2022 15 373 385 10.2147/IDR.S344099 35140483
    [Google Scholar]
  5. Zamudio M. Tan C. Dorp L. Balloux F. Early evolution of the BA. 2.86 variant sheds light on the origins of highly divergent SARS-CoV-2 lineages. bioRxiv 2024.07.18.604213 2024 10.1101/2024.07.18.604213
    [Google Scholar]
  6. Li P. Faraone J.N. Hsu C.C. Chamblee M. Zheng Y.M. Carlin C. Characteristics of JN.1-derived SARS-CoV-2 subvariants SLip, FLiRT, and KP.2 in neutralization escape, infectivity and membrane fusion. bioRxiv 2024.05.20.595020 2024 10.1101/2024.05.20.595020
    [Google Scholar]
  7. Pondé R.A.A. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology 2022 572 44 54 10.1016/j.virol.2022.05.003 35580380
    [Google Scholar]
  8. Carabelli A.M. Peacock T.P. Thorne L.G. Harvey W.T. Hughes J. de Silva T.I. Peacock S.J. Barclay W.S. de Silva T.I. Towers G.J. Robertson D.L. COVID-19 Genomics UK Consortium SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023 21 3 162 177 10.1038/s41579‑022‑00841‑7 36653446
    [Google Scholar]
  9. Maqbool M. Hussain M.S. Shaikh N.K. Sultana A. Bisht A.S. Agrawal M. Noncoding RNAs in the COVID-19 Saga: An Untold Story. Viral Immunol. 2024 37 6 269 286 10.1089/vim.2024.0026 38968365
    [Google Scholar]
  10. Adzrago D. Sulley S. Ormiston C.K. Williams F. Socioeconomic and clinical risk factors associated with moderate intensity physical activity before and during the COVID-19 pandemic. Prev. Med. Rep. 2024 37 102555 10.1016/j.pmedr.2023.102555 38170022
    [Google Scholar]
  11. Kaku Y. Uriu K. Kosugi Y. Okumura K. Yamasoba D. Uwamino Y. Kuramochi J. Sadamasu K. Yoshimura K. Asakura H. Nagashima M. Ito J. Sato K. Genotype to Phenotype Japan (G2P-Japan) Consortium Virological characteristics of the SARS-CoV-2 KP.2 variant. Lancet Infect. Dis. 2024 24 7 e416 10.1016/S1473‑3099(24)00298‑6 38782005
    [Google Scholar]
  12. Kaku Y. Uriu K. Okumura K. Ito J. Sato K. Genotype to Phenotype Japan (G2P-Japan) Consortium Virological characteristics of the SARS-CoV-2 KP.3.1.1 variant. Lancet Infect. Dis. 2024 24 10 e609 10.1016/S1473‑3099(24)00505‑X 39159637
    [Google Scholar]
  13. Karyakarte R.P. Das R. Potdar V. Kulkarni B. Joy M. Mishra M. Bhagat J. Jagarwal K. Pawar P. More D. Chamy G. Dv V. Yanamandra S. Taji N. Gurav J. Joshi S. Tracking KP.2 SARS-CoV-2 Variant in India and the Clinical Profile of KP.2 Cases in Maharashtra, India. Cureus 2024 16 8 e66057 10.7759/cureus.66057 39224723
    [Google Scholar]
  14. Jian F. Yisimayi A. Song W. Wang J. Xu Y. Chen X. Humoral immunogenicity comparison of XBB and JN. 1 in human infections. bioRxiv 2024.04.19.590276 2024 10.1101/2024.04.19.590276
    [Google Scholar]
  15. World Health Organization. Statement on the antigen composition of COVID-19 vaccines. 2023 Available from:https://www.who.int/news-room/feature-stories/detail/how-do-vaccines-work?adgroupsurvey={adgroupsurvey}&gad_source=1&gclid=CjwKCAjwyfe4BhAWEiwAkIL8sDUp3Nsg2J2uoubKGURw-Yh2kF5xUWDgavMgG8S1R4vNtjZtNw4XeBoCpeoQAvD_BwE(accessed on 23-10-2024)
  16. Carter L.L. Yu M.A. Sacks J.A. Barnadas C. Pereyaslov D. Cognat S. Global genomic surveillance strategy for pathogens with pandemic and epidemic potential 2022-2032. Bull. World Heal. Organiz. 2022 100 239 10.2471/BLT.22.288220
    [Google Scholar]
  17. Hussain M.S. Sharma G. The Burden of Cardiovascular Diseases Due to COVID-19 Pandemic. Thorac. Cardiovasc. Surg. 2024 72 1 040 050 10.1055/s‑0042‑1755205 35987194
    [Google Scholar]
