Skip to content
2000
image of Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome

Abstract

Background

Polycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.

Objective

The present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.

Methods

Molecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.

Results

Constituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the techniques showed that Sarsasapogenin from exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable drug-likeness profile and non-toxic effects across all screened parameters.

Conclusion

From the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330398241015115043
2024-11-07
2025-01-18
Loading full text...

Full text loading...

References

  1. March W.A. Moore V.M. Willson K.J. Phillips D.I.W. Norman R.J. Davies M.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 2010 25 2 544 551 10.1093/humrep/dep399 19910321
    [Google Scholar]
  2. Cooper H.E. Spellacy W.N. Prem K.A. Cohen W.D. Hereditary factors in the Stein-Leventhal syndrome. Am. J. Obstet. Gynecol. 1968 100 3 371 387 10.1016/S0002‑9378(15)33704‑2 15782458
    [Google Scholar]
  3. Kabel A.M. Polycystic ovarian syndrome: Insights into pathogenesis, diagnosis, prognosis, pharmacological and non-pharmacological treatment. Pharm. Bioprocess. 2016 4 1 7 12
    [Google Scholar]
  4. Gade R. Dwarampudi L.P. Dharshini S.P. Raj R.K. Polycystic ovarian syndrome (PCOS): Approach to traditional systems, natural and bio-chemical compounds for its management. Indian J. Biochem. Biophys. 2022 59 5 521 527
    [Google Scholar]
  5. Lim S.S. Hutchison S.K. Van Ryswyk E. Norman R.J. Teede H.J. Moran L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Libr. 2019 2019 3 CD007506 10.1002/14651858.CD007506.pub4 30921477
    [Google Scholar]
  6. Tay C.T. Hart R.J. Hickey M. Moran L.J. Earnest A. Doherty D.A. Teede H.J. Joham A.E. Updated adolescent diagnostic criteria for polycystic ovary syndrome: impact on prevalence and longitudinal body mass index trajectories from birth to adulthood. BMC Med. 2020 18 1 389 10.1186/s12916‑020‑01861‑x 33302955
    [Google Scholar]
  7. Jones G.L. Palep-Singh M. Ledger W.L. Balen A.H. Jenkinson C. Campbell M.J. Lashen H. Do South Asian women with PCOS have poorer health-related quality of life than Caucasian women with PCOS? A comparative cross-sectional study. Health Qual. Life Outcomes 2010 8 1 149 10.1186/1477‑7525‑8‑149 21171983
    [Google Scholar]
  8. Moore A.M. Campbell R.E. Polycystic ovary syndrome: Understanding the role of the brain. Front. Neuroendocrinol. 2017 46 1 14 10.1016/j.yfrne.2017.05.002 28551304
    [Google Scholar]
  9. Vassilatou E. Nonalcoholic fatty liver disease and polycystic ovary syndrome. World J. Gastroenterol. 2014 20 26 8351 8363 10.3748/wjg.v20.i26.8351 25024594
    [Google Scholar]
  10. Cakir E. Sahin M. Topaloglu O. Colak N. Karbek B. Gungunes A. Arslan M. Unsal I. Tutal E. Ucan B. Delibasi T. The relationship between LH and thyroid volume in patients with PCOS. J. Ovarian Res. 2012 5 1 43 10.1186/1757‑2215‑5‑43 23231775
    [Google Scholar]
  11. Balkrishna A. Rana M. Mishra S. Incredible combination of lifestyle modification and herbal remedies for polycystic ovarian syndrome management. Evid. Based Compl. Altern. Med. 2023 2023 705508 10.1155/2023/3705508
    [Google Scholar]
  12. Lakshmi J.N. Babu A.N. Kiran S.S.M. Nori L.P. Hassan N. Ashames A. Bhandare R.R. Shaik A.B. Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech 2023 12 1 4 10.3390/biotech12010004 36648830
    [Google Scholar]
  13. Rauf A. Akram M. Semwal P. Mujawah A.A.H. Muhammad N. Riaz Z. Munir N. Piotrovsky D. Vdovina I. Bouyahya A. Adetunji C.O. Shariati M.A. Almarhoon Z.M. Mabkhot Y.N. Khan H. Antispasmodic potential of medicinal plants: a comprehensive review. Oxid. Med. Cell. Longev. 2021 2021 1 4889719 10.1155/2021/4889719 34804367
