Skip to content
2000
Volume 31, Issue 15
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128341715241216060613
2024-12-19
2025-06-30
Loading full text...

Full text loading...

References

  1. HullC.W. Apparatus for production of three-dimensional objects by stereolithograph.US Patent 457533, 0A, 1986
    [Google Scholar]
  2. WanZ. ZhangP. LiuY. LvL. ZhouY. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.Acta Biomater.2020101264210.1016/j.actbio.2019.10.038 31672585
    [Google Scholar]
  3. YanQ. DongH. SuJ. A review of 3D printing technology for medical applications.Engineering20184572974210.1016/j.eng.2018.07.021
    [Google Scholar]
  4. JamrózW. SzafraniecJ. KurekM. JachowiczR. 3D printing in pharmaceutical and medical applications - Recent achievements and challenges.Pharm. Res.201835917610.1007/s11095‑018‑2454‑x 29998405
    [Google Scholar]
  5. TopN. Şahinİ. GökçeH. GökçeH. Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: State of the art.J. Mater. Res.202136193725374510.1557/s43578‑021‑00156‑y
    [Google Scholar]
  6. ZafeirisK. BrasinikaD. KaratzaA. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications.Mater. Sci. Eng. C202111911163910.1016/j.msec.2020.111639 33321677
    [Google Scholar]
  7. ReddyD.P.R. SharmaV. Additive manufacturing in drug delivery applications: A review.Int. J. Pharm.202058911982010.1016/j.ijpharm.2020.119820 32891718
    [Google Scholar]
  8. DickinsonH. The next industrial revolution? The role of public administration in supporting government to oversee 3D printing technologies.Public Adm. Rev.201878692292510.1111/puar.12988
    [Google Scholar]
  9. WangX. JiangM. ZhouZ. GouJ. HuiD. 3D printing of polymer matrix composites: A review and prospective.Compos., Part B Eng.201711044245810.1016/j.compositesb.2016.11.034
    [Google Scholar]
  10. FaridM.I. WuW. LiuX. WangP. Additive manufacturing landscape and materials perspective in 4D printing.Int. J. Adv. Manuf. Technol.20211159-102973298810.1007/s00170‑021‑07233‑w 34092882
    [Google Scholar]
  11. BegS. AlmalkiW.H. MalikA. 3D printing for drug delivery and biomedical applications.Drug Discov. Today20202591668168110.1016/j.drudis.2020.07.007 32687871
    [Google Scholar]
  12. GooleJ. AmighiK. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems.Int. J. Pharm.20164991-237639410.1016/j.ijpharm.2015.12.071 26757150
    [Google Scholar]
  13. BodaghiM. NorooziR. ZolfagharianA. FotouhiM. NorouziS. 4D printing selfmorphing structures.Materials2019128135310.3390/ma12081353 31027212
    [Google Scholar]
  14. WangY. ZhouY. LinL. CorkerJ. FanM. Overview of 3D additive manufacturing (AM) and corresponding AM composites.Compos., Part A Appl. Sci. Manuf.202013910611410.1016/j.compositesa.2020.106114
    [Google Scholar]
  15. SandlerN. MäättänenA. IhalainenP. Inkjet printing of drug substances and use of porous substrates‐towards individualized dosing.J. Pharm. Sci.201110083386339510.1002/jps.22526 21360709
    [Google Scholar]
  16. VakiliH. KolakovicR. GeninaN. Hyperspectral imaging in quality control of inkjet printed personalised dosage forms.Int. J. Pharm.20154831-224424910.1016/j.ijpharm.2014.12.034 25527212
    [Google Scholar]
  17. NormanJ. MaduraweR.D. MooreC.M.V. KhanM.A. KhairuzzamanA. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.Adv. Drug Deliv. Rev.2017108395010.1016/j.addr.2016.03.001 27001902
