Skip to content
2000
image of Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections

Abstract

Background

The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets.

Methods

This review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as “Prickle2,” “epilepsy,” and “PCP pathway,” focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature.

Results

Although there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer.

Conclusion

Due to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333500241031100623
2025-01-01
2025-01-16
Loading full text...

Full text loading...

References

  1. Surguchov A. Surgucheva I. Sharma M. Sharma R. Singh V. Pore-Forming Proteins as Mediators of Novel Epigenetic Mechanism of Epilepsy. Front. Neurol. 2017 8 3 10.3389/fneur.2017.00003 28149289
    [Google Scholar]
  2. Fiest K.M. Sauro K.M. Wiebe S. Patten S.B. Kwon C.S. Dykeman J. Pringsheim T. Lorenzetti D.L. Jetté N. Prevalence and incidence of epilepsy. Neurology 2017 88 3 296 303 10.1212/WNL.0000000000003509 27986877
    [Google Scholar]
  3. Katoh M. Katoh M. Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Prickle1 and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. Int. J. Mol. Med. 2003 11 2 249 256 10.3892/ijmm.11.2.249 12525887
    [Google Scholar]
  4. Teufel A. Weinmann A. Galle P.R. Lohse A.W. Characterization of OEBT, a LIM protein. Int. J. Mol. Med. 2005 15 3 513 518 15702247
    [Google Scholar]
  5. Tissir F. Goffinet A.M. Expression of planar cell polarity genes during development of the mouse CNS. Eur. J. Neurosci. 2006 23 3 597 607 10.1111/j.1460‑9568.2006.04596.x 16487141
    [Google Scholar]
  6. Formstone C.J. Little P.F.R. The flamingo-related mouse Celsr family (Celsr1–3) genes exhibit distinct patterns of expression during embryonic development. Mech. Dev. 2001 109 1 91 94 10.1016/S0925‑4773(01)00515‑9 11677057
    [Google Scholar]
  7. Zhu L. Liu Y. Tang H. Wang P. Circular RNA Circ_0001777 suppresses lung adenocarcinoma progression in vitro and in vivo. Biochem. Genet. 2023 61 2 704 724 10.1007/s10528‑022‑10284‑7 36103059
    [Google Scholar]
  8. Dorrego-Rivas A. Ezan J. Moreau M.M. Poirault-Chassac S. Aubailly N. De Neve J. Blanchard C. Castets F. Fréal A. Battefeld A. Sans N. Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. Sci. Adv. 2022 8 36 eabo6333 10.1126/sciadv.abo6333 36083912
    [Google Scholar]
  9. Qian H. Cui N. Zhou Q. Zhang S. Identification of miRNA biomarkers for stomach adenocarcinoma. BMC Bioinformatics 2022 23 1 181 10.1186/s12859‑022‑04719‑6 35578189
    [Google Scholar]
  10. Ehaideb S.N. Iyengar A. Ueda A. Iacobucci G.J. Cranston C. Bassuk A.G. Gubb D. Axelrod J.D. Gunawardena S. Wu C.F. Manak J.R. prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proc. Natl. Acad. Sci. USA 2014 111 30 11187 11192 10.1073/pnas.1403357111 25024231
    [Google Scholar]
  11. Chowdhury M.I.H. Nishioka T. Mishima N. Ohtsuka T. Kaibuchi K. Tsuboi D. Prickle2 and Igsf9b Coordinately Regulate the Cytoarchitecture of the Axon Initial Segment. Cell Struct. Funct. 2020 45 2 143 154 10.1247/csf.20028 32641624