    [Google Scholar]
  14. Wang Y. Fu X. Xu J. Wang Q. Kuang H. Systems pharmacology to investigate the interaction of berberine and other drugs in treating polycystic ovary syndrome. Sci. Rep. 2016 6 28089 10.1038/srep28089
    [Google Scholar]
  15. Maleki V. Faghfouri A.H. Tabrizi F.P.F. Moludi J. Saleh-Ghadimi S. Jafari-Vayghan H. Qaisar S.A. Mechanistic and therapeutic insight into the effects of cinnamon in polycystic ovary syndrome: a systematic review. J. Ovarian Res. 2021 14 1 130 10.1186/s13048‑021‑00870‑5 34627352
    [Google Scholar]
  16. Kalachaveedu M. Raghavan D. Telapolu S. Kuruvilla S. Kedike B. Phytoestrogenic effect of Inula racemosa Hook f – A cardioprotective root drug in traditional medicine. J. Ethnopharmacol. 2018 210 408 416 10.1016/j.jep.2017.09.001 28893570
    [Google Scholar]
  17. Mutreja A. Agarwal M. Kushwaha S. Chauhan A. Effect of Nelumbo nucifera seeds on the reproductive organs of female rats. Iran. J. Reprod. Med. 2008 6 1 7 11
    [Google Scholar]
  18. Shukla S. Mathur R. Prakash A.O. Antifertility profile of the aqueous extract of Moringa oleifera roots. J. Ethnopharmacol. 1988 22 1 51 62 10.1016/0378‑8741(88)90230‑9 3352285
    [Google Scholar]
  19. Sharma S. Sharma A.K. Female Anti-Fertility Screening of Plants Mucuna prurita, Mesua Ferrea and Punica granatum on Rats. Int J Pharm Chem Res. 2017 3 3 697 699
    [Google Scholar]
  20. Khanna A. Thomas J. John F. Maliakel B. Krishnakumar I.M. Safety and influence of a novel extract of fenugreek on healthy young women: a randomized, double-blinded, placebo-controlled study. Clin. Phytosci. 2021 7 1 63 10.1186/s40816‑021‑00296‑y
    [Google Scholar]
  21. Atashpour S. Kargar Jahromi H. Kargar Jahromi Z. Maleknasab M. Comparison of the effects of Ginger extract with clomiphene citrate on sex hormones in rats with polycystic ovarian syndrome. Int. J. Reprod. Biomed. (Yazd) 2017 15 9 561 568 10.29252/ijrm.15.9.561 29662964
    [Google Scholar]
  22. Sheeja E. Joshi S.B. Jain D.C. Antiovulatory and estrogenic activity of Plumbago rosea leaves in female albino rats. Indian J. Pharmacol. 2009 41 6 273 277 10.4103/0253‑7613.59927 20407559
    [Google Scholar]
  23. Njoga U.J. Jaja I.F. Onwuka O.S. Ilo S.U. Eke I.G. Abah K.O. Oguejiofor C.F. Ochiogu I.S. Reproductive effects of medicinal plant (Azadirachta indica) used as forage and for ethnoveterinary practices: new insights from animal models. Challenges 2022 13 2 40 10.3390/challe13020040
    [Google Scholar]
  24. Nasimi Doost Azgomi R. Zomorrodi A. Nazemyieh H. Fazljou S.M.B. Sadeghi Bazargani H. Nejatbakhsh F. Moini Jazani A. Ahmadi AsrBadr Y. Effects of Withania somnifera on reproductive system: a systematic review of the available evidence. BioMed Res. Int. 2018 2018 1 17 10.1155/2018/4076430 29670898
    [Google Scholar]
  25. Sirotkin A.V. Kolesárová A. Puncture vine (Tribulus Terrestris L.) in control of health and reproduction. Physiol. Res. 2021 70 Suppl. 4 S657 S667 10.33549/physiolres.934711 35199550
    [Google Scholar]
  26. Paul A.K. Jahan R. Paul A. Mahboob T. Bondhon T.A. Jannat K. The role of medicinal and aromatic plants against obesity and arthritis: A review. Nutrients 2022 14 5 985 10.3390/nu14050985
    [Google Scholar]
  27. Dayani Siriwardene S.A. Karunathilaka L.P.A. Kodituwakku N.D. Karunarathne Y.A.U.D. Clinical efficacy of Ayurveda treatment regimen on Subfertility with poly cystic ovarian syndrome (PCOS). Ayu 2010 31 1 24 27 10.4103/0974‑8520.68203 22131680
    [Google Scholar]
  28. Lilaram Raichur N.A. Abortifacient potential of ethanolic seed extract of Caesalpinia bonducella in female albino rats. J. Basic Clin. Physiol. Pharmacol. 2014 25 4 445 451 10.1515/jbcpp‑2013‑0120