  18. Li P. Faraone J.N. Hsu C.C. Chamblee M. Zheng Y.M. Carlin C. Bednash J.S. Horowitz J.C. Mallampalli R.K. Saif L.J. Oltz E.M. Jones D. Li J. Gumina R.J. Xu K. Liu S.L. Neutralization escape, infectivity, and membrane fusion of JN.1-derived SARS-CoV-2 SLip, FLiRT, and KP.2 variants. Cell Rep. 2024 43 8 114520 10.1016/j.celrep.2024.114520 39024099
    [Google Scholar]
  19. Zaeck L.M. Tan N.H. Rietdijk W.J.R. Geers D. Sablerolles R.S.G. Bogers S. van Dijk L.L.A. Gommers L. van Leeuwen L.P.M. Rugebregt S. Goorhuis A. Postma D.F. Visser L.G. Dalm V.A.S.H. Lafeber M. Kootstra N.A. Huckriede A.L.W. Haagmans B.L. van Baarle D. Koopmans M.P.G. van de Hoef A. Roders I.V. Tjon N. van Grafhorst K. Nieuwkoop N. de Wilt F. Scherbeijn S. Verstrepen B.E. Ferren M. Handrejk K. Schmitz K.S. Wijnans K. Lamoré A.C.P. Schnyder J. Starozhitskaya O. Harskamp A. Maurer I. Boeser-Nunnink B. Mangas-Ruiz M. Akkerman R. Beukema M. de Vries-Idema J.J. Nijhof S. Visscher F. Zuidema J. Vlot J. Spaargaren E. Olthof N. van Wengen-Stevenhagen A. de Vreede A.J.E. Blokland J. van Mill S. Slagter V.W.M. Suijk-Benschop K. Fehrmann-Naumann J. Bart D. van der Hulst E. van der Kuy P.H.M. GeurtsvanKessel C.H. de Vries R.D. SWITCH-ON Research Group Original COVID-19 priming regimen impacts the immunogenicity of bivalent BA.1 and BA.5 boosters. Nat. Commun. 2024 15 1 4224 10.1038/s41467‑024‑48414‑x 38762522
    [Google Scholar]
  20. Plaxco A.P. Kmet J.M. Nolan V.G. Taylor M.A. Smeltzer M.P. Association Between mRNA Vaccination and Infection From SARS-CoV-2 During the Delta and Omicron BA.1 Waves: A Population-Level Analysis. AJPM Focus 2023 2 4 100150 10.1016/j.focus.2023.100150 37941824
    [Google Scholar]
  21. Vokó Z. Kiss Z. Surján G. Surján O. Barcza Z. Wittmann I. Molnár G.A. Nagy D. Müller V. Bogos K. Nagy P. Kenessey I. Wéber A. Polivka L. Pálosi M. Szlávik J. Rokszin G. Müller C. Szekanecz Z. Kásler M. Effectiveness and Waning of Protection With Different SARS-CoV-2 Primary and Booster Vaccines During the Delta Pandemic Wave in 2021 in Hungary (HUN-VE 3 Study). Front. Immunol. 2022 13 919408 10.3389/fimmu.2022.919408 35935993
    [Google Scholar]
  22. Klein M.G. Cheng C.J. Lii E. Mao K. Mesbahi H. Zhu T. Muckstadt J.A. Hupert N. COVID-19 Models for Hospital Surge Capacity Planning: A Systematic Review. Disaster Med. Public Health Prep. 2022 16 1 390 397 10.1017/dmp.2020.332 32907668
    [Google Scholar]
  23. Anesi G.L. Lynch Y. Evans L. A Conceptual and Adaptable Approach to Hospital Preparedness for Acute Surge Events Due to Emerging Infectious Diseases. Crit. Care Explor. 2020 2 4 e0110 10.1097/CCE.0000000000000110 32426752
    [Google Scholar]
  24. Gilmore B. Ndejjo R. Tchetchia A. de Claro V. Mago E. Diallo A.A. Lopes C. Bhattacharyya S. Community engagement for COVID-19 prevention and control: a rapid evidence synthesis. BMJ Glob. Health 2020 5 10 e003188 10.1136/bmjgh‑2020‑003188 33051285
    [Google Scholar]
  25. Littlecott H. Herd C. O'Rourke J. Chaparro L.T. Keeling M. Rubin G. Effectiveness of testing, contact tracing and isolation interventions among the general population on reducing transmission of SARS-CoV-2: a systematic review. Philosoph. transac. Ser. A, Mathem. Phys. Engin. Sci. 2023 381 20230131
    [Google Scholar]
  26. Gupta G. Hussain M.S. Thapa R. Dahiya R. Mahapatra D.K. Bhat A.A. Singla N. Subramaniyan V. Rawat S. Jakhmola V. S R. Dua K. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19. Regen. Med. 2023 18 9 675 678 10.2217/rme‑2023‑0077 37554111
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355749241111045626
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test