Skip to content
2000
Volume 31, Issue 9
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128328459241009191933
2024-10-29
2025-02-28
Loading full text...

Full text loading...

References

  1. BurkettB.J. BartlettD.J. McGarrahP.W. LewisA.R. JohnsonD.R. BerberoğluK. PandeyM.K. PackardA.T. HalfdanarsonT.R. HruskaC.B. JohnsonG.B. KendiA.T. A review of theranostics: Perspectives on emerging approaches and clinical advancements.Radiol. Imaging Cancer202354e22015710.1148/rycan.22015737477566
    [Google Scholar]
  2. MaheswaranT. GanapathyN. DineshShankarJ. MohanapriyaS. IlayarajaV. YoithapprabhunathT.R. YamunadeviA.M. Theranostics an emerging paradigm: A review.IOSR J. Dent. Med. Sci.2018171924
    [Google Scholar]
  3. OseghaleI.D. GoddayC.U. IkokwuG.M. OkhemukhokhoV.O. Cancer theranostics: An emerging field for cancer research, diagnosis and therapy.Int Res J Oncol2022644654
    [Google Scholar]
  4. EvansA.C. ThadaniN.N. SuhJ. Biocomputing nanoplatforms as therapeutics and diagnostics.J. Control. Release201624038739310.1016/j.jconrel.2016.01.04526826305
    [Google Scholar]
  5. RizzoL.Y. TheekB. StormG. KiesslingF. LammersT. Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications.Curr. Opin. Biotechnol.20132461159116610.1016/j.copbio.2013.02.02023578464
    [Google Scholar]
  6. WeberW.A. CzerninJ. AndersonC.J. BadawiR.D. BarthelH. BengelF. BodeiL. BuvatI. DiCarliM. GrahamM.M. GrimmJ. HerrmannK. KostakogluL. LewisJ.S. MankoffD.A. PetersonT.E. SchelbertH. SchöderH. SiegelB.A. StraussH.W. The future of nuclear medicine, molecular imaging, and theranostics.J. Nucl. Med.202061263S272S10.2967/jnumed.120.25453233293447
    [Google Scholar]
  7. KeekS.A. LeijenaarR.T.H. JochemsA. WoodruffH.C. A review on radiomics and the future of theranostics for patient selection in precision medicine.Br. J. Radiol.20189110912017092610.1259/bjr.2017092629947266
    [Google Scholar]
  8. NunesR.F. ZuppaniR.M.F. CoutinhoA.M. BarbosaF.G. SapienzaM.T. MarinJ.F.G. BuchpiguelC.A. General concepts in theranostics.PET Clin.202116331332610.1016/j.cpet.2021.03.01034053576
    [Google Scholar]
  9. GobboO.L. SjaastadK. RadomskiM.W. VolkovY. Prina-MelloA. Magnetic nanoparticles in cancer theranostics.Theranostics20155111249126310.7150/thno.1154426379790
    [Google Scholar]
  10. SharmiladeviP. GirigoswamiK. HaribabuV. GirigoswamiA. Nano-enabled theranostics for cancer.Mater. Adv.2021292876289110.1039/D1MA00069A
    [Google Scholar]
  11. VorsterM. HadebeB.P. SathekgeM.M. Theranostics in breast cancer.Front. Nucl. Med.20233123656510.3389/fnume.2023.1236565
    [Google Scholar]
  12. BasuB. BasuS. Correlating and combining genomic and proteomic assessment with in vivo molecular functional imaging: Will this be the future roadmap for personalized cancer management?Cancer Biother. Radiopharm.2016313758410.1089/cbr.2015.192227093341
    [Google Scholar]
  13. TengF-F. MengX. SunX-D. YuJ-M. New strategy for monitoring targeted therapy: Molecular imaging.Int. J. Nanomedicine201383703371324124361
    [Google Scholar]
  14. LimE.K. KimT. PaikS. HaamS. HuhY.M. LeeK. Nanomaterials for theranostics: Recent advances and future challenges.Chem. Rev.2015115132739410.1021/cr300213b25423180
    [Google Scholar]
  15. ZhangJ. NingL. HuangJ. ZhangC. PuK. Activatable molecular agents for cancer theranostics.Chem. Sci. (Camb.)202011361863010.1039/C9SC05460J34123034
    [Google Scholar]
  16. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. Moradi-KalbolandiS. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  17. HapuarachchigeS. ArtemovD. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine.Front. Oncol.202010113110.3389/fonc.2020.0113132793481
    [Google Scholar]
  18. AshrafizadehM. ZarrabiA. Karimi-MalehH. TaheriazamA. MirzaeiS. HashemiM. HushmandiK. MakvandiP. Nazarzadeh ZareE. SharifiE. GoelA. WangL. RenJ. Nuri ErtasY. KumarA.P. WangY. RabieeN. SethiG. MaZ. (Nano)platforms in bladder cancer therapy: Challenges and opportunities.Bioeng. Transl. Med.202381e1035310.1002/btm2.1035336684065
    [Google Scholar]
  19. Abdollahpour-AlitappehM. LotfiniaM. GharibiT. MardanehJ. FarhadihosseinabadiB. LarkiP. FaghfourianB. SepehrK.S. Abbaszadeh-GoudarziK. Abbaszadeh-GoudarziG. JohariB. ZaliM.R. BagheriN. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes.J. Cell. Physiol.201923455628564210.1002/jcp.2741930478951
    [Google Scholar]
  20. DeanA.Q. LuoS. TwomeyJ.D. ZhangB. Targeting cancer with antibody-drug conjugates: Promises and challenges.MAbs2021131195142710.1080/19420862.2021.1951427.
