Skip to content
2000
image of Mechanistic Studies on the Antidiabetic Properties of Gallotannins

Abstract

The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338114241021110221
2024-11-04
2025-01-09
Loading full text...

Full text loading...

References

  1. Søndergaard C.S. Esquivel P.N. Dalamaga M. Magkos F. Use of Antihyperglycemic Drugs and Risk of Cancer in Patients with Diabetes. Curr. Oncol. Rep. 2023 25 1 29 40 10.1007/s11912‑022‑01344‑7 36445570
    [Google Scholar]
  2. Lisco G. Volpe S. Triggiani D. Triggiani V. Piazzolla G. When serum C-peptide measurement drives adequate diabetes mellitus diagnosis and therapy: A case report. Endocr. Metab. Immune Disord. Drug Targets 2023 23 5 1005 1009 10.2174/1871530323666230130151808
    [Google Scholar]
  3. Alam S. Sarker M.M.R. Sultana T.N. Chowdhury M.N.R. Rashid M.A. Chaity N.I. Zhao C. Xiao J. Hafez E.E. Khan S.A. Mohamed I.N. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. (Lausanne) 2022 13 800714 10.3389/fendo.2022.800714 35282429
    [Google Scholar]
  4. Lal A.F. Singh S. Franco F.C. Bhatia S. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens. Asian Pac. J. Trop. Biomed. 2021 11 6 231 243 10.4103/2221‑1691.314044
    [Google Scholar]
  5. Serrano J. Puupponen-Pimi R. Dauer A. Aura A.M. Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 2010 ••• 53 19437486
    [Google Scholar]
  6. Khanbabaee K. van Ree T. Tannins: classification and definition. Nat. Prod. Rep. 2001 18 6 641 649 10.1039/b101061l 11820762
    [Google Scholar]
  7. Machida S. Sugaya M. Saito H. Uchiyama T. Synthesis and Evaluation of Gallotannin Derivatives as Antioxidants and α-Glucosidase Inhibitors. Chem. Pharm. Bull. (Tokyo) 2021 69 12 1209 1212 10.1248/cpb.c21‑00566 34853289
    [Google Scholar]
  8. Raina J. Firdous A. Singh G. Kumar R. Kaur C. Role of polyphenols in the management of diabetic complications. Phytomedicine 2024 122 155155 10.1016/j.phymed.2023.155155 37922790
    [Google Scholar]
  9. Besharati M. Maggiolino A. Palangi V. Kaya A. Jabbar M. Eseceli H. De Palo P. Lorenzo J.M. Tannin in ruminant nutrition. Molecules 2022 27 23 8273 10.3390/molecules27238273 36500366
    [Google Scholar]
  10. Bartzoka E.D. Lange H. Mosesso P. Crestini C. Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery. Green Chem. 2017 19 21 5074 5091 10.1039/C7GC02009K
    [Google Scholar]
  11. Lahlou R.A. Carvalho F. Pereira M.J. Lopes J. Silva L.R. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024 16 4 454 10.3390/pharmaceutics16040454 38675115
    [Google Scholar]
  12. Moreno-Córdova E.N. Arvizu-Flores A.A. Valenzuela-Soto E.M. García-Orozco K.D. Wall-Medrano A. Alvarez-Parrilla E. Ayala-Zavala J.F. Domínguez-Avila J.A. González-Aguilar G.A. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophys. Chem. 2020 264 106409 10.1016/j.bpc.2020.106409 32534374
    [Google Scholar]
  13. Sokolova E. Krol T. Adamov G. Minyazeva Y. Baleev D. Sidelnikov N. Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules 2024 29 9 2013 10.3390/molecules29092013 38731503
    [Google Scholar]
  14. He Y.C. Gong C. Lei X.L. Gao W. Yang J.F. Bae Y.S. Kim J.K. Seo C.G. Park S.Y. Choi S.E. Li B-T. A New Gallotannin from the Extractives of Camellia oleifera Fruit Shell. Chem. Nat. Compd. 2023 59 2 265 268 10.1007/s10600‑023‑03972‑2
    [Google Scholar]
