Skip to content
2000
Volume 31, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338114241021110221
2024-11-04
2025-03-07
Loading full text...

Full text loading...

References

  1. SøndergaardC.S. EsquivelP.N. DalamagaM. MagkosF. Use of antihyperglycemic drugs and risk of cancer in patients with diabetes.Curr. Oncol. Rep.2023251294010.1007/s11912‑022‑01344‑736445570
    [Google Scholar]
  2. LiscoG. VolpeS. TriggianiD. TriggianiV. PiazzollaG. When serum C-peptide measurement drives adequate diabetes mellitus diagnosis and therapy: A case report.Endocr. Metab. Immune Disord. Drug Targets20232351005100910.2174/1871530323666230130151808
    [Google Scholar]
  3. AlamS. SarkerM.M.R. SultanaT.N. ChowdhuryM.N.R. RashidM.A. ChaityN.I. ZhaoC. XiaoJ. HafezE.E. KhanS.A. MohamedI.N. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development.Front. Endocrinol. (Lausanne)20221380071410.3389/fendo.2022.80071435282429
    [Google Scholar]
  4. LalA.F. SinghS. FrancoF.C. BhatiaS. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens.Asian Pac. J. Trop. Biomed.202111623124310.4103/2221‑1691.314044
    [Google Scholar]
  5. SerranoJ. Puupponen-PimiR. DauerA. AuraA.M. Saura-CalixtoF. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects.Mol. Nutr. Food Res.200953S2S310-2919437486
    [Google Scholar]
  6. KhanbabaeeK. van ReeT. Tannins: Classification and definition.Nat. Prod. Rep.200118664164910.1039/b101061l11820762
    [Google Scholar]
  7. MachidaS. SugayaM. SaitoH. UchiyamaT. Synthesis and evaluation of gallotannin derivatives as antioxidants and α-glucosidase inhibitors.Chem. Pharm. Bull. (Tokyo)202169121209121210.1248/cpb.c21‑0056634853289
    [Google Scholar]
  8. RainaJ. FirdousA. SinghG. KumarR. KaurC. Role of polyphenols in the management of diabetic complications.Phytomedicine202412215515510.1016/j.phymed.2023.15515537922790
    [Google Scholar]
  9. BesharatiM. MaggiolinoA. PalangiV. KayaA. JabbarM. EseceliH. De PaloP. LorenzoJ.M. Tannin in ruminant nutrition.Molecules20222723827310.3390/molecules2723827336500366
    [Google Scholar]
  10. BartzokaE.D. LangeH. MosessoP. CrestiniC. Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery.Green Chem.201719215074509110.1039/C7GC02009K
    [Google Scholar]
  11. LahlouR.A. CarvalhoF. PereiraM.J. LopesJ. SilvaL.R. Overview of ethnobotanical-pharmacological studies carried out on medicinal plants from the Serra da Estrela Natural Park: Focus on their antidiabetic potential.Pharmaceutics202416445410.3390/pharmaceutics1604045438675115
    [Google Scholar]
  12. Moreno-CórdovaE.N. Arvizu-FloresA.A. Valenzuela-SotoE.M. García-OrozcoK.D. Wall-MedranoA. Alvarez-ParrillaE. Ayala-ZavalaJ.F. Domínguez-AvilaJ.A. González-AguilarG.A. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity.Biophys. Chem.202026410640910.1016/j.bpc.2020.10640932534374
    [Google Scholar]
  13. SokolovaE. KrolT. AdamovG. MinyazevaY. BaleevD. SidelnikovN. Total content and composition of phenolic compounds from Filipendula genus plants and their potential health-promoting properties.Molecules2024299201310.3390/molecules2909201338731503
    [Google Scholar]
  14. HeY.C. GongC. LeiX.L. GaoW. YangJ.F. BaeY.S. KimJ.K. SeoC.G. ParkS.Y. ChoiS.E. LiB-T. A new gallotannin from the extractives of Camellia oleifera fruit shell.Chem. Nat. Compd.202359226526810.1007/s10600‑023‑03972‑2