    [Google Scholar]
  21. ZhouQ. Site-specific antibody conjugation for ADC and beyond.Biomedicines2017546410.3390/biomedicines504006429120405
    [Google Scholar]
  22. ThurstonD.E. JacksonP.J. Cytotoxic payloads for antibody-drug conjugates.Royal Soc Chem20197110.1039/9781788012898
    [Google Scholar]
  23. CovaT.F.G.G. BentoD.J. NunesS.C.C. Computational approaches in theranostics: Mining and predicting cancer data.Pharmaceutics201911311910.3390/pharmaceutics1103011930871264
    [Google Scholar]
  24. LeiK. A review on microdevices for isolating circulating tumor cells.Micromachines (Basel)202011553110.3390/mi1105053132456042
    [Google Scholar]
  25. MagbanuaM.J.M. SosaE.V. RoyR. EisenbudL.E. ScottJ.H. OlshenA. PinkelD. RugoH.S. ParkJ.W. Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients.Cancer Res.2013731304010.1158/0008‑5472.CAN‑11‑301723135909
    [Google Scholar]
  26. Paterlini-BrechotP. BenaliN.L. Circulating tumor cells (CTC) detection: Clinical impact and future directions.Cancer Lett.2007253218020410.1016/j.canlet.2006.12.01417314005
    [Google Scholar]
  27. PlaksV. KoopmanC.D. WerbZ. Circulating tumor cells.Science201334161511186118810.1126/science.123522624031008
    [Google Scholar]
  28. TheilG. FischerK. WeberE. MedekR. HodaR. LückeK. FornaraP. The use of a new cellcollector to isolate circulating tumor cells from the blood of patients with different stages of prostate cancer and clinical outcomes: A proof of concept study.PLoS One2016118e015835410.1371/journal.pone.015835427479125
    [Google Scholar]
  29. ChenZ. YamJ.W.P. Recent advances in liquid biopsy in cancers: Diagnosis, disease state and treatment response monitoring.Clin. Transl. Discov.202223e11110.1002/ctd2.111
    [Google Scholar]
  30. KongL. BirkelandA.C. Liquid biopsies in head and neck cancer: Current state and future challenges.Cancers (Basel)2021138187410.3390/cancers1308187433919778
    [Google Scholar]
  31. RemonJ. LacroixL. JoveletC. CaramellaC. HowarthK. PlagnolV. RosenfeldN. MorrisC. MezquitaL. PannetC. NgocamusM. Le PechouxC. AdamJ. GreceaA.M. PlanchardD. VassalG. BenitezJ.C. GazzahA. GreenE. SoriaJ.C. BesseB. Real-world utility of an amplicon-based next-generation sequencing liquid biopsy for broad molecular profiling in patients with advanced non–small-cell lung cancer.JCO Precis. Oncol.20193311410.1200/PO.18.0021132914037
    [Google Scholar]
  32. RicciutiB. JonesG. SevergniniM. AlessiJ.V. RecondoG. LawrenceM. ForshewT. LydonC. NishinoM. ChengM. AwadM. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC).J. Immunother. Cancer202193e00150410.1136/jitc‑2020‑00150433771889
    [Google Scholar]
  33. DeutschT.M. FischerC. RiedelF. HaßdenteufelK. MichelL.L. SütterlinM. RiethdorfS. PantelK. WallwienerM. SchneeweissA. StefanovicS. Relationship of Ki-67 index in biopsies of metastatic breast cancer tissue and circulating tumor cells (CTCs) at the time of biopsy collection.Arch. Gynecol. Obstet.2023309123524810.1007/s00404‑023‑07080‑y37480379
    [Google Scholar]
  34. NeophytouC.M. KyriakouT.C. PapageorgisP. Mechanisms of metastatic tumor dormancy and implications for cancer therapy.Int. J. Mol. Sci.20192024615810.3390/ijms2024615831817646
    [Google Scholar]
  35. HoshinoK. HuangY.Y. LaneN. HuebschmanM. UhrJ.W. FrenkelE.P. ZhangX. Microchip-based immunomagnetic detection of circulating tumor cells.Lab Chip201111203449345710.1039/c1lc20270g21863182
    [Google Scholar]
  36. HuangY. HoshinoK. ChenP. WuC. LaneN. HuebschmanM. LiuH. SokolovK. UhrJ.W. FrenkelE.P. ZhangJ.X.J. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system.Biomed. Microdevices201315467368110.1007/s10544‑012‑9718‑823109037
