Skip to content
2000
Volume 31, Issue 12
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Effective management strategies against tick infestations are necessary because tick-borne diseases represent serious hazards to the health of humans and animals worldwide. The aim of this study was to examine the larvicidal and ovicidal properties of extract against a notorious tick species, .

Methodology

The maceration method was used to prepare the ethanolic extract of The extract was then used in an adult immersion test (AIT) and larval packet test (LPT) to asses the plant's toxicity. To elucidate the mode of action, molecular modeling and docking studies were conducted. ADMET analysis was then carried out to find out the drug-likeness profiles of the plant phytochemicals.

Results

Significant death rates and egg inhibition were found at different extract doses using the larval packet test (LPT) and adult immersion test (AIT). A concentration-dependent impact was observed at a concentration of 40 mg/mL, which resulted in the maximum larval mortality (92 ± 2.646) and egg inhibition (77.057 ± 2.186). Additionally, the potency of the extract against was determined by calculating its fatal concentrations (LC, LC, and LC). A three-dimensional model of the octopamine receptor was created, and docking studies showed that the receptor and possible ligands, most notably Xanthatin and Xanthosin, interacted well. The potential of compounds as tick control agents was highlighted by their pharmacokinetic characteristics and toxicity profiles, as revealed by drug-likeness and ADMET studies. Molecular dynamic simulations further demonstrated the stability of the protein-ligand complex, indicating the consistent association between the ligand and the target protein.

Conclusion

Overall, this study provides valuable insights into the potential use of extract and its compounds as larvicidal and ovicidal agents against , paving the way for further research on tick control strategies.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128317849241108064144
2024-12-17
2025-04-21
The full text of this item is not currently available.