  15. Han H.J. Kwon H.Y. Sohn E.J. Ko H. Kim B. Jung K. Lew J.H. Kim S.H. Suppression of E-cadherin mediates gallotannin induced apoptosis in Hep G2 hepatocelluar carcinoma cells. Int. J. Biol. Sci. 2014 10 5 490 499 10.7150/ijbs.7495 24795530
    [Google Scholar]
  16. Niemetz R. Gross G.G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 2005 66 17 2001 2011 10.1016/j.phytochem.2005.01.009 16153405
    [Google Scholar]
  17. Li B. Ge J. Liu W. Hu D. Li P. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. New Phytol. 2021 231 2 892 902 10.1111/nph.17393 33864691
    [Google Scholar]
  18. Batinić P. Jovanović A. Stojković D. Zengin G. Cvijetić I. Gašić U. Čutović N. Pešić M.B. Milinčić D.D. Carević T. Marinković A. Bugarski B. Marković T. Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia. Pharmaceuticals (Basel) 2024 17 4 518 10.3390/ph17040518 38675478
    [Google Scholar]
  19. Virtanen V. Karonen M. Partition coefficients (logP) of hydrolysable tannins. Molecules 2020 25 16 3691 10.3390/molecules25163691 32823639
    [Google Scholar]
  20. Niemetz R. Gross G.G. Gallotannin biosynthesis: purification of β -glucogallin: 1,2,3,4,6-pentagalloyl- β -d-glucose galloyltransferase from sumac leaves fn1 fn1In honour of Professor G. H. Neil Towers’ 75th birthday. Phytochemistry 1998 49 2 327 332 10.1016/S0031‑9422(98)00014‑4
    [Google Scholar]
  21. Rahimi A. Naserian A.A. Valizadeh R. Tahmasbi A.M. Saremi B. Shahdadi A. 2012 Effects of pistachio tannins on nitrogen metabolism in Balochi male lambs. ADSA ASAS Joint Annual Meetings Iran 15 July, 2012
    [Google Scholar]
  22. Yuan X. Wang H. Zhang F. Zhang M. Wang Q. Wang J. The common genes involved in the pathogenesis of Alzheimer’s disease and type 2 diabetes and their implication for drug repositioning. Neuropharmacology 2023 223 109327 10.1016/j.neuropharm.2022.109327 36368623
    [Google Scholar]
  23. Lee S.H. Park S.Y. Choi C.S. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab. J. 2022 46 1 15 37 10.4093/dmj.2021.0280 34965646
    [Google Scholar]
  24. Sanches J.M. Zhao L.N. Salehi A. Wollheim C.B. Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J. 2023 290 3 620 648 10.1111/febs.16306 34847289
    [Google Scholar]
  25. Kandra L. Gyémánt G. Zajácz Á. Batta G. Inhibitory effects of tannin on human salivary α-amylase. Biochem. Biophys. Res. Commun. 2004 319 4 1265 1271 10.1016/j.bbrc.2004.05.122 15194503
    [Google Scholar]
  26. Yang D. Ding X. Xu H.X. Guo Y.X. Zhang Q.F. Chemical profile of Roselle extract and its inhibitory activities on three digestive enzymes in vitro and iin vivo. Int. J. Biol. Macromol. 2023 253 Pt 3 126902 10.1016/j.ijbiomac.2023.126902 37714233
    [Google Scholar]
  27. Fang C. Kim H. Yanagisawa L. Bennett W. Sirven M.A. Alaniz R.C. Talcott S.T. Mertens-Talcott S.U. Gallotannins and Lactobacillus plantarum WCFS1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnotobiotic mice. Mol. Nutr. Food Res. 2019 63 9 1800937 10.1002/mnfr.201800937 30908878
    [Google Scholar]
  28. Fang C. Kim H. Noratto G. Sun Y. Talcott S.T. Mertens-Talcott S.U. Gallotannin derivatives from mango (Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway. J. Funct. Foods 2018 46 101 109 10.1016/j.jff.2018.04.043
    [Google Scholar]
  29. Li L. Ma H. Liu T. Ding Z. Liu W. Gu Q. Mu Y. Xu J. Seeram N.P. Huang X. Xu J. Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice. J. Funct. Foods 2020 70 103970 10.1016/j.jff.2020.103970
    [Google Scholar]