    [Google Scholar]
  37. WuC.H. HuangY.Y. ChenP. HoshinoK. LiuH. FrenkelE.P. ZhangJ.X.J. SokolovK.V. Versatile immunomagnetic nanocarrier platform for capturing cancer cells.ACS Nano20137108816882310.1021/nn403281e24016305
    [Google Scholar]
  38. ChenJ. LiuC.Y. WangX. SweetE. LiuN. GongX. LinL. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation.Biosens. Bioelectron.202015011190010.1016/j.bios.2019.11190031767348
    [Google Scholar]
  39. LeeM. KimE.J. ChoY. KimS. ChungH.H. ParkN.H. SongY.S. Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer.Gynecol. Oncol.2017145236136510.1016/j.ygyno.2017.02.04228274569
    [Google Scholar]
  40. AlberterB. KleinC.A. PolzerB. Single-cell analysis of CTCs with diagnostic precision: Opportunities and challenges for personalized medicine.Expert Rev. Mol. Diagn.2016161253810.1586/14737159.2016.112109926567956
    [Google Scholar]
  41. CostaC. Dávila-IbáñezA.B. Methodology for the isolation and analysis of CTCs.Adv Exp Med Biol20201220455910.1007/978‑3‑030‑35805‑1_4
    [Google Scholar]
  42. PalmirottaR. LoveroD. SilvestrisE. FeliciC. QuaresminiD. CafforioP. SilvestrisF. Next-generation sequencing (NGS) analysis on single circulating tumor cells (CTCs) with no need of whole-genome amplification (WGA).Cancer Genomics Proteomics201714317317910.21873/cgp.2002928446532
    [Google Scholar]
  43. BrechbuhlH.M. Vinod-PaulK. GillenA.E. KopinE.G. GibneyK. EliasA.D. HayashiM. SartoriusC.A. KabosP. Analysis of circulating breast cancer cell heterogeneity and interactions with peripheral blood mononuclear cells.Mol. Carcinog.202059101129113910.1002/mc.2324232822091
    [Google Scholar]
  44. YangC. ZouK. ZhengL. XiongB. Prognostic and clinicopathological significance of circulating tumor cells detected by RT-PCR in non-metastatic colorectal cancer: A meta-analysis and systematic review.BMC Cancer201717172510.1186/s12885‑017‑3704‑829115932
    [Google Scholar]
  45. HarouakaR. KangZ. ZhengS.Y. CaoL. Circulating tumor cells: Advances in isolation and analysis, and challenges for clinical applications.Pharmacol. Ther.2014141220922110.1016/j.pharmthera.2013.10.00424134902
    [Google Scholar]
  46. RiethdorfS. O’FlahertyL. HilleC. PantelK. Clinical applications of the cellsearch platform in cancer patients.Adv. Drug Deliv. Rev.201812510212110.1016/j.addr.2018.01.01129355669
    [Google Scholar]
  47. RingA. Nguyen-SträuliB.D. WickiA. AcetoN. Biology, vulnerabilities and clinical applications of circulating tumour cells.Nat. Rev. Cancer20232329511110.1038/s41568‑022‑00536‑436494603
    [Google Scholar]
  48. Alix-PanabièresC. PantelK. Liquid biopsy: From discovery to clinical application.Cancer Discov.202111485887310.1158/2159‑8290.CD‑20‑131133811121
    [Google Scholar]
  49. LimM. KimC.J. SunkaraV. KimM.H. ChoY.K. Liquid biopsy in lung cancer: Clinical applications of circulating biomarkers (CTCs and ctDNA).Micromachines (Basel)20189310010.3390/mi903010030424034
    [Google Scholar]
  50. AgnolettoC. CarusoC. GarofaloC. Heterogeneous circulating tumor cells in sarcoma: Implication for clinical practice.Cancers (Basel)2021139218910.3390/cancers1309218934063272
    [Google Scholar]
  51. RanucciR. Cell-free DNA: Applications in different diseases, cell-free DNA as diagnostic markers.Methods Protoc.2019312
    [Google Scholar]
  52. VolikS. AlcaideM. MorinR.D. CollinsC. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies.Mol. Cancer Res.2016141089890810.1158/1541‑7786.MCR‑16‑004427422709
    [Google Scholar]
  53. AlcaideM. CheungM. HillmanJ. RassekhS.R. DeyellR.J. BatistG. KarsanA. WyattA.W. JohnsonN. ScottD.W. MorinR.D. Evaluating the quantity, quality and size distribution of cell-free DNA by multiplex droplet digital PCR.Sci. Rep.20201011256410.1038/s41598‑020‑69432‑x32724107