    [Google Scholar]
  12. Leterrier C. The Axon Initial Segment: An Updated Viewpoint. J. Neurosci. 2018 38 9 2135 2145 10.1523/JNEUROSCI.1922‑17.2018 29378864
    [Google Scholar]
  13. Li C. Liang X. Cheng S. Wen Y. Pan C. Zhang H. Chen Y. Zhang J. Zhang Z. Yang X. Meng P. Zhang F. A multi-environments-gene interaction study of anxiety, depression and self-harm in the UK Biobank cohort. J. Psychiatr. Res. 2022 147 59 66 10.1016/j.jpsychires.2022.01.009 35026594
    [Google Scholar]
  14. Laqqan M.M. Yassin M.M. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. Environ. Sci. Pollut. Res. Int. 2022 29 18 26835 26849 10.1007/s11356‑021‑17786‑8 34855177
    [Google Scholar]
  15. Ban Y. Yu T. Feng B. Lorenz C. Wang X. Baker C. Zou Y. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci. Adv. 2021 7 41 eabh2974 10.1126/sciadv.abh2974 34613779
    [Google Scholar]
  16. Howard D.M. Pain O. Arathimos R. Barbu M.C. Amador C. Walker R.M. Jermy B. Adams M.J. Deary I.J. Porteous D. Campbell A. Sullivan P.F. Evans K.L. Arseneault L. Wray N.R. Meaney M. McIntosh A.M. Lewis C.M. Methylome-wide association study of early life stressors and adult mental health. Hum. Mol. Genet. 2022 31 4 651 664 10.1093/hmg/ddab274 34523677
    [Google Scholar]
  17. Turkdogan D. Turkyilmaz A. Sager G. Ozturk G. Unver O. Say M. Chromosomal microarray and exome sequencing in unexplained early infantile epileptic encephalopathies in a highly consanguineous population. Int. J. Neurosci. 2023 133 7 683 700 10.1080/00207454.2021.1967349 34380004
    [Google Scholar]
  18. Bayat A. Iqbal S. Borredy K. Amiel J. Zweier C. Barcia G. Kraus C. Weyhreter H. Bassuk A.G. Chopra M. Rubboli G. Møller R.S. PRICKLE2 revisited—further evidence implicating PRICKLE2 in neurodevelopmental disorders. Eur. J. Hum. Genet. 2021 29 8 1235 1244 10.1038/s41431‑021‑00912‑y 34092786
    [Google Scholar]
  19. Fujimura L. Hatano M. Role of Prickle1 and Prickle2 in neurite outgrowth in murine neuroblastoma cells. Methods Mol. Biol. 2012 839 173 185 10.1007/978‑1‑61779‑510‑7_14 22218901
    [Google Scholar]
  20. Fujimura L. Watanabe-Takano H. Sato Y. Tokuhisa T. Hatano M. Prickle promotes neurite outgrowth via the Dishevelled dependent pathway in C1300 cells. Neurosci. Lett. 2009 467 1 6 10 10.1016/j.neulet.2009.09.050 19788910
    [Google Scholar]
  21. Goodrich L.V. The plane facts of PCP in the CNS. Neuron 2008 60 1 9 16 10.1016/j.neuron.2008.09.003 18940584
    [Google Scholar]
  22. Zhang X. Hu W. Lei Z. Wang H. Kang X. Identification of key genes and evaluation of immune cell infiltration in vitiligo. Math. Biosci. Eng. 2021 18 2 1051 1062 10.3934/mbe.2021057 33757175
    [Google Scholar]
  23. Alotaibi R.N. Howe B.J. Moreno Uribe L.M. Valencia Ramirez C. Restrepo C. Deleyiannis F.W.B. Padilla C. Orioli I.M. Buxó C.J. Hecht J.T. Wehby G.L. Neiswanger K. Murray J.C. Shaffer J.R. Weinberg S.M. Marazita M.L. Multivariate GWAS of Structural Dental Anomalies and Dental Caries in a Multi-Ethnic Cohort. Front. Dent. Med. 2022 2 771116 10.3389/fdmed.2021.771116 36267138