    [Google Scholar]
  29. Hekmatzadeh S.F. Bazarganipour F. Malekzadeh J. Goodarzi F. Aramesh S. A randomized clinical trial of the efficacy of applying a simple protocol of boiled Anethum Graveolens seeds on pain intensity and duration of labor stages. Complement. Ther. Med. 2014 22 6 970 976 10.1016/j.ctim.2014.10.007 25453516
    [Google Scholar]
  30. Rasheed N. Ahmed A. Nosheen F. Imran A. Islam F. Noreen R. Chauhan A. Shah M.A. Amer Ali Y. Effectiveness of combined seeds (pumpkin, sunflower, sesame, flaxseed): As adjacent therapy to treat polycystic ovary syndrome in females. Food Sci. Nutr. 2023 11 6 3385 3393 10.1002/fsn3.3328 37324929
    [Google Scholar]
  31. Thakor A.P. Patel A.J. Normalizing of estrous cycle in polycystic ovary syndrome (PCOS) induced rats with Tephrosia purpurea (Linn.) Pers. J. Appl. Nat. Sci. 2014 6 1 197 201 10.31018/jans.v6i1.400
    [Google Scholar]
  32. Vibhuti Rao B. Kashinath Metri B. Shubhashankari Rao B. Nagaratna R. Improvement in biochemical and psychopathologies in women having PCOS through yoga combined with herbal detoxification. J. Stem Cells 2018 13 4 213 222
    [Google Scholar]
  33. Khani S. Abdollahi M. Khalaj A. Heidari H. Zohali S. The effect of hydroalcoholic extract of Nigella Sativa seed on dehydroepiandrosterone-induced polycystic ovarian syndrome in rats: An experimental study. Int. J. Reprod. Biomed. (Yazd) 2021 19 3 271 282 10.18502/ijrm.v19i3.8575 33842824
    [Google Scholar]
  34. Sayago C. Camargo V. Barbosa F. Gularte C. Pereira G. Miotto S. Cechinel Filho V. Luiz Puntel R. Folmer V. Mendez A. Chemical composition and in vitro antioxidant activity of hydro-ethanolic extracts from Bauhinia forficata subsp. pruinosa and B. variegata. Acta Biol. Hung. 2013 64 1 21 33 10.1556/ABiol.64.2013.1.3 23567828
    [Google Scholar]
  35. Chandran A. Merlin N.J. Ammu L. Dharan S.S. Fennel treatment to PCOS: An in silico evaluation to explore the therapeutic efficacy of anethole. Res J Pharm Technol 2019 12 10 4958 4962 10.5958/0974‑360X.2019.00860.6
    [Google Scholar]
  36. Ionescu O.M. Frincu F. Mehedintu A. Plotogea M. Cirstoiu M. Petca A. Varlas V. Mehedintu C. Berberine—A Promising Therapeutic Approach to Polycystic Ovary Syndrome in Infertile/Pregnant Women. Life (Basel) 2023 13 1 125 10.3390/life13010125 36676074
    [Google Scholar]
  37. Kandasamy V. Balasundaram U. Caesalpinia bonduc (L.) Roxb. as a promising source of pharmacological compounds to treat Poly Cystic Ovary Syndrome (PCOS): A review. J. Ethnopharmacol. 2021 279 114375 10.1016/j.jep.2021.114375 34192600
    [Google Scholar]
  38. Maity M. Perveen H. Dash M. Jana S. Khatun S. Dey A. Mandal A.K. Chattopadhyay S. Arjunolic acid improves the serum level of vitamin B12 and folate in the process of the attenuation of arsenic induced uterine oxidative stress. Biol. Trace Elem. Res. 2018 182 1 78 90 10.1007/s12011‑017‑1077‑0 28660490
    [Google Scholar]
  39. Jadhav M. Menon S. Shailajan S. Anti-androgenic effect of Symplocos racemosa Roxb. against letrozole induced polycystic ovary using rat model. J. Coast. Life Med. 2013 1 4 309 314
    [Google Scholar]
  40. Fongod A.G.N. Veranso M.C. Libalah M.N. Identification and use of plants in treating infertility in human females in fako division, Cameroon. Glob. J. Res. Med. Plants Indig. Med. 2013 2 11 724 737
    [Google Scholar]
  41. Rani R. Chitme H.R. Kukreti N. Pant P. Abdel-Wahab B.A. Khateeb M.M. Regulation of insulin resistance, lipid profile and glucose metabolism associated with polycystic ovary syndrome by Tinospora cordifolia. Nutrients. 2023 15 10 2238
    [Google Scholar]
  42. Choudhary N. Choudhary S. Kumar A. Singh V. Deciphering the multi-scale mechanisms of Tephrosia purpurea against polycystic ovarian syndrome (PCOS) and its major psychiatric comorbidities: Studies from network pharmacological perspective. Gene 2021 773 145385 10.1016/j.gene.2020.145385 33383117