    [Google Scholar]
  54. DingS.C. LoY.M.D. Cell-free DNA fragmentomics in liquid biopsy.Diagnostics (Basel)202212497810.3390/diagnostics1204097835454026
    [Google Scholar]
  55. LuoH. WeiW. YeZ. ZhengJ. XuR. Liquid biopsy of methylation biomarkers in cell-free DNA.Trends Mol. Med.202127548250010.1016/j.molmed.2020.12.01133500194
    [Google Scholar]
  56. GilM.M. QuezadaM.S. RevelloR. AkolekarR. NicolaidesK.H. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: Updated meta-analysis.Ultrasound Obstet. Gynecol.201545324926610.1002/uog.1479125639627
    [Google Scholar]
  57. GreytakS.R. EngelK.B. Parpart-LiS. MurtazaM. BronkhorstA.J. PertileM.D. MooreH.M. Harmonizing cell-free DNA collection and processing practices through evidence-based guidance.Clin. Cancer Res.202026133104310910.1158/1078‑0432.CCR‑19‑301532122922
    [Google Scholar]
  58. NortonM.E. JacobssonB. SwamyG.K. LaurentL.C. RanziniA.C. BrarH. TomlinsonM.W. PereiraL. SpitzJ.L. HollemonD. CuckleH. MusciT.J. WapnerR.J. Cell-free DNA analysis for noninvasive examination of trisomy.N. Engl. J. Med.2015372171589159710.1056/NEJMoa140734925830321
    [Google Scholar]
  59. BronkhorstA.J. AucampJ. PretoriusP.J. Cell-freeD.N.A. Preanalytical variables.Clin. Chim. Acta201545024325310.1016/j.cca.2015.08.02826341895
    [Google Scholar]
  60. MusciT.J. FairbrotherG. BateyA. BruursemaJ. StrubleC. SongK. Non-invasive prenatal testing with cell-free DNA: US physician attitudes toward implementation in clinical practice.Prenat. Diagn.201333542442810.1002/pd.409123526649
    [Google Scholar]
  61. SchmidM. KlaritschP. ArztW. BurkhardtT. DubaH. HäuslerM. HafnerE. LangU. PertlB. SpeicherM. SteinerH. TercanliS. MerzE. HelingK. EibenB. Cell-free dna testing for fetal chromosomal anomalies in clinical practice: Austrian-German-Swiss recommendations for non-invasive prenatal tests (NIPT).Ultraschall Med.201536550751010.1055/s‑0035‑155380426468773
    [Google Scholar]
  62. ChinR.I. ChenK. UsmaniA. ChuaC. HarrisP.K. BinkleyM.S. AzadT.D. DudleyJ.C. ChaudhuriA.A. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA).Mol. Diagn. Ther.201923331133110.1007/s40291‑019‑00390‑530941670
    [Google Scholar]
  63. PostelM. RoosenA. Laurent-PuigP. TalyV. Wang-RenaultS.F. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: A cancer diagnostic perspective.Expert Rev. Mol. Diagn.201818171710.1080/14737159.2018.140038429115895
    [Google Scholar]
  64. van GinkelJ.H. HuibersM.M.H. van EsR.J.J. de BreeR. WillemsS.M. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients.BMC Cancer201717142810.1186/s12885‑017‑3424‑028629339
    [Google Scholar]
  65. HeitzerE. UlzP. GeiglJ.B. Circulating tumor DNA as a liquid biopsy for cancer.Clin. Chem.201561111212310.1373/clinchem.2014.22267925388429
    [Google Scholar]
  66. Sánchez-HerreroE. Serna-BlascoR. Robado de LopeL. González-RumayorV. RomeroA. ProvencioM. Circulating tumor DNA as a cancer biomarker: An overview of biological features and factors that may impact on ctDNA analysis.Front. Oncol.20221294325310.3389/fonc.2022.94325335936733
    [Google Scholar]
  67. TodenhöferT. StrussW.J. SeilerR. WyattA.W. BlackP.C. Liquid biopsy-analysis of circulating tumor DNA (ctDNA) in bladder cancer.Bladder Cancer201841192910.3233/BLC‑17014029430504
    [Google Scholar]
  68. BaconJ.V. AnnalaM. SoleimaniM. LavoieJ.-M. SoA. GleaveM.E. FazliL. WangG. ChiK.N. KollmannsbergerC.K. Plasma circulating tumor DNA and clonal hematopoiesis in metastatic renal cell carcinoma.Clin Genitourin Cancer.202018432333110.1016/j.clgc.2019.12.018.