    [Google Scholar]
  24. Chen Z. Huang J. Feng Y. Li Z. Jiang Y. Profiling of specific long non‐coding RNA signatures identifies ST8SIA6‐AS1 AS a novel target for breast cancer. J. Gene Med. 2021 23 2 e3286 10.1002/jgm.3286 33037712
    [Google Scholar]
  25. Sun F. Jiang F. Zhang N. Li H. Tian W. Liu W. Upregulation of Prickle2 Ameliorates Alzheimer’s Disease-Like Pathology in a Transgenic Mouse Model of Alzheimer’s Disease. Front. Cell Dev. Biol. 2020 8 565020 10.3389/fcell.2020.565020 33015060
    [Google Scholar]
  26. Okuda H. Miyata S. Mori Y. Tohyama M. Mouse Prickle1 and Prickle2 are expressed in postmitotic neurons and promote neurite outgrowth. FEBS Lett. 2007 581 24 4754 4760 10.1016/j.febslet.2007.08.075 17868671
    [Google Scholar]
  27. Hida Y. Fukaya M. Hagiwara A. Deguchi-Tawarada M. Yoshioka T. Kitajima I. Inoue E. Watanabe M. Ohtsuka T. Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain. J. Biochem. 2011 149 6 693 700 10.1093/jb/mvr023 21324980
    [Google Scholar]
  28. Tao H. Inoue K. Kiyonari H. Bassuk A.G. Axelrod J.D. Sasaki H. Aizawa S. Ueno N. Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Dev. Biol. 2012 364 2 138 148 10.1016/j.ydbio.2012.01.025 22333836
    [Google Scholar]
  29. Kunimoto K. Weiner A.T. Axelrod J.D. Vladar E.K. Distinct overlapping functions for Prickle1 and Prickle2 in the polarization of the airway epithelium. Front. Cell Dev. Biol. 2022 10 976182 10.3389/fcell.2022.976182 36176272
    [Google Scholar]
  30. Sowers L.P. Yin T. Mahajan V.B. Bassuk A.G. Defective motile cilia in Prickle2-deficient mice. J. Neurogenet. 2014 28 1-2 146 152 10.3109/01677063.2014.885966 24708399
    [Google Scholar]
  31. Nagaoka T. Furuse M. Ohtsuka T. Tsuchida K. Kishi M. Vangl2 interaction plays a role in the proteasomal degradation of Prickle2. Sci. Rep. 2019 9 1 2912 10.1038/s41598‑019‑39642‑z 30814664
    [Google Scholar]
  32. Minegishi K. Hashimoto M. Ajima R. Takaoka K. Shinohara K. Ikawa Y. Nishimura H. McMahon A.P. Willert K. Okada Y. Sasaki H. Shi D. Fujimori T. Ohtsuka T. Igarashi Y. Yamaguchi T.P. Shimono A. Shiratori H. Hamada H. A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking. Dev. Cell 2017 40 5 439 452.e4 10.1016/j.devcel.2017.02.010 28292423
    [Google Scholar]
  33. Humphries A.C. Molina-Pelayo C. Sil P. Hazelett C.C. Devenport D. Mlodzik M. A Van Gogh/Vangl tyrosine phosphorylation switch regulates its interaction with core Planar Cell Polarity factors Prickle and Dishevelled. PLoS Genet. 2023 19 7 e1010849 10.1371/journal.pgen.1010849 37463168
    [Google Scholar]
  34. Collu G.M. Jenny A. Gaengel K. Mirkovic I. Chin M. Weber U. Smith M.J. Mlodzik M. Prickle is phosphorylated by Nemo and targeted for degradation to maintain Prickle/Spiny-legs isoform balance during planar cell polarity establishment. PLoS Genet. 2018 14 5 e1007391 10.1371/journal.pgen.1007391 29758044
    [Google Scholar]