References

  1. DestaB. Review on the impact of ticks on livestock health and productivity.J. Biol. Agric. Healthc.2016617
    [Google Scholar]
  2. HabeebS.M. Ethno-veterinary and medical knowledge of crude plant extracts and its methods of application (traditional and modern) for tick control.World Appl. Sci. J.201011910471054
    [Google Scholar]
  3. KarimS. BudachetriK. MukherjeeN. A study of ticks and tick-borne livestock pathogens in Pakistan.PLoS Negl. Trop. Dis.2017116e000568110.1371/journal.pntd.0005681 28650978
    [Google Scholar]
  4. HurtadoO.J.B. Giraldo-RíosC. Economic and health impact of the ticks in production animals. In: Ticks and tick-borne pathogens.IntechOpen201810.5772/intechopen.81167
    [Google Scholar]
  5. Estrada-PeñaA. GarcíaZ. SánchezH.F. The distribution and ecological preferences of Boophilus microplus (Acari: Ixodidae) in Mexico.Exp. Appl. Acarol.200638430731610.1007/s10493‑006‑7251‑2 16612672
    [Google Scholar]
  6. GrisiL. LeiteR.C. MartinsJ.R.S. Reassessment of the potential economic impact of cattle parasites in Brazil.Rev. Bras. Parasitol. Vet.201423215015610.1590/S1984‑29612014042 25054492
    [Google Scholar]
  7. BenavidesE. RomeroP.J. VillamilJ.L.C. ResilienciaP.I. NaturalesR. de RiesgosP.G. Cattle ticks and the disease agents they transmit in epidemiological scenarios of climate change guide for tick management and adaptation to climate change.IICA2016
    [Google Scholar]
  8. NarladkarB.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management.Vet. World201811215116010.14202/vetworld.2018.151‑160 29657396
    [Google Scholar]
  9. RodriguesD.S. LeiteR.C. Economic impact of Rhipicephalus (Boophilus) microplus: Estimate of decreased milk production on a dairy farm.Arq. Bras. Med. Vet. Zootec.20136551570157210.1590/S0102‑09352013000500039
    [Google Scholar]
  10. BaffiM.A. de SouzaG.R.L. VieiraC.U. de SousaC.S. GourlartL.R. BonettiA.M. Identification of point mutations in a putative carboxylesterase and their association with acaricide resistance in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).Vet. Parasitol.20071483-430130910.1016/j.vetpar.2007.06.016 17643821
    [Google Scholar]
  11. AbbasR.Z. ZamanM.A. ColwellD.D. GilleardJ. IqbalZ. Acaricide resistance in cattle ticks and approaches to its management: The state of play.Vet. Parasitol.20142031-262010.1016/j.vetpar.2014.03.006 24709006
    [Google Scholar]
  12. AlotaS.L. EdquibanT.R.J. GalayR.L. Determination of resistance status to amitraz in the cattle tick Rhipicephalus (Boophilus) microplus from Luzon, Philippines, through bioassay and molecular analysis.Exp. Appl. Acarol.202183339940910.1007/s10493‑021‑00593‑8 33590359
    [Google Scholar]
  13. de Oliveira Souza HigaL. GarciaM. BarrosJ. KollerW. AndreottiR. Acaricide resistance status of the Rhipicephalus microplus in Brazil: A literature overview.Med. Chem.20155326333
    [Google Scholar]
  14. GuerreroF.D. LovisL. MartinsJ.R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus.Rev. Bras. Parasitol. Vet.20122111610.1590/S1984‑29612012000100002 22534937
    [Google Scholar]
  15. CetinH. CilekJ.E. AydinL. YanikogluA. Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae).Vet. Parasitol.20091603-435936110.1016/j.vetpar.2008.11.009 19091479
    [Google Scholar]
  16. CetinH. CilekJ.E. OzE. AydinL. DeveciO. YanikogluA. Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and γ-terpinene against adult Hyalomma marginatum (Acari: Ixodidae).Vet. Parasitol.20101703-428729010.1016/j.vetpar.2010.02.031 20303667
    [Google Scholar]
  17. Rosado-AguilarJ.A. Aguilar-CaballeroA. Rodriguez-VivasR.I. Borges-ArgaezR. Garcia-VazquezZ. Mendez-GonzalezM. Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).Vet. Parasitol.20101683-429930310.1016/j.vetpar.2009.11.022 20042296
    [Google Scholar]
  18. KambojA. SalujaA. Phytopharmacological review of Xanthium strumarium L. (Cocklebur).Int J Green Pharm20104312910.4103/0973‑8258.69154
    [Google Scholar]
  19. ReichlingJ. SchnitzlerP. SuschkeU. SallerR. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview.Complement. Med. Res.2009162799010.1159/000207196 19420953
    [Google Scholar]
  20. SousaO.V. Del-Vechio-VieiraG. AlvesM.S. Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks.Molecules2012179110561106610.3390/molecules170911056 22976469
    [Google Scholar]