    [Google Scholar]
  69. CalapreL. WarburtonL. MillwardM. ZimanM. GrayE.S. Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma.Cancer Lett.2017404626910.1016/j.canlet.2017.06.03028687355
    [Google Scholar]
  70. García-PardoM. MakaremM. LiJ.J.N. KellyD. LeighlN.B. Integrating circulating-free DNA (cfDNA) analysis into clinical practice: Opportunities and challenges.Br. J. Cancer2022127459260210.1038/s41416‑022‑01776‑935347327
    [Google Scholar]
  71. KalluriR. The biology and function of exosomes in cancer.J. Clin. Invest.201612641208121510.1172/JCI8113527035812
    [Google Scholar]
  72. RuivoC.F. AdemB. SilvaM. MeloS.A. The biology of cancer exosomes: Insights and new perspectives.Cancer Res.201777236480648810.1158/0008‑5472.CAN‑17‑099429162616
    [Google Scholar]
  73. SoungY. FordS. ZhangV. ChungJ. Exosomes in cancer diagnostics.Cancers (Basel)201791810.3390/cancers901000828085080
    [Google Scholar]
  74. JiaS. ZhangR. LiZ. LiJ. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer.Oncotarget2017833556325564510.18632/oncotarget.1718428903450
    [Google Scholar]
  75. ZhangW. XiaW. LvZ. NiC. XinY. YangL. Liquid biopsy for cancer: Circulating tumor cells, circulating free DNA or exosomes?Cell. Physiol. Biochem.201741275576810.1159/00045873628214887
    [Google Scholar]
  76. ZhouB. XuK. ZhengX. ChenT. WangJ. SongY. ShaoY. ZhengS. Application of exosomes as liquid biopsy in clinical diagnosis.Signal Transduct. Target. Ther.20205114410.1038/s41392‑020‑00258‑932747657
    [Google Scholar]
  77. LogozziM. AngeliniD.F. IessiE. MizzoniD. Di RaimoR. FedericiC. LuginiL. BorsellinoG. GentilucciA. PierellaF. MarzioV. SciarraA. BattistiniL. FaisS. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients.Cancer Lett.201740331832910.1016/j.canlet.2017.06.03628694142
    [Google Scholar]
  78. LogozziM. MizzoniD. Di RaimoR. FaisS. Exosomes: A source for new and old biomarkers in cancer.Cancers (Basel)2020129256610.3390/cancers1209256632916840
    [Google Scholar]
  79. PatilM. HussainA. AltamimiM.A. AshiqueS. HaiderN. FarukA. KhurooT. SherikarA. SiddiqueM.U.M. AnsariA. BarbhuiyaT.K. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Biol. Metastasis2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  80. BuH. HeD. HeX. WangK. Exosomes: Isolation, analysis, and applications in cancer detection and therapy.ChemBioChem201920445146110.1002/cbic.20180047030371016
    [Google Scholar]
  81. WeltonJ.L. KhannaS. GilesP.J. BrennanP. BrewisI.A. StaffurthJ. MasonM.D. ClaytonA. Proteomics analysis of bladder cancer exosomes.Mol. Cell. Proteomics2010961324133810.1074/mcp.M000063‑MCP20120224111
    [Google Scholar]
  82. PanagiotaraA. MarkouA. LianidouE.S. PatrinosG.P. KatsilaT. Exosomes: A cancer theranostics road map.Public Health Genomics201720211612510.1159/00047825328723694
    [Google Scholar]
  83. SkourasP. GargalionisA.N. PiperiC. Exosomes as novel diagnostic biomarkers and therapeutic tools in gliomas.Int. J. Mol. Sci.202324121016210.3390/ijms24121016237373314
    [Google Scholar]
  84. HammondS.M. An overview of microRNAs.Adv. Drug Deliv. Rev.20158731410.1016/j.addr.2015.05.00125979468
    [Google Scholar]
  85. MahnR. HeukampL.C. RogenhoferS. von RueckerA. MüllerS.C. EllingerJ. Circulating microRNAs (miRNA) in serum of patients with prostate cancer.Urology20117751265.e91610.1016/j.urology.2011.01.020.