  35. Shah P.K. Tanner M.R. Kovacevic I. Rankin A. Marshall T.E. Noblett N. Tran N.N. Roenspies T. Hung J. Chen Z. Slatculescu C. Perkins T.J. Bao Z. Colavita A. PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C. elegans. Dev. Cell 2017 41 2 195 203.e3 10.1016/j.devcel.2017.03.024 28441532
    [Google Scholar]
  36. Chen X. Long F. Cai B. Chen X. Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 3: Evidence from chromosome 3 high density association screen. J. Comp. Neurol. 2018 526 1 59 79 10.1002/cne.24311 28856687
    [Google Scholar]
  37. Tarui T. Kim A. Flake A. McClain L. Stratigis J. D. Fried I. Newman R. Slonim D. K. Bianchi D. W. Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele. Am J Obstet Gynecol. 2017 217 5 587 10.1016/j.ajog.2017.07.022
    [Google Scholar]
  38. Laqqan M. Tierling S. Alkhaled Y. Lo Porto C. Solomayer E.F. Hammadeh M. Spermatozoa from males with reduced fecundity exhibit differential DNA methylation patterns. Andrology 2017 5 5 971 978 10.1111/andr.12362 28544631
    [Google Scholar]
  39. Wang D. Chu M. Wang F. Zhou A. Ruan M. Chen Y. A Genetic Variant in FIGN Gene Reduces the Risk of Congenital Heart Disease in Han Chinese Populations. Pediatr. Cardiol. 2017 38 6 1169 1174 10.1007/s00246‑017‑1636‑3 28534241
    [Google Scholar]
  40. Freitas A.E. Gorodetski L. Lim W.L. Zou Y. Emerging roles of planar cell polarity proteins in glutamatergic synapse formation, maintenance and function in health and disease. Dev. Dyn. 2023 252 8 1068 1076 10.1002/dvdy.574 36780134
    [Google Scholar]
  41. Feng B. Freitas A.E. Gorodetski L. Wang J. Tian R. Lee Y.R. Grewal A.S. Zou Y. Planar cell polarity signaling components are a direct target of β-amyloid–associated degeneration of glutamatergic synapses. Sci. Adv. 2021 7 34 eabh2307 10.1126/sciadv.abh2307 34407949
    [Google Scholar]
  42. Narimatsu M. Bose R. Pye M. Zhang L. Miller B. Ching P. Sakuma R. Luga V. Roncari L. Attisano L. Wrana J.L. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009 137 2 295 307 10.1016/j.cell.2009.02.025 19379695
    [Google Scholar]
  43. Zou Y. Breaking symmetry – cell polarity signaling pathways in growth cone guidance and synapse formation. Curr. Opin. Neurobiol. 2020 63 77 86 10.1016/j.conb.2020.03.010 32361599
    [Google Scholar]
  44. Scott J. Thakar S. Mao Y. Qin H. Hejran H. Lee S.Y. Yu T. Klezovitch O. Cheng H. Mu Y. Ghosh S. Vasioukhin V. Zou Y. Apical-Basal Polarity Signaling Components, Lgl1 and aPKCs, Control Glutamatergic Synapse Number and Function. iScience 2019 20 25 41 10.1016/j.isci.2019.09.005 31546104
    [Google Scholar]
  45. Devitt C.C. Weng S. Bejar-Padilla V.D. Alvarado J. Wallingford J.B. PCP and Septins govern the polarized organization of the actin cytoskeleton during convergent extension. Curr. Biol. 2024 34 3 615 622.e4 10.1016/j.cub.2023.12.025 38199065
    [Google Scholar]
  46. Nagaoka T. Tabuchi K. Kishi M. PDZ interaction of Vangl2 links PSD-95 and Prickle2 but plays only a limited role in the synaptic localisation of Vangl2. Sci. Rep. 2015 5 1 12916 10.1038/srep12916 26257100
    [Google Scholar]