    [Google Scholar]
  15. HanH.J. KwonH.Y. SohnE.J. KoH. KimB. JungK. LewJ.H. KimS.H. Suppression of E-cadherin mediates gallotannin induced apoptosis in Hep G2 hepatocelluar carcinoma cells.Int. J. Biol. Sci.201410549049910.7150/ijbs.749524795530
    [Google Scholar]
  16. NiemetzR. GrossG.G. Enzymology of gallotannin and ellagitannin biosynthesis.Phytochemistry200566172001201110.1016/j.phytochem.2005.01.00916153405
    [Google Scholar]
  17. LiB. GeJ. LiuW. HuD. LiP. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging.New Phytol.2021231289290210.1111/nph.1739333864691
    [Google Scholar]
  18. BatinićP. JovanovićA. StojkovićD. ZenginG. CvijetićI. GašićU. ČutovićN. PešićM.B. MilinčićD.D. CarevićT. MarinkovićA. BugarskiB. MarkovićT. phytochemical analysis, biological activities, and molecular docking studies of root extracts from Paeonia species in Serbia.Pharmaceuticals (Basel)202417451810.3390/ph1704051838675478
    [Google Scholar]
  19. VirtanenV. KaronenM. Partition coefficients (logP) of hydrolysable tannins.Molecules20202516369110.3390/molecules2516369132823639
    [Google Scholar]
  20. NiemetzR. GrossG.G. Gallotannin biosynthesis: Purification of β-glucogallin: 1,2,3,4,6-pentagalloyl-β-d-glucose galloyltransferase from sumac leaves fn1. fn1In honour of Professor G.H. Neil Towers’ 75th birthday.Phytochemistry199849232733210.1016/S0031‑9422(98)00014‑4
    [Google Scholar]
  21. RahimiA. NaserianA.A. ValizadehR. TahmasbiA.M. SaremiB. ShahdadiA. 2012Effects of pistachio tannins on nitrogen metabolism in Balochi male lambs.ADSA ASAS Joint Annual MeetingsIran
    [Google Scholar]
  22. YuanX. WangH. ZhangF. ZhangM. WangQ. WangJ. The common genes involved in the pathogenesis of Alzheimer’s disease and type 2 diabetes and their implication for drug repositioning.Neuropharmacology202322310932710.1016/j.neuropharm.2022.10932736368623
    [Google Scholar]
  23. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  24. SanchesJ.M. ZhaoL.N. SalehiA. WollheimC.B. KaldisP. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk.FEBS J.2023290362064810.1111/febs.1630634847289
    [Google Scholar]
  25. KandraL. GyémántG. ZajáczÁ. BattaG. Inhibitory effects of tannin on human salivary α-amylase.Biochem. Biophys. Res. Commun.200431941265127110.1016/j.bbrc.2004.05.12215194503
    [Google Scholar]
  26. YangD. DingX. XuH.X. GuoY.X. ZhangQ.F. Chemical profile of Roselle extract and its inhibitory activities on three digestive enzymes in vitro and in vivo.Int. J. Biol. Macromol.2023253Pt 312690210.1016/j.ijbiomac.2023.12690237714233
    [Google Scholar]
  27. FangC. KimH. YanagisawaL. BennettW. SirvenM.A. AlanizR.C. TalcottS.T. Mertens-TalcottS.U. Gallotannins and Lactobacillus plantarum WCFS1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnotobiotic mice.Mol. Nutr. Food Res.2019639180093710.1002/mnfr.20180093730908878
    [Google Scholar]
  28. FangC. KimH. NorattoG. SunY. TalcottS.T. Mertens-TalcottS.U. Gallotannin derivatives from mango (Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway.J. Funct. Foods20184610110910.1016/j.jff.2018.04.043
    [Google Scholar]
  29. LiL. MaH. LiuT. DingZ. LiuW. GuQ. MuY. XuJ. SeeramN.P. HuangX. XuJ. Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice.J. Funct. Foods20207010397010.1016/j.jff.2020.103970
    [Google Scholar]