    [Google Scholar]
  86. ReddyK.B. MicroRNA (miRNA) in cancer.Cancer Cell Int.20151513810.1186/s12935‑015‑0185‑125960691
    [Google Scholar]
  87. LinS-L. MillerJ.D. YingS-Y. Intronic microRNA (miRNA).J. Biomed. Biotechnol.2006200642681817057362
    [Google Scholar]
  88. LinP-Y. YuS-L. YangP-C. MicroRNA in lung cancer.Br. J. Cancer201010381144114810.1038/sj.bjc.660590120859290
    [Google Scholar]
  89. ZhangY. YangQ. WangS. MicroRNAs: A new key in lung cancer.Cancer Chemother. Pharmacol.20147461105111110.1007/s00280‑014‑2559‑925135624
    [Google Scholar]
  90. SinghR. MoY.Y. Role of microRNAs in breast cancer.Cancer Biol. Ther.201314320121210.4161/cbt.2329623291983
    [Google Scholar]
  91. MastersonA.N. LiyanageT. BermanC. KaimakliotisH. JohnsonM. SardarR. A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses.Analyst (Lond.)2020145124173418010.1039/D0AN00538J32490854
    [Google Scholar]
  92. PetrescuG.E.D. SaboA.A. TorsinL.I. CalinG.A. DragomirM.P. MicroRNA based theranostics for brain cancer: Basic principles.J. Exp. Clin. Cancer Res.201938123110.1186/s13046‑019‑1180‑531142339
    [Google Scholar]
  93. LiH. YangR. FanX. GuT. ZhaoZ. ChangD. WangW. WangC. MicroRNA array analysis of microRNAs related to systemic scleroderma.Rheumatol. Int.201232230731310.1007/s00296‑010‑1615‑y21052672
    [Google Scholar]
  94. FuloriaS. SubramaniyanV. GuptaG. SekarM. MeenakshiD.U. SathasivamK. SudhakarK. AlharbiK.S. AlmutairiS.S. AlmalkiW.H. FuloriaN.K. Detection of circulating tumor cells and epithelial progenitor cells: A comprehensive study.J. Environ. Pathol. Toxicol. Oncol.202342312910.1615/JEnvironPatholToxicolOncol.202204445637017676
    [Google Scholar]
  95. LawrenceR. WattersM. DaviesC.R. PantelK. LuY.J. Circulating tumour cells for early detection of clinically relevant cancer.Nat. Rev. Clin. Oncol.202320748750010.1038/s41571‑023‑00781‑y37268719
    [Google Scholar]
  96. HabliZ. AlChamaaW. SaabR. KadaraH. KhraicheM.L. Circulating tumor cell detection technologies and clinical utility: Challenges and opportunities.Cancers (Basel)2020127193010.3390/cancers1207193032708837
    [Google Scholar]
  97. BoyaM. ChuC-H. LiuR. Ozkaya-AhmadovT. SariogluA.F. Circulating tumor cell enrichment technologies.Tumor Liquid Biopsies2020215255510.1007/978‑3‑030‑26439‑0_2.