  47. Jaffe K.M. Grimes D.T. Schottenfeld-Roames J. Werner M.E. Ku T.S.J. Kim S.K. Pelliccia J.L. Morante N.F.C. Mitchell B.J. Burdine R.D. c21orf59/kurly Controls Both Cilia Motility and Polarization. Cell Rep. 2016 14 8 1841 1849 10.1016/j.celrep.2016.01.069 26904945
    [Google Scholar]
  48. Butler M.T. Wallingford J.B. Spatial and temporal analysis of PCP protein dynamics during neural tube closure. eLife 2018 7 e36456 10.7554/eLife.36456 30080139
    [Google Scholar]
  49. Hashimoto M. Hamada H. Translation of anterior–posterior polarity into left–right polarity in the mouse embryo. Curr. Opin. Genet. Dev. 2010 20 4 433 437 10.1016/j.gde.2010.04.002 20439159
    [Google Scholar]
  50. Antic D. Stubbs J.L. Suyama K. Kintner C. Scott M.P. Axelrod J.D. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One 2010 5 2 e8999 10.1371/journal.pone.0008999 20126399
    [Google Scholar]
  51. Shi G. Zhou X. Wang X. Zhang X. Zhang P. Feng S. Signatures of altered DNA methylation gene expression after central and peripheral nerve injury. J. Cell. Physiol. 2020 235 6 5171 5181 10.1002/jcp.29393 31691285
    [Google Scholar]
  52. Sowers L.P. Loo L. Wu Y. Campbell E. Ulrich J.D. Wu S. Paemka L. Wassink T. Meyer K. Bing X. El-Shanti H. Usachev Y.M. Ueno N. Manak R.J. Shepherd A.J. Ferguson P.J. Darbro B.W. Richerson G.B. Mohapatra D.P. Wemmie J.A. Bassuk A.G. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol. Psychiatry 2013 18 10 1077 1089 10.1038/mp.2013.71 23711981
    [Google Scholar]
  53. Wen S. Zhu H. Lu W. Mitchell L.E. Shaw G.M. Lammer E.J. Finnell R.H. Planar cell polarity pathway genes and risk for spina bifida. Am. J. Med. Genet. A. 2010 152A 2 299 304 10.1002/ajmg.a.33230 20101694
    [Google Scholar]
  54. Kwon C.S. Wirrell E.C. Jetté N. Autism Spectrum Disorder and Epilepsy. Neurol. Clin. 2022 40 4 831 847 10.1016/j.ncl.2022.03.011 36270694
    [Google Scholar]
  55. Abbott P.W. Hardie J.B. Walsh K.P. Nessler A.J. Farley S.J. Freeman J.H. Wemmie J.A. Wendt L. Kim Y. Sowers L.P. Parker K.L. Knockdown of the Non-canonical Wnt Gene Prickle2 Leads to Cerebellar Purkinje Cell Abnormalities While Cerebellar-Mediated Behaviors Remain Intact. Cerebellum 2024 ••• 10.1007/s12311‑023‑01648‑9 38165577
    [Google Scholar]
  56. Tao H. Manak J.R. Sowers L. Mei X. Kiyonari H. Abe T. Dahdaleh N.S. Yang T. Wu S. Chen S. Fox M.H. Gurnett C. Montine T. Bird T. Shaffer L.G. Rosenfeld J.A. McConnell J. Madan-Khetarpal S. Berry-Kravis E. Griesbach H. Saneto R.P. Scott M.P. Antic D. Reed J. Boland R. Ehaideb S.N. El-Shanti H. Mahajan V.B. Ferguson P.J. Axelrod J.D. Lehesjoki A.E. Fritzsch B. Slusarski D.C. Wemmie J. Ueno N. Bassuk A.G. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am. J. Hum. Genet. 2011 88 2 138 149 10.1016/j.ajhg.2010.12.012 21276947
    [Google Scholar]
  57. Sowers L.P. Mouw T.J. Ferguson P.J. Wemmie J.A. Mohapatra D.P. Bassuk A.G. The non-canonical Wnt ligand Wnt5a rescues morphological deficits in Prickle2-deficient hippocampal neurons. Mol. Psychiatry 2013 18 10 1049 10.1038/mp.2013.119 24056908