  30. Chandak P.G. Gaikwad A.B. Tikoo K. Gallotannin ameliorates the development of streptozotocin-induced diabetic nephropathy by preventing the activation of PARP. Phytother. Res. 2009 23 1 72 77 10.1002/ptr.2559 18693296
    [Google Scholar]
  31. Xiao H.T. Lin C.Y. Ho D.H.H. Peng J. Chen Y. Tsang S.W. Wong M. Zhang X.J. Zhang M. Bian Z.X. Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis. J. Nat. Prod. 2013 76 11 2120 2125 10.1021/np4006772 24200352
    [Google Scholar]
  32. Barnes R.C. Krenek K.A. Meibohm B. Mertens-Talcott S.U. Talcott S.T. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions. Mol. Nutr. Food Res. 2016 60 3 542 550 10.1002/mnfr.201500706 26640139
    [Google Scholar]
  33. Le D.T. Kumar G. Williamson G. Devkota L. Dhital S. (Poly)phenols and dietary fiber in beans: Metabolism and nutritional impact in the gastrointestinal tract. Food Hydrocoll. 2024 156 110350 10.1016/j.foodhyd.2024.110350
    [Google Scholar]
  34. Cheng Y. Ofori Donkor P. Yeboah G.B. Ayim I. Wu J. Ma H. Modulating the in vitro digestion of heat-set whey protein emulsion gels via gelling properties modification with sequential ultrasound pretreatment. Lebensm. Wiss. Technol. 2021 149 111856 10.1016/j.lwt.2021.111856
    [Google Scholar]
  35. Correa V.G. Garcia-Manieri J.A.A. Silva A.R. Backes E. Corrêa R.C.G. Barros L. Bracht A. Peralta R.M. Exploring the α-amylase-inhibitory properties of tannin-rich extracts of Cytinus hypocistis on starch digestion. Food Res. Int. 2023 173 Pt 1 113260 10.1016/j.foodres.2023.113260 37803573
    [Google Scholar]
  36. Lim S.Y. Steiner J.M. Cridge H. Lipases: it’s not just pancreatic lipase! Am. J. Vet. Res. 2022 83 8 83 10.2460/ajvr.22.03.0048 35895796
    [Google Scholar]
  37. Kiss L. Fűr G. Pisipati S. Rajalingamgari P. Ewald N. Singh V. Rakonczay Z. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol. (Oxf.) 2023 237 3 e13916 10.1111/apha.13916 36599412
    [Google Scholar]
  38. Ortiz-Placín C. Castillejo-Rufo A. Estarás M. González A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023 28 11 4316 10.3390/molecules28114316 37298790
    [Google Scholar]
  39. Chen Z. Farag M.A. Zhong Z. Zhang C. Yang Y. Wang S. Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 2021 176 113870 10.1016/j.addr.2021.113870 34280511
    [Google Scholar]
  40. de Oliveira M.G. de Souza W.R.N. Rodrigues R.P. Kawano D.F. Borges L.L. da Silva V.B. 2020 Pharmacophore mapping of natural products for pancreatic lipase inhibition. Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies Springer Cham 305 338 La Porta F. Taft C. 10.1007/978‑3‑030‑31403‑3_12
    [Google Scholar]
  41. Schleh M.W. Ryan B.J. Ahn C. Ludzki A.C. Varshney P. Gillen J.B. Van Pelt D.W. Pitchford L.M. Howton S.M. Rode T. Chenevert T.L. Hummel S.L. Burant C.F. Horowitz J.F. Metabolic dysfunction in obesity is related to impaired suppression of fatty acid release from adipose tissue by insulin. Obesity (Silver Spring) 2023 31 5 1347 1361 10.1002/oby.23734 36988872
    [Google Scholar]
  42. Yang Q. Vijayakumar A. Kahn B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018 19 10 654 672 10.1038/s41580‑018‑0044‑8 30104701
    [Google Scholar]
  43. Copps K.D. White M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012 55 10 2565 2582 10.1007/s00125‑012‑2644‑8 22869320
    [Google Scholar]