    [Google Scholar]
  98. LiX. LiY. ShaoW. LiZ. ZhaoR. YeZ. Strategies for enrichment of circulating tumor cells.Transl. Cancer Res.2020932012202510.21037/tcr.2020.01.1735117548
    [Google Scholar]
  99. SabathD.E. PerroneM.E. CleinA. TamM. HardinM. TrimbleS. RamirezA. DuplessisM. MojicaT. HiganoC.S. GadiV.K. KaldjianE. GeorgeT. Clinical validation of a circulating tumor cell assay using density centrifugation and automated immunofluorescence microscopy.Am. J. Clin. Pathol.2022158227027610.1093/ajcp/aqac04035460401
    [Google Scholar]
  100. RushtonA.J. NteliopoulosG. ShawJ.A. CoombesR.C. A review of circulating tumour cell enrichment technologies.Cancers (Basel)202113597010.3390/cancers1305097033652649
    [Google Scholar]
  101. SuzukiT. KajiN. YasakiH. YasuiT. BabaY. Mechanical low-pass filtering of cells for detection of circulating tumor cells in whole blood.Anal. Chem.20209232483249110.1021/acs.analchem.9b0393931922717
    [Google Scholar]
  102. GuoL. LiuC. QiM. ChengL. WangL. LiC. DongB. Recent progress of nanostructure-based enrichment of circulating tumor cells and downstream analysis.Lab Chip20232361493152310.1039/D2LC00890D36776104
    [Google Scholar]
  103. LiuP. JonkheijmP. TerstappenL.W.M.M. StevensM. Magnetic particles for ctc enrichment.Cancers (Basel)20201212352510.3390/cancers1212352533255978
    [Google Scholar]
  104. GreeneB.T. HughesA.D. KingM.R. Circulating tumor cells: The substrate of personalized medicine?Front. Oncol.201226910.3389/fonc.2012.0006922783545
    [Google Scholar]
  105. MaheswaranS. HaberD.A. Circulating tumor cells: A window into cancer biology and metastasis.Curr. Opin. Genet. Dev.2010201969910.1016/j.gde.2009.12.00220071161
    [Google Scholar]
  106. RajputS. Kumar SharmaP. MalviyaR. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies.Med. Drug Discov.20231810015810.1016/j.medidd.2023.100158
    [Google Scholar]
  107. DieterichL.C. TacconiC. DucoliL. DetmarM. Lymphatic vessels in cancer.Physiol. Rev.202210241837187910.1152/physrev.00039.202135771983
    [Google Scholar]
  108. LeongS.P. WitteM.H. Cancer metastasis through the lymphatic versus blood vessels.Clin. Exp. Metastasis202441438740210.1007/s10585‑024‑10288‑038940900
    [Google Scholar]
  109. ChandrasekaranS. KingM. Microenvironment of tumor-draining lymph nodes: Opportunities for liposome-based targeted therapy.Int. J. Mol. Sci.20141511202092023910.3390/ijms15112020925380524
    [Google Scholar]
  110. YousefiM. NosratiR. SalmaninejadA. DehghaniS. ShahryariA. SaberiA. Organ-specific metastasis of breast cancer: Molecular and cellular mechanisms underlying lung metastasis.Cell Oncol. (Dordr.)201841212314010.1007/s13402‑018‑0376‑629568985
    [Google Scholar]
  111. AryaS.K. LimB. RahmanA.R.A. Enrichment, detection and clinical significance of circulating tumor cells.Lab Chip201313111995202710.1039/c3lc00009e23625167
    [Google Scholar]
  112. LozarT. GersakK. CemazarM. KuharC.G. JesenkoT. The biology and clinical potential of circulating tumor cells.Radiol. Oncol.201953213114710.2478/raon‑2019‑002431104002
    [Google Scholar]
  113. LinE. CaoT. NagrathS. KingM.R. Circulating tumor cells: Diagnostic and therapeutic applications.Annu. Rev. Biomed. Eng.201820132935210.1146/annurev‑bioeng‑062117‑12094729539267
    [Google Scholar]
  114. VonaG. EstepaL. BéroudC. DamotteD. CapronF. NalpasB. MineurA. FrancoD. LacourB. PolS. BréchotC. Paterlini-BréchotP. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer.Hepatology200439379279710.1002/hep.2009114999698
    [Google Scholar]
  115. ShangJ. GaoX. Leveraging nanotechnology for enrichment of circulating tumor cells in vivo.Nanomedicine201510162477248010.2217/nnm.15.99.