    [Google Scholar]
  58. Senchenko V.N. Kisseljova N.P. Ivanova T.A. Dmitriev A.A. Krasnov G.S. Kudryavtseva A.V. Panasenko G.V. Tsitrin E.B. Lerman M.I. Kisseljov F.L. Kashuba V.I. Zabarovsky E.R. Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer. Epigenetics 2013 8 4 409 420 10.4161/epi.24233 23478628
    [Google Scholar]
  59. Bassuk A.G. Wallace R.H. Buhr A. Buller A.R. Afawi Z. Shimojo M. Miyata S. Chen S. Gonzalez-Alegre P. Griesbach H.L. Wu S. Nashelsky M. Vladar E.K. Antic D. Ferguson P.J. Cirak S. Voit T. Scott M.P. Axelrod J.D. Gurnett C. Daoud A.S. Kivity S. Neufeld M.Y. Mazarib A. Straussberg R. Walid S. Korczyn A.D. Slusarski D.C. Berkovic S.F. El-Shanti H.I. A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am. J. Hum. Genet. 2008 83 5 572 581 10.1016/j.ajhg.2008.10.003 18976727
    [Google Scholar]
  60. Eickholt B.J. Towers G.J. Ryves W.J. Eikel D. Adley K. Ylinen L.M.J. Chadborn N.H. Harwood A.J. Nau H. Williams R.S.B. Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3beta inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol. Pharmacol. 2005 67 5 1426 1433 10.1124/mol.104.009308 15687223
    [Google Scholar]
  61. Kelly K.M. Gross R.A. Macdonald R.L. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci. Lett. 1990 116 1-2 233 238 10.1016/0304‑3940(90)90416‑7 2175404
    [Google Scholar]
  62. Paus S. Zsurka G. Baron M. Deschauer M. Bamberg C. Klockgether T. Kunz W.S. Kornblum C. Apraxia of lid opening mimicking ptosis in compound heterozygosity for A467T and W748S POLG1 mutations. Mov. Disord. 2008 23 9 1286 1288 10.1002/mds.22135 18546343
    [Google Scholar]
  63. Roshal D. Glosser D. Zangaladze A. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype. Epilepsy Behav. 2011 21 2 206 210 10.1016/j.yebeh.2011.03.003 21515089
    [Google Scholar]
  64. Tzoulis C. Engelsen B.A. Telstad W. Aasly J. Zeviani M. Winterthun S. Ferrari G. Aarseth J.H. Bindoff L.A. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 2006 129 7 1685 1692 10.1093/brain/awl097 16638794
    [Google Scholar]
  65. Van Goethem G. Dermaut B. Löfgren A. Martin J.J. Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 2001 28 3 211 212 10.1038/90034 11431686
    [Google Scholar]
  66. Van Goethem G. Luoma P. Rantamäki M. Al Memar A. Kaakkola S. Hackman P. Krahe R. Löfgren A. Martin J.J. De Jonghe P. Suomalainen A. Udd B. Van Broeckhoven C. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004 63 7 1251 1257 10.1212/01.WNL.0000140494.58732.83 15477547
    [Google Scholar]
  67. Winterthun S. Ferrari G. He L. Taylor R.W. Zeviani M. Turnbull D.M. Engelsen B.A. Moen G. Bindoff L.A. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase γ mutations. Neurology 2005 64 7 1204 1208 10.1212/01.WNL.0000156516.77696.5A 15824347
    [Google Scholar]
  68. Sandford E. Bird T.D. Li J.Z. Burmeister M. PRICKLE2 Mutations Might Not Be Involved in Epilepsy. Am. J. Hum. Genet. 2016 98 3 588 589 10.1016/j.ajhg.2016.01.009 26942291
    [Google Scholar]