    [Google Scholar]
  43. Balamurugan K. Kalaichelvan V.K. Savkar T.A. Effect of methanolic extract of Saccharum officinarum on the biochemical milieu and histopathological profile of female albino rats. Biosci. Biotechnol. Res. Asia 2010 7 1 301 306
    [Google Scholar]
  44. Ongtanasup T. Prommee N. Jampa O. The cholesterol-modulating effect of the new herbal medicinal recipe from yellow vine (Coscinium fenestratum (Goetgh.)), Ginger (Zingiber officinale Roscoe.), and safflower (Carthamus tinctorius L.) on suppressing PCSK9 expression to upregulate LDLR expre. Plants. 2022 11 14 1835
    [Google Scholar]
  45. Jivrajani M. Ravat N. Anandjiwala S. Nivsarkar M. Antiestrogenic and anti-inflammatory potential of n-hexane fraction of Vitex negundo Linn leaf extract: a probable mechanism for blastocyst implantation failure in Mus musculus. Int. Sch. Res. Notices 2014 2014 1 8 10.1155/2014/241946 27351007
    [Google Scholar]
  46. Mangathayaru K. Sarah K. Balakrishna K. Estrogenic effect of Erythrina variegata L. in prepubertal female rats. Indian J. Nat. Prod. Resour. 2014 5 3 223 227
    [Google Scholar]
  47. Dhiman K. Ayurvedic intervention in the management of uterine fibroids: A Case series. Ayu 2014 35 3 303 308 10.4103/0974‑8520.153750 26664240
    [Google Scholar]
  48. Hussain S.P. Rao A.R. Chemopreventive action of mace (Myristica fragrans, Houtt) on methylcholanthrene-induced carcinogenesis in the uterine cervix in mice. Cancer Lett. 1991 56 3 231 234 10.1016/0304‑3835(91)90007‑5 2021927
    [Google Scholar]
  49. Dar M.I. Rafat S. Dev K. Heartwood extract of Pterocarpus marsupium Roxb. offers defense against oxyradicals and improves glucose uptake in HepG2 cells. Metabolites. 2022 12 10 947
    [Google Scholar]
  50. Al-Snafi P.D.A.E. Pharmacology of Ficus religiosa- A review. IOSR J. Pharm. 2017 7 3 49 60 10.9790/3013‑0703014960
    [Google Scholar]
  51. Middelkoop T.B. Labadie R.P. An in vitro Examination of Bark Extracts from Saraca asoca (Roxb.) de Wilde and Rhododendron Arboreum Sm. for Oxytocic Activity. Int. J. Crude Drug Res. 1986 24 1 41 44 10.3109/13880208609060885
    [Google Scholar]
  52. Gupta A.K. Neeraj Tandon M.S. Quality standards of Indian Medicinal Plants. Medicinal Plants Unit. New Delhi ICMR 2008
    [Google Scholar]
  53. Cousins K.R. Computer review of ChemDraw ultra 12.0. ACS Publications 2011
    [Google Scholar]
  54. Kamboj A. Verma D. Sharma D. Pant K. Pant B. Kumar V. A molecular docking study towards finding herbal treatment against Polycystic Ovary Syndrome (PCOS). Int. J. Recent. Technol. Eng. 2020 8 2S12 38 41
    [Google Scholar]
  55. Sakhteman A. Pasdaran A. Afifi M. Hamedi A. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women’s Hormonal Health and Reproductive System Diseases. J. Evid. Based Integr. Med. 2020 25 2515690X2093252 10.1177/2515690X20932527
    [Google Scholar]
  56. Albini A. Rosano C. Angelini G. Amaro A. Esposito A.I. Maramotti S. Noonan D.M. Pfeffer U. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr. Med. Chem. 2014 21 9 1129 1145 10.2174/0929867321666131129124640 24304271
    [Google Scholar]
  57. Yang L. Liu Y. Sternberg C. Molin S. Evaluation of enoyl-acyl carrier protein reductase inhibitors as Pseudomonas aeruginosa quorum-quenching reagents. Molecules 2010 15 2 780 792 10.3390/molecules15020780 20335945
    [Google Scholar]
  58. Moka M.K. S A.S. M S. Computational investigation of four isoquinoline alkaloids against polycystic ovarian syndrome. J. Biomol. Struct. Dyn. 2024 42 2 734 746 10.1080/07391102.2023.2222828 37315995
    [Google Scholar]
  59. Morris G.M. Huey R. Olson A.J. Using autodock for ligand‐receptor docking. Curr. Protoc. Bioinforma. 2008 24 1 8.14.1 8.14.40 10.1002/0471250953.bi0814s24