  30. ChandakP.G. GaikwadA.B. TikooK. Gallotannin ameliorates the development of streptozotocin-induced diabetic nephropathy by preventing the activation of PARP.Phytother. Res.2009231727710.1002/ptr.255918693296
    [Google Scholar]
  31. XiaoH.T. LinC.Y. HoD.H.H. PengJ. ChenY. TsangS.W. WongM. ZhangX.J. ZhangM. BianZ.X. Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis.J. Nat. Prod.201376112120212510.1021/np400677224200352
    [Google Scholar]
  32. BarnesR.C. KrenekK.A. MeibohmB. Mertens-TalcottS.U. TalcottS.T. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions.Mol. Nutr. Food Res.201660354255010.1002/mnfr.20150070626640139
    [Google Scholar]
  33. LeD.T. KumarG. WilliamsonG. DevkotaL. DhitalS. (Poly)phenols and dietary fiber in beans: Metabolism and nutritional impact in the gastrointestinal tract.Food Hydrocoll.202415611035010.1016/j.foodhyd.2024.110350
    [Google Scholar]
  34. ChengY. Ofori DonkorP. YeboahG.B. AyimI. WuJ. MaH. Modulating the in vitro digestion of heat-set whey protein emulsion gels via gelling properties modification with sequential ultrasound pretreatment.Lebensm. Wiss. Technol.202114911185610.1016/j.lwt.2021.111856
    [Google Scholar]
  35. CorreaV.G. Garcia-ManieriJ.A.A. SilvaA.R. BackesE. CorrêaR.C.G. BarrosL. BrachtA. PeraltaR.M. Exploring the α-amylase-inhibitory properties of tannin-rich extracts of Cytinus hypocistis on starch digestion.Food Res. Int.2023173Pt 111326010.1016/j.foodres.2023.11326037803573
    [Google Scholar]
  36. LimS.Y. SteinerJ.M. CridgeH. Lipases: It’s not just pancreatic lipase!Am. J. Vet. Res.20228388310.2460/ajvr.22.03.004835895796
    [Google Scholar]
  37. KissL. FűrG. PisipatiS. RajalingamgariP. EwaldN. SinghV. RakonczayZ. Mechanisms linking hypertriglyceridemia to acute pancreatitis.Acta Physiol. (Oxf.)20232373e1391610.1111/apha.1391636599412
    [Google Scholar]
  38. Ortiz-PlacínC. Castillejo-RufoA. EstarásM. GonzálezA. Membrane lipid derivatives: Roles of arachidonic acid and its metabolites in pancreatic physiology and pathophysiology.Molecules20232811431610.3390/molecules2811431637298790
    [Google Scholar]
  39. ChenZ. FaragM.A. ZhongZ. ZhangC. YangY. WangS. WangY. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems.Adv. Drug Deliv. Rev.202117611387010.1016/j.addr.2021.11387034280511
    [Google Scholar]
  40. de Oliveira MG, de Souza WRN, Rodrigues RP, Kawano DF, Borges LL, da Silva VB. Pharmacophore mapping of natural products for pancreatic lipase inhibition. In: La Porta F, Taft C, Eds. Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. 2020; 305-38.10.1007/978‑3‑030‑31403‑3_12
  41. SchlehM.W. RyanB.J. AhnC. LudzkiA.C. VarshneyP. GillenJ.B. Van PeltD.W. PitchfordL.M. HowtonS.M. RodeT. ChenevertT.L. HummelS.L. BurantC.F. HorowitzJ.F. Metabolic dysfunction in obesity is related to impaired suppression of fatty acid release from adipose tissue by insulin.Obesity (Silver Spring)20233151347136110.1002/oby.2373436988872
    [Google Scholar]
  42. YangQ. VijayakumarA. KahnB.B. Metabolites as regulators of insulin sensitivity and metabolism.Nat. Rev. Mol. Cell Biol.2018191065467210.1038/s41580‑018‑0044‑830104701
    [Google Scholar]
  43. CoppsK.D. WhiteM.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2.Diabetologia201255102565258210.1007/s00125‑012‑2644‑822869320
    [Google Scholar]