  21. JankowskaM. RogalskaJ. WyszkowskaJ. StankiewiczM. Molecular targets for components of essential oils in the insect nervous system-a review.Molecules20172313410.3390/molecules23010034 29295521
    [Google Scholar]
  22. KostyukovskyM. RafaeliA. GileadiC. DemchenkoN. ShaayaE. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests.Pest Manag. Sci.200258111101110610.1002/ps.548 12449528
    [Google Scholar]
  23. Cossío-BayúgarR. Miranda-MirandaE. Narváez PadillaV. Olvera-ValenciaF. ReynaudE. Perturbation of tyraminergic/octopaminergic function inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus.J. Insect Physiol.201258562863310.1016/j.jinsphys.2012.01.006 22343017
    [Google Scholar]
  24. BlenauW. RademacherE. BaumannA. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets?Apidologie (Celle)201243333434710.1007/s13592‑011‑0108‑7
    [Google Scholar]
  25. EnanE. Insecticidal activity of essential oils: Octopaminergic sites of action.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2001130332533710.1016/S1532‑0456(01)00255‑1 11701389
    [Google Scholar]
  26. SalmanM. AbbasR.Z. IsrarM. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle.Vet. Parasitol.202028310917810.1016/j.vetpar.2020.109178 32652458
    [Google Scholar]
  27. HuangS.Y. GrinterS.Z. ZouX. Scoring functions and their evaluation methods for protein–ligand docking: Recent advances and future directions.Phys. Chem. Chem. Phys.20101240128991290810.1039/c0cp00151a 20730182
    [Google Scholar]
  28. KlebeG. Recent developments in structure-based drug design.J. Mol. Med. (Berl.)200078526928110.1007/s001090000084 10954199
    [Google Scholar]
  29. HoldsworthP.A. KempD. GreenP. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for evaluating the efficacy of acaricides against ticks (Ixodidae) on ruminants.Vet. Parasitol.20061361294310.1016/j.vetpar.2005.11.011 16377090
    [Google Scholar]
  30. WalkerA.R. BouattourA. CamicasJ-L. Ticks of domestic animals in Africa: A guide to identification of species. In: International Consortium on Ticks and Tick-borne Diseases (ICTTD-2).The University of Edinburgh2014
    [Google Scholar]
  31. WuC.H. ApweilerR. BairochA. The universal protein resource (UniProt): An expanding universe of protein information.Nucleic Acids Res.20063490001D187D19110.1093/nar/gkj161 16381842
    [Google Scholar]
  32. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.053 25950237
    [Google Scholar]
  33. ArnoldK. BordoliL. KoppJ. SchwedeT. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling.Bioinformatics200622219520110.1093/bioinformatics/bti770 16301204
    [Google Scholar]
  34. LaskowskiR. RullmannJ.A.C. MacArthurM. KapteinR. ThorntonJ. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR19968447748610.1007/BF00228148 9008363
    [Google Scholar]
  35. BinkowskiT.A. NaghibzadehS. LiangJ. CASTp: Computed atlas of surface topography of proteins.Nucleic Acids Res.200331133352335510.1093/nar/gkg512 12824325
    [Google Scholar]
  36. DundasJ. OuyangZ. TsengJ. BinkowskiA. TurpazY. LiangJ. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues.Nucleic Acids Res.200634W11610.1093/nar/gkl282
    [Google Scholar]
  37. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  38. KmiecikS. GrontD. KolinskiM. WieteskaL. DawidA.E. KolinskiA. Coarse-grained protein models and their applications.Chem. Rev.2016116147898793610.1021/acs.chemrev.6b00163 27333362
    [Google Scholar]
  39. KuriataA. GierutA.M. OlenieckiT. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures.Nucleic Acids Res.201846W1W338-4310.1093/nar/gky356 29762700
    [Google Scholar]
  40. BernsteinF.C. KoetzleT.F. WilliamsG.J.B. The protein data bank: A computer-based archival file for macromolecular structures.J. Mol. Biol.1977112353554210.1016/S0022‑2836(77)80200‑3 875032
    [Google Scholar]
  41. ScottW.R.P. HünenbergerP.H. TironiI.G. The GROMOS biomolecular simulation program package.J. Phys. Chem. A1999103193596360710.1021/jp984217f
    [Google Scholar]
  42. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735W407-41010.1093/nar/gkm290
    [Google Scholar]
  43. DadarM. TiwariR. KarthikK. ChakrabortyS. ShahaliY. DhamaK. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update.Microb. Pathog.201811712813810.1016/j.micpath.2018.02.028 29454824
    [Google Scholar]