    [Google Scholar]
  116. FranklinW.A. GlaspyJ. PflaumerS.M. JonesR.B. HamiL. MartinezC. MurphyJ.R. ShpallE.J. Incidence of tumor- cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone.Blood199994134034710.1182/blood.V94.1.340.413k09_340_34710381531
    [Google Scholar]
  117. Lima MouraS. MartìM. PividoriM.I. Matrix effect in the isolation of breast cancer-derived nanovesicles by immunomagnetic separation and electrochemical immunosensing-A comparative study.Sensors (Basel)202020496510.3390/s2004096532054015
    [Google Scholar]
  118. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  119. SchiffmanJ.D. FisherP.G. GibbsP. Early detection of cancer: Past, present, and future.Am. Soc. Clin. Oncol. Educ. Book20153535576510.14694/EdBook_AM.2015.35.5725993143
    [Google Scholar]
  120. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
  121. JaishreeV. GuptaP.D. Nanotechnology: A revolution in cancer diagnosis.Indian J. Clin. Biochem.201227321422010.1007/s12291‑012‑0221‑z26405378
    [Google Scholar]
  122. PavitraE. DariyaB. SrivaniG. KangS-M. AlamA. SudhirP-R. KamalM.A. RajuG.S.R. HanY-K. LakkakulaB.V.K.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Seminars in Cancer Biology.Elsevier2021293306
    [Google Scholar]
  123. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  124. AramiH. TeemanE. TroksaA. BradshawH. SaatchiK. TomitakaA. GambhirS.S. HäfeliU.O. LiggittD. KrishnanK.M. Tomographic magnetic particle imaging of cancer targeted nanoparticles.Nanoscale2017947187231873010.1039/C7NR05502A29165498
    [Google Scholar]
  125. AshiqueS. AlmohaywiB. HaiderN. YasminS. HussainA. MishraN. GargA. siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Adv. Cancer Biol. Metastasis2022410004710.1016/j.adcanc.2022.100047
    [Google Scholar]
  126. OddoneN. LecotN. FernándezM. Rodriguez-HaralambidesA. CabralP. CerecettoH. BenechJ.C. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.J. Nanobiotechnology20161414510.1186/s12951‑016‑0197‑627297021
    [Google Scholar]
  127. YildizT. GuR. ZauscherS. BetancourtT. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer.Int. J. Nanomedicine2018136961698610.2147/IJN.S17406830464453
    [Google Scholar]
  128. Campos-CarrilloA. WeitzelJ.N. SahooP. RockneR. MokhnatkinJ.V. MurtazaM. GrayS.W. GoetzL. GoelA. SchorkN. SlavinT.P. Circulating tumor DNA as an early cancer detection tool.Pharmacol. Ther.202020710745810.1016/j.pharmthera.2019.10745831863816
    [Google Scholar]
  129. AhnJ.C. TengP.C. ChenP.J. PosadasE. TsengH.R. LuS.C. YangJ.D. Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma.Hepatology202173142243610.1002/hep.3116532017145
    [Google Scholar]
  130. CuiK. OuY. ShenY. LiS. SunZ. Clinical value of circulating tumor cells for the diagnosis and prognosis of hepatocellular carcinoma (HCC).Medicine (Baltimore)20209940e2224210.1097/MD.000000000002224233019399
    [Google Scholar]
  131. JiangM. JinS. HanJ. LiT. ShiJ. ZhongQ. LiW. TangW. HuangQ. ZongH. Detection and clinical significance of circulating tumor cells in colorectal cancer.Biomark. Res.2021918510.1186/s40364‑021‑00326‑434798902
    [Google Scholar]
  132. ZhangH. LinX. HuangY. WangM. CenC. TangS. DiqueM.R. CaiL. LuisM.A. SmollarJ. WanY. CaiF. Detection methods and clinical applications of circulating tumor cells in breast cancer.Front. Oncol.20211165225310.3389/fonc.2021.65225334150621
    [Google Scholar]
  133. BronkhorstA.J. UngererV. HoldenriederS. Early detection of cancer using circulating tumor DNA: Biological, physiological and analytical considerations.Crit. Rev. Clin. Lab. Sci.202057425326910.1080/10408363.2019.170090231865831
    [Google Scholar]
  134. RuppB. BallH. WuchuF. NagrathD. NagrathS. Circulating tumor cells in precision medicine: Challenges and opportunities.Trends Pharmacol. Sci.202243537839110.1016/j.tips.2022.02.00535272862
    [Google Scholar]
  135. NguyenT.N.A. HuangP.S. ChuP.Y. HsiehC.H. WuM.H. Recent progress in enhanced cancer diagnosis, prognosis, and monitoring using a combined analysis of the number of circulating tumor cells (CTCs) and other clinical parameters.Cancers (Basel)20231522537210.3390/cancers1522537238001632
    [Google Scholar]
  136. TangY. QiaoG. XuE. XuanY. LiaoM. YinG. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer.OncoTargets Ther.2017104527453410.2147/OTT.S14214928979144
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128328459241009191933
Loading
/content/journals/cpd/10.2174/0113816128328459241009191933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test