  44. Martínez BáezA. AyalaG. Pedroza-SaavedraA. González-SánchezH.M. Chihu AmparanL. Phosphorylation codes in IRS-1 and IRS-2 are associated with the activation/inhibition of insulin canonical signaling pathways.Curr. Issues Mol. Biol.202446163464910.3390/cimb4601004138248343
    [Google Scholar]
  45. HaJ. GuanK.L. KimJ. AMPK and autophagy in glucose/glycogen metabolism.Mol. Aspects Med.201546466210.1016/j.mam.2015.08.00226297963
    [Google Scholar]
  46. DengY. DuanR. DingW. GuQ. LiuM. ZhouJ. SunJ. ZhuJ. Astrocyte-derived exosomal nicotinamide phosphoribosyltransferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy.Cell Death Dis.20221312105710.1038/s41419‑022‑05454‑936539418
    [Google Scholar]
  47. JamesD.E. StöckliJ. BirnbaumM.J. The aetiology and molecular landscape of insulin resistance.Nat. Rev. Mol. Cell Biol.2021221175177110.1038/s41580‑021‑00390‑634285405
    [Google Scholar]
  48. MasengaS.K. KabweL.S. ChakulyaM. KiraboA. Mechanisms of oxidative stress in metabolic syndrome.Int. J. Mol. Sci.2023249789810.3390/ijms2409789837175603
    [Google Scholar]
  49. Zamani-GarmsiriF. EmamgholipourS. Rahmani FardS. GhasempourG. Jahangard AhvaziR. MeshkaniR. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders.Phytother. Res.202236141543210.1002/ptr.732934825416
    [Google Scholar]
  50. PengJ. WenW. WangR. LiK. XiaoG. LiC. The galloyl moiety enhances inhibitory activity of polyphenols against adipogenic differentiation in 3T3-L1 preadipocytes.Food Funct.20221395275528610.1039/D1FO04179G35441186
    [Google Scholar]
  51. KwonO.J. BaeJ.S. LeeH. HwangJ.Y. LeeE.W. ItoH. KimT. Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells.Molecules2013189106291063810.3390/molecules18091062924002138
    [Google Scholar]
  52. LiC. DongY. ZhangR. WangL. ShiW. XuT. ZhangH. Effects of chinese herbal medicines on lipid metabolism and immunity function in laying hens.Indian J. Anim. Res.202054OF1291129510.18805/ijar.B‑1261
    [Google Scholar]
  53. WuC. YangF. ZhongH. HongJ. LinH. ZongM. RenH. ZhaoS. ChenY. ShiZ. 2024Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption.ell Host Microbe32813011314.e910.1016/j.chom.2024.06.012
    [Google Scholar]
  54. DiotalleviC. FavaF. GobbettiM. TuohyK. Healthy dietary patterns to reduce obesity-related metabolic disease: Polyphenol-microbiome interactions unifying health effects across geography.Curr. Opin. Clin. Nutr. Metab. Care202023643744410.1097/MCO.000000000000069732941185
    [Google Scholar]
  55. DongY. ZhangK. WeiJ. DingY. WangX. HouH. WuJ. LiuT. WangB. CaoH. Gut microbiota-derived short- chain fatty acids regulate gastrointestinal tumor immunity: A novel therapeutic strategy?Front. Immunol.202314115820010.3389/fimmu.2023.115820037122756
    [Google Scholar]
  56. ZhangH. XieY. CaoF. SongX. Gut microbiota-derived fatty acid and sterol metabolites: Biotransformation and immunomodulatory functions.Gut Microbes2024161238233610.1080/19490976.2024.238233639046079
    [Google Scholar]
  57. HricovíniováZ. MascarettiŠ. HricovíniováJ. ČížekA. JampílekJ. New unnatural Gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents.Antioxidants2021108128810.3390/antiox1008128834439536
    [Google Scholar]
  58. LiuZ. LuoS. LiuC. HuX. Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro human fecal fermentation.Food Chem.202444013826110.1016/j.foodchem.2023.13826138150905