  44. Martínez Báez A. Ayala G. Pedroza-Saavedra A. González-Sánchez H.M. Chihu Amparan L. Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways. Curr. Issues Mol. Biol. 2024 46 1 634 649 10.3390/cimb46010041 38248343
    [Google Scholar]
  45. Ha J. Guan K.L. Kim J. AMPK and autophagy in glucose/glycogen metabolism. Mol. Aspects Med. 2015 46 46 62 10.1016/j.mam.2015.08.002 26297963
    [Google Scholar]
  46. Deng Y. Duan R. Ding W. Gu Q. Liu M. Zhou J. Sun J. Zhu J. Astrocyte-derived exosomal nicotinamide phosphoribosyltransferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy. Cell Death Dis. 2022 13 12 1057 10.1038/s41419‑022‑05454‑9 36539418
    [Google Scholar]
  47. James D.E. Stöckli J. Birnbaum M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 2021 22 11 751 771 10.1038/s41580‑021‑00390‑6 34285405
    [Google Scholar]
  48. Masenga S.K. Kabwe L.S. Chakulya M. Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023 24 9 7898 10.3390/ijms24097898 37175603
    [Google Scholar]
  49. Zamani-Garmsiri F. Emamgholipour S. Rahmani Fard S. Ghasempour G. Jahangard Ahvazi R. Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother. Res. 2022 36 1 415 432 10.1002/ptr.7329 34825416
    [Google Scholar]
  50. Peng J. Wen W. Wang R. Li K. Xiao G. Li C. The galloyl moiety enhances inhibitory activity of polyphenols against adipogenic differentiation in 3T3-L1 preadipocytes. Food Funct. 2022 13 9 5275 5286 10.1039/D1FO04179G 35441186
    [Google Scholar]
  51. Kwon O.J. Bae J.S. Lee H. Hwang J.Y. Lee E.W. Ito H. Kim T. Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells. Molecules 2013 18 9 10629 10638 10.3390/molecules180910629 24002138
    [Google Scholar]
  52. Li C. Dong Y. Zhang R. Wang L. Shi W. Xu T. Zhang H. Effects of chinese herbal medicines on lipid metabolism and immunity function in laying hens. Indian J. Anim. Res. 2020 54 OF 1291 1295 10.18805/ijar.B‑1261
    [Google Scholar]
  53. Wu C. Yang F. Zhong H. Hong J. Lin H. Zong M. Ren H. Zhao S. Chen Y. Shi Z. 2024 Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption. ell Host Microbe 32 8 1301 1314.e9 10.1016/j.chom.2024.06.012
    [Google Scholar]
  54. Diotallevi C. Fava F. Gobbetti M. Tuohy K. Healthy dietary patterns to reduce obesity-related metabolic disease: polyphenol-microbiome interactions unifying health effects across geography. Curr. Opin. Clin. Nutr. Metab. Care 2020 23 6 437 444 10.1097/MCO.0000000000000697 32941185
    [Google Scholar]
  55. Dong Y. Zhang K. Wei J. Ding Y. Wang X. Hou H. Wu J. Liu T. Wang B. Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front. Immunol. 2023 14 1158200 10.3389/fimmu.2023.1158200 37122756
    [Google Scholar]
  56. Zhang H. Xie Y. Cao F. Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024 16 1 2382336 10.1080/19490976.2024.2382336 39046079
    [Google Scholar]
  57. Hricovíniová Z. Mascaretti Š. Hricovíniová J. Čížek A. Jampílek J. New unnatural Gallotannins: a way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants 2021 10 8 1288 10.3390/antiox10081288 34439536
    [Google Scholar]
  58. Liu Z. Luo S. Liu C. Hu X. Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro human fecal fermentation. Food Chem. 2024 440 138261 10.1016/j.foodchem.2023.138261 38150905
    [Google Scholar]
  59. Tripathi S. Parmar D. Fathima S. Raval S. Singh G. Coenzyme Q10, biochanin A and phloretin attenuate Cr (VI)-induced oxidative stress and DNA damage by stimulating Nrf2/HO-1 pathway in the experimental model. Biol. Trace Elem. Res. 2023 201 5 2427 2441 10.1007/s12011‑022‑03358‑5 35953644