    [Google Scholar]
  60. Hossain M.A. Sharfaraz A. Hasan M.I. Molecular docking and pharmacology study to explore bio-active compounds and underlying mechanisms of Caesalpinia bonducella on polycystic ovarian syndrome. Informatics Med. Unlocked. 2022 33 101073
    [Google Scholar]
  61. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  62. Bibi S. Hasan M.M. Wang Y.B. Papadakos S.P. Yu H. Cordycepin as a promising inhibitor of SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Curr. Med. Chem. 2022 29 1 152 162 10.2174/1875533XMTE3xNDEq0 34420502
    [Google Scholar]
  63. Jejurikar B.L. Rohane S.H. Drug designing in discovery studio. Asian J. Res. Chem. 2021 14 2 135 138
    [Google Scholar]
  64. Shah V. Bhaliya J. Patel G.M. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct. Chem. 2022 33 2 571 600 10.1007/s11224‑021‑01871‑2 35106036
    [Google Scholar]
  65. Duan L. Jin D. An X. Zhang Y. Zhao S. Zhou R. Duan Y. Zhang Y. Liu X. Lian F. The potential effect of Rhizoma coptidis on polycystic ovary syndrome based on network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/5577610 34306142
    [Google Scholar]
  66. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717
    [Google Scholar]
  67. Dey D. Biswas P. Paul P. Mahmud S. Ema T.I. Khan A.A. Ahmed S.Z. Hasan M.M. Saikat A.S.M. Fatema B. Bibi S. Rahman M.A. Kim B. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol. Divers. 2023 27 3 1309 1322 10.1007/s11030‑022‑10491‑9 35821161
    [Google Scholar]
  68. Khan T. Lawrence A.J. Azad I. Raza S. Joshi S. Khan A.R. Computational drug designing and prediction of important parameters using in silico methods-A review. Curr. Computeraided Drug Des. 2019 15 5 384 397 10.2174/1573399815666190326120006 30914032
    [Google Scholar]
  69. Dey D. Hossain R. Biswas P. Paul P. Islam M.A. Ema T.I. Gain B.K. Hasan M.M. Bibi S. Islam M.T. Rahman M.A. Kim B. Amentoflavone derivatives significantly act towards the main protease (3CLPRO/MPRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol. Divers. 2023 27 2 857 871 10.1007/s11030‑022‑10459‑9 35639226
    [Google Scholar]
  70. Bibi S. Khan M.S. El-Kafrawy S.A. Alandijany T.A. El-Daly M.M. Yousafi Q. Fatima D. Faizo A.A. Bajrai L.H. Azhar E.I. Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro. Saudi Pharm. J. 2022 30 7 979 1002 10.1016/j.jsps.2022.05.003 35637849
    [Google Scholar]
  71. Kathiravan M.K. Saravanan V. Narayanan P.L. Sumathi D.L. Kathiravan M.K. Molecular modelling investigation on 4-aminoquinoline derivatives as potent anti-tubercular agents. Journal of medical pharmaceutical and allied sciences 2022 11 5 5304 5311 10.55522/jmpas.V11I5.4167
    [Google Scholar]
  72. Chow E. Rendleman C.A. Bowers K.J. Desmond performance on a cluster of multicore processors. Simulation 2008 1 1 14
    [Google Scholar]
  73. Saravanan V. Chagaleti B.K. Packiapalavesam S.D. Kathiravan M. Ligand based pharmacophore modelling and integrated computational approaches in the quest for small molecule inhibitors against hCA IX. RSC Advances 2024 14 5 3346 3358 10.1039/D3RA08618F 38259989
    [Google Scholar]
  74. Schrödinger L.L.C. Schrödinger Release 2022-3: LigPrep. NY, USA Schrödinger Inc New York 2021
    [Google Scholar]
  75. Patel K.B. Patel R.V. Ahmad I. Rajani D. Patel H. Mukherjee S. Kumari P. Design, synthesis, molecular docking, molecular dynamic simulation, and MMGBSA analysis of 7-O-substituted 5-hydroxy flavone derivatives. J. Biomol. Struct. Dyn. 2024 42 12 6378 6392 10.1080/07391102.2023.2243520 37551031
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330398241015115043
Loading
/content/journals/cpd/10.2174/0113816128330398241015115043
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test