    [Google Scholar]
  59. TripathiS. ParmarD. FathimaS. RavalS. SinghG. Coenzyme Q10, biochanin A and phloretin attenuate Cr (VI)-induced oxidative stress and DNA damage by stimulating Nrf2/HO-1 pathway in the experimental model.Biol. Trace Elem. Res.202320152427244110.1007/s12011‑022‑03358‑535953644
    [Google Scholar]
  60. EguchiN. VaziriN.D. DafoeD.C. IchiiH. The role of oxidative stress in pancreatic β cell dysfunction in diabetes.Int. J. Mol. Sci.2021224150910.3390/ijms2204150933546200
    [Google Scholar]
  61. Argaev-FrenkelL. RosenzweigT. Redox balance in type 2 diabetes: Therapeutic potential and the challenge of antioxidant- based therapy.Antioxidants202312599410.3390/antiox1205099437237860
    [Google Scholar]
  62. HoseiniR. RahimH.A. AhmedJ.K. Concurrent alteration in inflammatory biomarker gene expression and oxidative stress: How aerobic training and vitamin D improve T2DM.BMC Complement. Med. Ther.202222116510.1186/s12906‑022‑03645‑735733163
    [Google Scholar]
  63. TripathiS. FhatimaS. ParmarD. SinghD.P. MishraS. MishraR. SinghG. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain.3 Biotech.125116202210.1007/s13205‑022‑03171‑w35547012
    [Google Scholar]
  64. Nait IrahalI. DarifD. GuenaouI. HmimidF. azzahra LahlouF. Ez-zahra OusaidF. Abdou-AllahF. AitsiL. AkaridK. BourhimN. Therapeutic potential of clove essential oil in diabetes: Modulation of pro-inflammatory mediators, oxidative stress and metabolic enzyme activities.Chem. Biodivers.2023203e20220116910.1002/cbdv.20220116936823346
    [Google Scholar]
  65. XueD.D. ZhangX. LiD.W. YangY.L. LiuJ.J. Protective effect of liraglutide on the myocardium of type 2 diabetic rats by inhibiting polyadenosine diphosphate-ribose polymerase-1.World J. Diabetes202314211011910.4239/wjd.v14.i2.11036926657
    [Google Scholar]
  66. ThorslundT. von KobbeC. HarriganJ.A. IndigF.E. ChristiansenM. StevnsnerT. BohrV.A. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress.Mol. Cell. Biol.200525177625763610.1128/MCB.25.17.7625‑7636.200516107709
    [Google Scholar]
  67. YangW. GaoC. Inhibitory effects of bound phenolic extracts from Lycopus lucidus Turcz. on α-glucosidase and pancreatic lipase.Sci. Technol. Food Ind201839111116
    [Google Scholar]
  68. SinghG. KumarA. SinhaN. Studying significance of apoptosis in mediating tolbutamide-induced teratogenesis in vitro.Fundam. Clin. Pharmacol.201226448449410.1111/j.1472‑8206.2011.00946.x21535124
    [Google Scholar]
  69. ZengQ. LiN. PanX.F. ChenL. PanA. Clinical management and treatment of obesity in China.Lancet Diabetes Endocrinol.20219639340510.1016/S2213‑8587(21)00047‑434022157
    [Google Scholar]
  70. YuL. WangJ. HuZ. XuT. ZhouW. A novel nomogram for predicting optimal weight loss response following diet and exercise intervention in patients with obesity.Sci. Rep.20241411816810.1038/s41598‑024‑69295‑639107586
    [Google Scholar]
  71. HevkoU.P. MarushchakM.I. Polymorphisms of insulin receptor substrate 1 as a risk factor for type 2 diabetes mellitus, obesity and chronic pancreatitis among population of Ternopil region.Int J Med Med Res202162303610.11603/ijmmr.2413‑6077.2020.2.11688
    [Google Scholar]
  72. ShahcheraghiN. GolchinH. SadriZ. TabariY. BorhanifarF. MakaniS. Nano-biotechnology, an applicable approach for sustainable future.3 Biotech.12365202210.1007/s13205‑021‑03108‑935186662