    [Google Scholar]
  60. Eguchi N. Vaziri N.D. Dafoe D.C. Ichii H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci. 2021 22 4 1509 10.3390/ijms22041509 33546200
    [Google Scholar]
  61. Argaev-Frenkel L. Rosenzweig T. Redox balance in type 2 diabetes: therapeutic potential and the challenge of antioxidant-based therapy. Antioxidants 2023 12 5 994 10.3390/antiox12050994 37237860
    [Google Scholar]
  62. Hoseini R. Rahim H.A. Ahmed J.K. Concurrent alteration in inflammatory biomarker gene expression and oxidative stress: how aerobic training and vitamin D improve T2DM. BMC Complement. Med. Ther. 2022 22 1 165 10.1186/s12906‑022‑03645‑7 35733163
    [Google Scholar]
  63. Tripathi S. Fhatima S. Parmar D. Singh D.P. Mishra S. Mishra R. Singh G. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. 3 Biotech. 12 5 116 2022 10.1007/s13205‑022‑03171‑w 35547012
    [Google Scholar]
  64. Nait Irahal I. Darif D. Guenaou I. Hmimid F. azzahra Lahlou F. Ez-zahra Ousaid F. Abdou-Allah F. Aitsi L. Akarid K. Bourhim N. Therapeutic Potential of Clove Essential Oil in Diabetes: Modulation of Pro-Inflammatory Mediators, Oxidative Stress and Metabolic Enzyme Activities. Chem. Biodivers. 2023 20 3 e202201169 10.1002/cbdv.202201169 36823346
    [Google Scholar]
  65. Xue D.D. Zhang X. Li D.W. Yang Y.L. Liu J.J. Protective effect of liraglutide on the myocardium of type 2 diabetic rats by inhibiting polyadenosine diphosphate-ribose polymerase-1. World J. Diabetes 2023 14 2 110 119 10.4239/wjd.v14.i2.110 36926657
    [Google Scholar]
  66. Thorslund T. von Kobbe C. Harrigan J.A. Indig F.E. Christiansen M. Stevnsner T. Bohr V.A. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell. Biol. 2005 25 17 7625 7636 10.1128/MCB.25.17.7625‑7636.2005 16107709
    [Google Scholar]
  67. Yang W. Gao C. Inhibitory effects of bound phenolic extracts from Lycopus lucidus Turcz. on α-glucosidase and pancreatic lipase. Sci. Technol. Food Ind 2018 39 111 116
    [Google Scholar]
  68. Singh G. Kumar A. Sinha N. Studying significance of apoptosis in mediating tolbutamide-induced teratogenesis in vitro. Fundam. Clin. Pharmacol. 2012 26 4 484 494 10.1111/j.1472‑8206.2011.00946.x 21535124
    [Google Scholar]
  69. Zeng Q. Li N. Pan X.F. Chen L. Pan A. Clinical management and treatment of obesity in China. Lancet Diabetes Endocrinol. 2021 9 6 393 405 10.1016/S2213‑8587(21)00047‑4 34022157
    [Google Scholar]
  70. Yu L. Wang J. Hu Z. Xu T. Zhou W. A novel nomogram for predicting optimal weight loss response following diet and exercise intervention in patients with obesity. Sci. Rep. 2024 14 1 18168 10.1038/s41598‑024‑69295‑6 39107586
    [Google Scholar]
  71. Hevko U.P. Marushchak M.I. Polymorphisms of insulin receptor substrate 1 as a risk factor for type 2 diabetes mellitus, obesity and chronic pancreatitis among population of Ternopil region. International Journal of Medicine and Medical Research 2021 6 2 30 36 10.11603/ijmmr.2413‑6077.2020.2.11688
    [Google Scholar]
  72. Shahcheraghi N. Golchin H. Sadri Z. Tabari Y. Borhanifar F. Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech. 12 3 65 2022 10.1007/s13205‑021‑03108‑9 35186662
    [Google Scholar]
  73. He H.F. Recognition of gallotannins and the physiological activities: from chemical view. Front. Nutr. 2022 9 888892 10.3389/fnut.2022.888892 35719149