  69. Mahajan V.B. Bassuk A.G. Response to Sandford et al.: PRICKLE2 Variants in Epilepsy: A Call for Precision Medicine. Am. J. Hum. Genet. 2016 98 3 590 591 10.1016/j.ajhg.2016.02.002 26942292
    [Google Scholar]
  70. Okumura A. Yamamoto T. Miyajima M. Shimojima K. Kondo S. Abe S. Ikeno M. Shimizu T. 3p interstitial deletion including PRICKLE2 in identical twins with autistic features. Pediatr. Neurol. 2014 51 5 730 733 10.1016/j.pediatrneurol.2014.07.025 25193415
    [Google Scholar]
  71. Maria Christina Schwaibold E. Zoll B. Burfeind P. Hobbiebrunken E. Wilken B. Funke R. Shoukier M. A 3p interstitial deletion in two monozygotic twin brothers and an 18‐year‐old man: Further characterization and review. Am. J. Med. Genet. A. 2013 161 10 2634 2640 10.1002/ajmg.a.36129 23949945
    [Google Scholar]
  72. Rim J.H. Kim S.H. Hwang I.S. Kwon S.S. Kim J. Kim H.W. Cho M.J. Ko A. Youn S.E. Kim J. Lee Y.M. Chung H.J. Lee J.S. Kim H.D. Choi J.R. Lee S.T. Kang H.C. Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med. Genomics 2018 11 1 6 10.1186/s12920‑018‑0320‑7 29390993
    [Google Scholar]
  73. Paemka L. Mahajan V.B. Ehaideb S.N. Skeie J.M. Tan M.C. Wu S. Cox A.J. Sowers L.P. Gecz J. Jolly L. Ferguson P.J. Darbro B. Schneider A. Scheffer I.E. Carvill G.L. Mefford H.C. El-Shanti H. Wood S.A. Manak J.R. Bassuk A.G. Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet. 2015 11 3 e1005022 10.1371/journal.pgen.1005022 25763846
    [Google Scholar]
  74. Ahmad F. Debes P.V. Palomar G. Vasemägi A. Association mapping reveals candidate loci for resistance and anaemic response to an emerging temperature‐driven parasitic disease in a wild salmonid fish. Mol. Ecol. 2018 27 6 1385 1401 10.1111/mec.14509 29411465
    [Google Scholar]
  75. Nagaoka T. Ohashi R. Inutsuka A. Sakai S. Fujisawa N. Yokoyama M. Huang Y.H. Igarashi M. Kishi M. The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin. Cell Rep. 2014 6 5 916 927 10.1016/j.celrep.2014.01.044 24582966
    [Google Scholar]
  76. Lopez A.Y. Wang X. Xu M. Maheshwari A. Curry D. Lam S. Adesina A.M. Noebels J.L. Sun Q-Q. Cooper E.C. Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder. Mol. Psychiatry 2017 22 10 1464 1472 10.1038/mp.2016.233 27956739
    [Google Scholar]
  77. Marfull-Oromí P. Onishi K. Han X. Yates J.R. III Zou Y. The Fragile X Messenger Ribonucleoprotein 1 Participates in Axon Guidance Mediated by the Wnt/Planar Cell Polarity Pathway. Neuroscience 2023 508 76 86 10.1016/j.neuroscience.2022.09.018 36191829
    [Google Scholar]
  78. Bernatik O. Paclikova P. Sri Ganji R. Bryja V. Activity of Smurf2 Ubiquitin Ligase Is Regulated by the Wnt Pathway Protein Dishevelled. Cells 2020 9 5 1147 10.3390/cells9051147 32392721
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333500241031100623
Loading
/content/journals/cpd/10.2174/0113816128333500241031100623
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: protein interactions ; PCP ; AIS ; Prickle2 ; USP9X ; NGS ; AnkG ; Wnt5a ; FMRP ; epilepsy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test