    [Google Scholar]
  18. ParhiR. A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives.J. Drug Deliv. Sci. Technol.20216410257110.1016/j.jddst.2021.102571
    [Google Scholar]
  19. LiuY. ChouT.W. Additive manufacturing of multidirectional preforms and composites: From three-dimensional to four-dimensional.Mat Today Adv2020510004510.1016/j.mtadv.2019.100045
    [Google Scholar]
  20. OlheroS.M. TorresP.M.C. GuimarãesM.J. BaltazarJ. da-CruzP.J. GouveiaS. Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 Years of research, challenges and future perspectives.J. Manuf. Process.20227783887910.1016/j.jmapro.2022.02.041
    [Google Scholar]
  21. AggarwalS. MarkoH. New industrial sustainable growth: 3D and 4D printing. Trends and Opportunities of Rapid Prototyping Technologies.London, UKIntechOpen Limited202211610.5772/intechopen.104728
    [Google Scholar]
  22. RainaA. HaqM.I.U. JavaidM. RabS. HaleemA. 4D printing for automotive industry applications.J Insti Eng2021102252152910.1007/s40033‑021‑00284‑z
    [Google Scholar]
  23. NorooziR. TatarF. ZolfagharianA. Additively manufactured multi-morphology bone-like porous scaffolds: Experiments and micro-computed tomography-based finite element modeling approaches.Int J Bioprint20228355610.18063/ijb.v8i3.556 36105131
    [Google Scholar]
  24. SerjoueiA. YousefiA. JenakiA. BodaghiM. MehrpouyaM. 4D printed shape memory sandwich structures: Experimental analysis and numerical modeling.Smart Mater. Struct.202231505501410.1088/1361‑665X/ac60b5
    [Google Scholar]
  25. MalekmohammadiS. AminabadS.N. SabziA. Smart and biomimetic 3D and 4D printed composite hydrogels: Opportunities for different biomedical applications.Biomedicines2021911153710.3390/biomedicines9111537 34829766
    [Google Scholar]
  26. CampbellTA TibbitsS GarrettB The next wave: 4D printing, Atlantic council.Washington, DC2014118
    [Google Scholar]
  27. RayateA. JainP.K. A review on 4D printing material composites and their applications.Mater. Today Proc.201859204742048410.1016/j.matpr.2018.06.424
    [Google Scholar]
  28. MomeniF. HassaniN.S.M.M. LiuX. A review of 4D printing.Mater. Des.2017122427910.1016/j.matdes.2017.02.068
    [Google Scholar]
  29. AhmedK. ShibleeM.D.N.I. KhoslaA. NagaharaL. ThundatT. FurukawaH. Review-recent progresses in 4D printing of gel materials.J. Electrochem. Soc.2020167303756310.1149/1945‑7111/ab6e60
    [Google Scholar]
  30. JoharjiL. MishraR.B. AlamF. TytovS. ModafA.F. AtabE.N. 4D printing: A detailed review of materials, techniques, and applications.Microelectron. Eng.202226511187410.1016/j.mee.2022.111874
    [Google Scholar]
  31. ChenA.Y. PeggE. ChenA. JinZ. GuG.X. 4D printing of electroactive materials.Adv. Intell. Syst.2021312210001910.1002/aisy.202100019
    [Google Scholar]
  32. NadgornyM. AmeliA. Functional polymers and nanocomposites for 3D printing of smart structures and devices.ACS Appl. Mater. Interfaces20181021174891750710.1021/acsami.8b01786 29742896
    [Google Scholar]
  33. MaoY. DingZ. YuanC. 3D printed reversible shape changing components with stimuli responsive materials.Sci. Rep.2016612476110.1038/srep24761 27109063
    [Google Scholar]
  34. SharmaA. RaiA. Fused deposition modelling (FDM) based 3D & 4D printing: A state of art review.Mater. Today Proc.20226236737210.1016/j.matpr.2022.03.679