    [Google Scholar]
  74. Spricigo P.C. Almeida L.S. Ribeiro G.H. Correia B.S.B. Taver I.B. Jacomino A.P. Colnago L.A. Quality Attributes and Metabolic Profiles of Uvaia (Eugenia pyriformis), a Native Brazilian Atlantic Forest Fruit. Foods 2023 12 9 1881 10.3390/foods12091881 37174419
    [Google Scholar]
  75. Gross G.G. Synthesis of mono-, di-and trigalloyl-β-ᴅ-glucose by β-glucogallin-dependent galloyltransferases from oak leaves. Z. Naturforsch. C J. Biosci. 1983 38 7-8 519 523 10.1515/znc‑1983‑7‑804
    [Google Scholar]
  76. Yang M.H. Ali Z. Khan I.A. Khan S.I. Anti-inflammatory activity of constituents isolated from Terminalia chebula. 2014 Nat. Prod. Commun. 9 7 965 968 10.1177/1934578X1400900721 25230505
    [Google Scholar]
  77. He Z. Cheng L. Li S. Liu Q. Liang X. Hu J. Wang J. Liu X. Zhao F. Inulin and Chinese Gallotannin affect meat quality and lipid metabolism on Hu Sheep. Animals (Basel) 2022 13 1 160 10.3390/ani13010160 36611769
    [Google Scholar]
  78. Baky M.H. Salah M. Ezzelarab N. Shao P. Elshahed M.S. Farag M.A. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit. Rev. Food Sci. Nutr. 2024 64 7 1954 1968 10.1080/10408398.2022.2119931 36094440
    [Google Scholar]
  79. Wu Z. Wang X. Xie Y. Qian Q. Luan W. Yang H. Li J. Ma J. Chen S. Li X. Dynamic changes of gut microbiota composition during the intervention of apple polyphenols extract to alleviate high-carbohydrate-diet induced body weight gain. Food Biosci. 2024 60 104272 10.1016/j.fbio.2024.104272
    [Google Scholar]
  80. Li J. Zhao J. Tian C. Dong L. Kang Z. Wang J. Zhao S. Li M. Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr. Metab. (Lond.) 2024 21 1 49 10.1186/s12986‑024‑00829‑5 39026248
    [Google Scholar]
  81. Fan Y. Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021 19 1 55 71 10.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  82. Pan L.L. Ren Z.N. Yang J. Li B.B. Huang Y.W. Song D.X. Li X. Xu J.J. Bhatia M. Zou D.W. Zhou C.H. Sun J. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm. Sin. B 2023 13 10 4202 4216 10.1016/j.apsb.2023.08.002 37799394
    [Google Scholar]
  83. Kawabata K. Yoshioka Y. Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019 24 2 370 10.3390/molecules24020370 30669635
    [Google Scholar]
  84. John Kenneth M. Tsai H.C. Fang C.Y. Hussain B. Chiu Y.C. Hsu B.M. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. J. Adv. Res. 2023 52 45 57 10.1016/j.jare.2022.12.015 36596411
    [Google Scholar]
  85. Cui Q. Zhang X. Shao J. Ni W. Yang Y. Yan B. Bioactivities of dietary polyphenols and their effects on intestinal microbiota. Mini Rev. Med. Chem. 2023 23 3 361 377 10.2174/1389557522666220811123115 35959612
    [Google Scholar]
  86. Bacon J.R. Rhodes M.J.C. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J. Agric. Food Chem. 2000 48 3 838 843 10.1021/jf990820z 10725160
    [Google Scholar]
  87. Wang M. Brignot H. Septier C. Martin C. Canon F. Feron G. Astringency sensitivity to tannic acid: Effect of ageing and salivary proline-rich protein levels. Food Chem. (Oxf.) 2024 8 100192 10.1016/j.fochms.2023.100192 38234464
    [Google Scholar]
  88. Obreque-Slier E. Peña-Neira Á. López-Solís R. Precipitation of low molecular weight phenolic compounds of grape seeds cv. Carménère (Vitis vinifera L.) by whole saliva. Eur. Food Res. Technol. 2011 232 1 113 121 10.1007/s00217‑010‑1365‑9