  44. SuchodolskiJ. MuraszkoJ. BernatP. KrasowskaA. A crucial role for ergosterol in plasma membrane composition, localisation, and activity of Cdr1p and H+-ATPase in Candida albicans.Microorganisms201971037810.3390/microorganisms7100378 31546699
    [Google Scholar]
  45. Falcón-CanoG. MolinaC. Cabrera-PérezM.Á. ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches.ADMET DMPK20208325127310.5599/admet.852 35300309
    [Google Scholar]
  46. SmithD.A. BeaumontK. MaurerT.S. DiL. Volume of distribution in drug design.J. Med. Chem.201558155691569810.1021/acs.jmedchem.5b00201 25799158
    [Google Scholar]
  47. MaX. ChenC. YangJ. Predictive model of blood-brain barrier penetration of organic compounds1.Acta Pharmacol. Sin.200526450051210.1111/j.1745‑7254.2005.00068.x 15780201
    [Google Scholar]
  48. GuttmanY. KeremZ. Computer-aided in silico modeling of cytochrome P450-mediated food-drug interactions (FDI).Int. J. Mol. Sci.20222315849810.3390/ijms23158498 35955630
    [Google Scholar]
  49. El-ShamyN.T. AlkaoudA.M. HusseinR.K. IbrahimM.A. AlhamzaniA.G. Abou-KrishaM.M. DFT, ADMET and molecular docking investigations for the antimicrobial activity of 6,6 and prime-Diamino-1,1 and prime,3,3 and prime-tetramethyl-5,5 and prime-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione].Molecules202227362010.3390/molecules27030620
    [Google Scholar]
  50. ListerI.N.E. GintingC.N. GirsangE. NatayaE.D. AzizahA.M. WidowatiW. Hepatoprotective properties of red betel (Piper crocatum Ruiz and Pav) leaves extract towards H2O2-induced HepG2 cells via anti-inflammatory, antinecrotic, antioxidant potency.Saudi Pharm. J.202028101182118910.1016/j.jsps.2020.08.007 33132711
    [Google Scholar]
  51. FadlilahM. Benefit of red betel (Piper crocatum Ruiz and Pav.) as antibiotics.J Majority2015437175
    [Google Scholar]
  52. GodaraR. KatochR. YadavA. In vitro acaricidal activity of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus.Exp. Appl. Acarol.201567114715710.1007/s10493‑015‑9929‑9 26071101
    [Google Scholar]
  53. RavindranR. JulietS. SunilA.R. Eclosion blocking effect of ethanolic extract of Leucas aspera (Lamiaceae) on Rhipicephalus (Boophilus) annulatus.Vet. Parasitol.20111791-328729010.1016/j.vetpar.2011.02.021 21440993
    [Google Scholar]
  54. NarladkarB. DeshpandeP. VaniprasadV. ShivpujeP. DeshpandeA. Integrated management of Culicoides sp. of domesticated animals.J. Vet. Parasitol.2006202125128
    [Google Scholar]
  55. KumarK.G.A. TayadeA.B. KumarR. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India.Ticks Tick Borne Dis.20167234234910.1016/j.ttbdis.2015.12.005 26723275
    [Google Scholar]
  56. ShymaK.P. GuptaJ.P. GhoshS. PatelK.K. SinghV. Acaricidal effect of herbal extracts against cattle tick Rhipicephalus (Boophilus) microplus using in vitro studies.Parasitol. Res.201411351919192610.1007/s00436‑014‑3839‑3 24633906
    [Google Scholar]
  57. KimS.I. YiJ.H. TakJ. AhnY.J. Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae).Vet. Parasitol.2004120429730410.1016/j.vetpar.2003.12.016 15063940
    [Google Scholar]
  58. MägiE. JärvisT. MillerI. Effects of different plant products against pig mange mites.Acta Vet. Brno200675228328710.2754/avb200675020283
    [Google Scholar]
  59. JaensonT.G.T. GarbouiS. PålssonK. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field.J. Med. Entomol.200643473173610.1093/jmedent/43.4.731 16892632
    [Google Scholar]
  60. FanW. FanL. PengC. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review.Molecules201924235910.3390/molecules24020359 30669496
    [Google Scholar]
  61. ChopraR.N. NayarS.L. Glossary of Indian medicinal plants.Council of Scientific and Industrial Research1956
    [Google Scholar]
  62. IslamM.R. UddinM.Z. RahmanM.S. Ethnobotanical, phytochemical and toxicological studies of Xanthium strumarium L.Bangladesh Med. Res. Counc. Bull.2009353849010.3329/bmrcb.v35i3.3658 20922910
    [Google Scholar]
  63. Sharifi-RadJ. Hoseini-AlfatemiS. Sharifi-RadM. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L.Molecules20152047034704710.3390/molecules20047034 25898416
    [Google Scholar]
  64. DengW. ZhuN. MoJ. In vitro bioassay methods for laboratory screening of novel mosquito repellents.Entomol. Sci.201417436537010.1111/ens.12071
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128317849241108064144
Loading
/content/journals/cpd/10.2174/0113816128317849241108064144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test