    [Google Scholar]
  35. HuangX. SarmadP.M. DongK. LiR. ChenT. XiaoX. Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review.Compos., Part A Appl. Sci. Manuf.202114710644410.1016/j.compositesa.2021.106444
    [Google Scholar]
  36. ZolfagharianA KouzaniAZ KhooSY Evolution of 3D printed soft actuators.Sensors Actua A Phys20162502587210.1016/j.sna.2016.09.028
    [Google Scholar]
  37. UekiK. YanagiharaS. UedaK. NakaiM. NakanoT. NarushimaT. Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application.Mater. Sci. Eng. A201976613840010.1016/j.msea.2019.138400
    [Google Scholar]
  38. ParhiR. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases.J. Drug Deliv. Sci. Technol.20238410439510.1016/j.jddst.2023.104395
    [Google Scholar]
  39. ParandoushP. LinD. A review on additive manufacturing of polymer-fiber composites.Compos. Struct.2017182365310.1016/j.compstruct.2017.08.088
    [Google Scholar]
  40. ShieM.Y. ShenY.F. AstutiS.D. Review of polymeric materials in 4D printing biomedical applications.Polymers20191111186410.3390/polym11111864 31726652
    [Google Scholar]
  41. LeeJ.Y. AnJ. ChuaC.K. Fundamentals and applications of 3D printing for novel materials.Appl. Mater. Today2017712013310.1016/j.apmt.2017.02.004
    [Google Scholar]
  42. NazanM.A. RamliF.R. AlkahariM.R. AbdullahM.A. SudinM.N. An exploration of polymer adhesion on 3D printer bed.IOP Conf. Series Mater. Sci. Eng.201721001206210.1088/1757‑899X/210/1/012062
    [Google Scholar]
  43. KhalidM.Y. ArifZ.U. AhmedW. 4D printing: Technological and manufacturing renaissance.Macromol. Mater. Eng.20223078220000310.1002/mame.202200003
    [Google Scholar]
  44. PatdiyaJ. KandasubramanianB. Progress in 4D printing of stimuli responsive materials.Pol Plast Technol Mat202160171845188310.1080/25740881.2021.1934016
    [Google Scholar]
  45. MallakpourS. TabeshF. HussainC.M. 3D and 4D printing: From innovation to evolution.Adv. Colloid Interface Sci.202129410248210.1016/j.cis.2021.102482 34274721
    [Google Scholar]
  46. KhareV. SonkariaS. LeeG.Y. AhnS-H. ChuW-S. From 3D to 4D printing - Design, material and fabrication for multi-functional multi-materials.Int J Prec Eng Manuf Green Technol20174329129910.1007/s40684‑017‑0035‑9
    [Google Scholar]
  47. OladapoB.I. KayodeJ.F. AkinyoolaJ.O. IkumapayiO.M. Shape memory polymer review for flexible artificial intelligence materials of biomedical.Mater. Chem. Phys.202329312693010.1016/j.matchemphys.2022.126930
    [Google Scholar]
  48. HenríquezG.C.M. VallejosS.M.A. HernandezR.J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications.Prog. Polym. Sci.2019945711610.1016/j.progpolymsci.2019.03.001
    [Google Scholar]
  49. BajpaiA. BaigentA. RaghavS. BrádaighC.Ó. KoutsosV. RadacsiN. 4D printing: Materials, technologies, and future applications in the biomedical field.Sustainability202012241062810.3390/su122410628
    [Google Scholar]
  50. HaleemA. JavaidM. SinghR.P. SumanR. Significant roles of 4D printing using smart materials in the field of manufacturing.Adv Indust Eng Pol Res20214430131110.1016/j.aiepr.2021.05.001
    [Google Scholar]
  51. ZhangQ. KuangX. WengS. Shape-memory balloon structures by pneumatic multi-material 4D printing.Adv. Funct. Mater.20213121201087210.1002/adfm.202010872
    [Google Scholar]