    [Google Scholar]
  89. Hong M. Zhang R. Liu Y. Wu Z. Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J. Food Biochem. 2022 46 3 e13870 10.1111/jfbc.13870 34287960
    [Google Scholar]
  90. Jiménez N. Curiel J.A. Reverón I. Rivas B.D.L. Muño R. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl. Environ. Microbiol. 2013 79 14 4253 4263 10.1128/AEM.00840‑13 23645198
    [Google Scholar]
  91. Barnes R.C. Kim H. Fang C. Bennett W. Nemec M. Sirven M.A. Suchodolski J.S. Deutz N. Britton R.A. Mertens-Talcott S.U. Talcott S.T. Body mass index as a determinant of systemic exposure to gallotannin metabolites during 6-week consumption of mango (Mangifera indica L.) and modulation of intestinal microbiota in lean and obese individuals. Mol. Nutr. Food Res. 2019 63 2 1800512 10.1002/mnfr.201800512 30427574
    [Google Scholar]
  92. Engevik M.A. Luck B. Visuthranukul C. Ihekweazu F.D. Engevik A.C. Shi Z. Danhof H.A. Chang-Graham A.L. Hall A. Endres B.T. Haidacher S.J. Horvath T.D. Haag A.M. Devaraj S. Garey K.W. Britton R.A. Hyser J.M. Shroyer N.F. Versalovic J. Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis. Cell. Mol. Gastroenterol. Hepatol. 2021 11 1 221 248 10.1016/j.jcmgh.2020.08.002 32795610
    [Google Scholar]
  93. Lawenius L. Scheffler J.M. Gustafsson K.L. Henning P. Nilsson K.H. Colldén H. Islander U. Plovier H. Cani P.D. de Vos W.M. Ohlsson C. Sjögren K. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am. J. Physiol. Endocrinol. Metab. 2020 318 4 E480 E491 10.1152/ajpendo.00425.2019 31961709
    [Google Scholar]
  94. Ranuh R. Athiyyah A.F. Darma A. Risky V.P. Riawan W. Surono I.S. Sudarmo S.M. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: role of intestinal microbiota on the gut-brain axis. Iran. J. Microbiol. 2019 11 2 145 150 10.18502/ijm.v11i2.1077 31341569
    [Google Scholar]
  95. Yin Y. Xie Y. Wu Z. Qian Q. Yang H. Li S. Li X. Preventive effects of apple polyphenol extract on high-fat-diet-induced hepatic steatosis are related to the regulation of hepatic lipid metabolism, autophagy, and gut microbiota in aged Mice. J. Agric. Food Chem. 2023 71 50 20011 20033 10.1021/acs.jafc.3c00596 38055797
    [Google Scholar]
  96. Ottman N. Smidt H. de Vos W.M. Belzer C. The function of our microbiota: who is out there and what do they do? Front. Cell. Infect. Microbiol. 2012 2 104 10.3389/fcimb.2012.00104 22919693
    [Google Scholar]
  97. Niesen D.B. Isolation, synthesis, and metabolism of polyphenols: Stilbenoids, gallotannins and ellagitannins. Doctor of Philosophy, University of Rhode Island 2016
    [Google Scholar]
  98. Zhang H. Zhang L. Tang L. Hu X. Xu M. Effects of metal ions on the precipitation of penta-O-galloyl-β-d-glucopyranose by protein. J. Agric. Food Chem. 2021 69 17 5059 5066 10.1021/acs.jafc.1c01185 33896171
    [Google Scholar]
  99. Engels C. Gänzle M.G. Schieber A. Fast LC-MS analysis of gallotannins from mango (Mangifera indica L.) kernels and effects of methanolysis on their antibacterial activity and iron binding capacity. Food Res. Int. 2012 45 1 422 426 10.1016/j.foodres.2011.11.008
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338114241021110221
Loading
/content/journals/cpd/10.2174/0113816128338114241021110221
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Gallotannins ; glycometabolism ; inflammation ; type 2 diabetes mellitus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test