    [Google Scholar]
  73. HeH.F. Recognition of gallotannins and the physiological activities: from chemical view.Front. Nutr.2022988889210.3389/fnut.2022.88889235719149
    [Google Scholar]
  74. SpricigoP.C. AlmeidaL.S. RibeiroG.H. CorreiaB.S.B. TaverI.B. JacominoA.P. ColnagoL.A. Quality attributes and metabolic profiles of uvaia (Eugenia pyriformis), a native brazilian atlantic forest fruit.Foods2023129188110.3390/foods1209188137174419
    [Google Scholar]
  75. GrossG.G. Synthesis of mono-, di-and trigalloyl-β-ᴅ-glucose by β-glucogallin-dependent galloyltransferases from oak leaves.Z. Naturforsch. C J. Biosci.1983387-851952310.1515/znc‑1983‑7‑804
    [Google Scholar]
  76. YangM.H. AliZ. KhanI.A. KhanS.I. Anti-inflammatory activity of constituents isolated from Terminalia chebula.Nat. Prod. Commun.20149796596810.1177/1934578X140090072125230505
    [Google Scholar]
  77. HeZ. ChengL. LiS. LiuQ. LiangX. HuJ. WangJ. LiuX. ZhaoF. Inulin and Chinese Gallotannin affect meat quality and lipid metabolism on Hu Sheep.Animals (Basel)202213116010.3390/ani1301016036611769
    [Google Scholar]
  78. BakyM.H. SalahM. EzzelarabN. ShaoP. ElshahedM.S. FaragM.A. Insoluble dietary fibers: Structure, metabolism, interactions with human microbiome, and role in gut homeostasis.Crit. Rev. Food Sci. Nutr.20246471954196810.1080/10408398.2022.211993136094440
    [Google Scholar]
  79. WuZ. WangX. XieY. QianQ. LuanW. YangH. LiJ. MaJ. ChenS. LiX. Dynamic changes of gut microbiota composition during the intervention of apple polyphenols extract to alleviate high-carbohydrate-diet induced body weight gain.Food Biosci.20246010427210.1016/j.fbio.2024.104272
    [Google Scholar]
  80. LiJ. ZhaoJ. TianC. DongL. KangZ. WangJ. ZhaoS. LiM. TongX. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: Effects on short- chain fatty acids.Nutr. Metab. (Lond.)20242114910.1186/s12986‑024‑00829‑539026248
    [Google Scholar]
  81. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑932887946
    [Google Scholar]
  82. PanL.L. RenZ.N. YangJ. LiB.B. HuangY.W. SongD.X. LiX. XuJ.J. BhatiaM. ZouD.W. ZhouC.H. SunJ. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria.Acta Pharm. Sin. B202313104202421610.1016/j.apsb.2023.08.00237799394
    [Google Scholar]
  83. KawabataK. YoshiokaY. TeraoJ. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols.Molecules201924237010.3390/molecules2402037030669635
    [Google Scholar]
  84. John KennethM. TsaiH.C. FangC.Y. HussainB. ChiuY.C. HsuB.M. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer.J. Adv. Res.202352455710.1016/j.jare.2022.12.01536596411
    [Google Scholar]
  85. CuiQ. ZhangX. ShaoJ. NiW. YangY. YanB. Bioactivities of dietary polyphenols and their effects on intestinal microbiota.Mini Rev. Med. Chem.202323336137710.2174/138955752266622081112311535959612
    [Google Scholar]
  86. BaconJ.R. RhodesM.J.C. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.J. Agric. Food Chem.200048383884310.1021/jf990820z10725160
    [Google Scholar]
  87. WangM. BrignotH. SeptierC. MartinC. CanonF. FeronG. Astringency sensitivity to tannic acid: Effect of ageing and salivary proline-rich protein levels.Food Chem. (Oxf.)2024810019210.1016/j.fochms.2023.10019238234464
    [Google Scholar]