  52. QuanjinM. RejabM.R.M. IdrisM.S. KumarN.M. AbdullahM.H. ReddyG.R. Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective.Procedia Comput. Sci.20201671210121910.1016/j.procs.2020.03.434
    [Google Scholar]
  53. KuksenokO. BalazsA.C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers.Mater. Horiz.201631536210.1039/C5MH00212E
    [Google Scholar]
  54. BarlettaM. GisarioA. MehrpouyaM. 4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM).J. Manuf. Process.20216147348010.1016/j.jmapro.2020.11.036
    [Google Scholar]
  55. JavaidM. HaleemA. 4D printing applications in medical field: A brief review.Clin. Epidemiol. Glob. Health20197331732110.1016/j.cegh.2018.09.007
    [Google Scholar]
  56. MohammadiS.I. KaramimoghadamM. ZolfagharianA. AkramiM. BodaghiM. 4D printing technology in medical engineering: A narrative review.J. Braz. Soc. Mech. Sci. Eng.202244623310.1007/s40430‑022‑03514‑x
    [Google Scholar]
  57. ManshorM.R. AlliY.A. AnuarH. EjeromedogheneO. OmotolaE.O. SuhrJ. 4D printing: Historical evolution, computational insights and emerging applications.Mater. Sci. Eng. B202329511656710.1016/j.mseb.2023.116567
    [Google Scholar]
  58. JoshiS. RawatK. KarunakaranC. 4D printing of materials for the future: Opportunities and challenges.Appl. Mater. Today20201810049010.1016/j.apmt.2019.100490
    [Google Scholar]
  59. YuK. RitchieA. MaoY. DunnM.L. QiH.J. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials.Procedia IUTAM20151219320310.1016/j.piutam.2014.12.021
    [Google Scholar]
  60. AnJ. ChuaC.K. MironovV. A perspective on 4D bioprinting.Int J Bioprint2024213510.18063/IJB.2016.01.003
    [Google Scholar]
  61. YangY. ChenY. WeiY. LiY. 3D printing of shape memory polymer for functional part fabrication.Int. J. Adv. Manuf. Technol.2016849-122079209510.1007/s00170‑015‑7843‑2
    [Google Scholar]
  62. ZarekM. LayaniM. CoopersteinI. SachyaniE. CohnD. MagdassiS. 3D printing of shape memory polymers for flexible electronic devices.Adv. Mater.201628224449445410.1002/adma.201503132 26402320
    [Google Scholar]
  63. DingZ. YuanC. PengX. WangT. QiH.J. DunnM.L. Direct 4D printing via active composite materials.Sci. Adv.201734e160289010.1126/sciadv.1602890 28439560
    [Google Scholar]
  64. BodaghiM. LiaoW.H. 4D printed tunable mechanical metamaterials with shape memory operations.Smart Mater. Struct.201928404501910.1088/1361‑665X/ab0b6b
    [Google Scholar]
  65. BoraL.V. VadaliyaK.S. BoraN.V. Sustainable feedstocks for 4D printing: Biodegradable polymers and natural resources.Green Mater.202412319220810.1680/jgrma.23.00039
    [Google Scholar]
  66. RastogiP. KandasubramanianB. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing.Chem. Eng. J.201936626430410.1016/j.cej.2019.02.085
    [Google Scholar]
  67. KhalidM.Y. ArifZ.U. NorooziR. ZolfagharianA. BodaghiM. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives.J. Manuf. Process.20228175979710.1016/j.jmapro.2022.07.035
    [Google Scholar]
  68. ParhiR. Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery.J. Drug Deliv. Sci. Technol.20227510363910.1016/j.jddst.2022.103639
    [Google Scholar]
  69. OngJ.J. CastroB.M. GaisfordS. Accelerating 3D printing of pharmaceutical products using machine learning.Int. J. Pharm. X2022410012010.1016/j.ijpx.2022.100120 35755603
    [Google Scholar]