  88. Obreque-SlierE. Peña-NeiraÁ. López-SolísR. Precipitation of low molecular weight phenolic compounds of grape seeds cv. Carménère (Vitis vinifera L.) by whole saliva.Eur. Food Res. Technol.2011232111312110.1007/s00217‑010‑1365‑9
    [Google Scholar]
  89. HongM. ZhangR. LiuY. WuZ. WengP. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases.J. Food Biochem.2022463e1387010.1111/jfbc.1387034287960
    [Google Scholar]
  90. JiménezN. CurielJ.A. ReverónI. RivasB.D.L. MuñoR. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.Appl. Environ. Microbiol.201379144253426310.1128/AEM.00840‑1323645198
    [Google Scholar]
  91. BarnesR.C. KimH. FangC. BennettW. NemecM. SirvenM.A. SuchodolskiJ.S. DeutzN. BrittonR.A. Mertens-TalcottS.U. TalcottS.T. Body mass index as a determinant of systemic exposure to gallotannin metabolites during 6-week consumption of mango (Mangifera indica L.) and modulation of intestinal microbiota in lean and obese individuals.Mol. Nutr. Food Res.2019632180051210.1002/mnfr.20180051230427574
    [Google Scholar]
  92. EngevikM.A. LuckB. VisuthranukulC. IhekweazuF.D. EngevikA.C. ShiZ. DanhofH.A. Chang-GrahamA.L. HallA. EndresB.T. HaidacherS.J. HorvathT.D. HaagA.M. DevarajS. GareyK.W. BrittonR.A. HyserJ.M. ShroyerN.F. VersalovicJ. Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis.Cell. Mol. Gastroenterol. Hepatol.202111122124810.1016/j.jcmgh.2020.08.00232795610
    [Google Scholar]
  93. LaweniusL. SchefflerJ.M. GustafssonK.L. HenningP. NilssonK.H. ColldénH. IslanderU. PlovierH. CaniP.D. de VosW.M. OhlssonC. SjögrenK. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss.Am. J. Physiol. Endocrinol. Metab.20203184E480E49110.1152/ajpendo.00425.201931961709
    [Google Scholar]
  94. RanuhR. AthiyyahA.F. DarmaA. RiskyV.P. RiawanW. SuronoI.S. SudarmoS.M. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: role of intestinal microbiota on the gut-brain axis.Iran. J. Microbiol.201911214515010.18502/ijm.v11i2.107731341569
    [Google Scholar]
  95. YinY. XieY. WuZ. QianQ. YangH. LiS. LiX. Preventive effects of apple polyphenol extract on high-fat-diet-induced hepatic steatosis are related to the regulation of hepatic lipid metabolism, autophagy, and gut microbiota in aged Mice.J. Agric. Food Chem.20237150200112003310.1021/acs.jafc.3c0059638055797
    [Google Scholar]
  96. OttmanN. SmidtH. de VosW.M. BelzerC. The function of our microbiota: Who is out there and what do they do?Front. Cell. Infect. Microbiol.2012210410.3389/fcimb.2012.0010422919693
    [Google Scholar]
  97. NiesenD.B. Isolation, synthesis, and metabolism of polyphenols: Stilbenoids, gallotannins and ellagitannins.Doctor of Philosophy, University of Rhode Island2016
    [Google Scholar]
  98. ZhangH. ZhangL. TangL. HuX. XuM. Effects of metal ions on the precipitation of penta-O-galloyl-β-d-glucopyranose by protein.J. Agric. Food Chem.202169175059506610.1021/acs.jafc.1c0118533896171
    [Google Scholar]
  99. EngelsC. GänzleM.G. SchieberA. Fast LC-MS analysis of gallotannins from mango (Mangifera indica L.) kernels and effects of methanolysis on their antibacterial activity and iron binding capacity.Food Res. Int.201245142242610.1016/j.foodres.2011.11.008
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338114241021110221
Loading
/content/journals/cpd/10.2174/0113816128338114241021110221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test