  70. WangJ. ZhangY. AghdaN.H. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective.Adv. Drug Deliv. Rev.202117429431610.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  71. DedeloudiA. WeaverE. LamprouD.A. Machine learning in additive manufacturing & microfluidics for smarter and safer drug delivery systems.Int. J. Pharm.202363612281810.1016/j.ijpharm.2023.122818 36907280
    [Google Scholar]
  72. OsisanwoF.Y. AkinsolaJ.E.T. AwodeleO. Supervised machine learning algorithms: Classification and comparison.Int. J. Comput. Trends Tech.20174812813810.14445/22312803/IJCTT‑V48P126
    [Google Scholar]
  73. YoonJ. ArıkS.O. PfisterT. Data valuation using reinforcement learning.Int Conf Mach Learn20201084210851
    [Google Scholar]
  74. SunX. ZhouK. DemolyF. Perspective: Machine learning in design for 3D/4D printing.J. Appl. Mechanics.202491303080110.1115/1.4063684
    [Google Scholar]
  75. GuG.X. ChenC.T. RichmondD.J. BuehlerM.J. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment.Mater. Horiz.20185593994510.1039/C8MH00653A
    [Google Scholar]
  76. MontgomeryS.M. YueL. SongY. Locally patterned anisotropy using grayscale vat photopolymerization.Addit. Manuf.20237310368710.1016/j.addma.2023.103687
    [Google Scholar]
  77. KhooZ.X. TeohJ.E.M. LiuY. 3D printing of smart materials: A review on recent progresses in 4D printing.Virtual Phys. Prototyp.201510310312210.1080/17452759.2015.1097054
    [Google Scholar]
  78. ZhouJ. SheikoS.S. Reversible shape‐shifting in polymeric materials.J. Polym. Sci., B, Polym. Phys.201654141365138010.1002/polb.24014
    [Google Scholar]
  79. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels3010006 30920503
    [Google Scholar]
  80. YaraliE. BaniasadiM. ZolfagharianA. Magneto‐/electro‐responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications.Appl. Mater. Today20222610130610.1016/j.apmt.2021.101306
    [Google Scholar]
  81. El-HusseinyH.M. MadyE.A. HamabeL. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.100186 34917924
    [Google Scholar]
  82. KhooZ. LiuY. AnJ. ChuaC. ShenY. KuoC. A review of selective laser melted NiTi shape memory alloy.Materials201811451910.3390/ma11040519 29596320
    [Google Scholar]
  83. IlyasR.A. SapuanS.M. HarussaniM.M. Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications.Polymers2021138132610.3390/polym13081326 33919530
    [Google Scholar]
  84. RanjanN. KumarR. SinghR. On PVC-PP composite matrix for 4D applications: Flowability, mechanical, thermal, and morphological characterizations.J Thermoplast Compos Mater2023361401142110.1177/08927057211059754
    [Google Scholar]
  85. WangL. ZhangF. LiuY. LengJ. Shape memory polymer fibers: Materials, structures, and applications.Adv Fib Mat20224152310.1007/s42765‑021‑00073‑z
    [Google Scholar]
  86. HeidarianP. KaynakA. PaulinoM. ZolfagharianA. VarleyR.J. KouzaniA.Z. Dynamic nanocellulose hydrogels: Recent advancements and future outlook.Carbohydr. Polym.202127011835710.1016/j.carbpol.2021.118357 34364602
    [Google Scholar]
  87. BaniasadiM. YaraliE. BodaghiM. ZolfagharianA. BaghaniM. Constitutive modeling of multi-stimuli-responsive shape memory polymers with multi-functional capabilities.Int. J. Mech. Sci.202119210608210.1016/j.ijmecsci.2020.106082
    [Google Scholar]
  88. ZhangJ. YinZ. RenL. Advances in 4D printed shape memory polymers: From 3D printing, smart excitation, and response to applications.Adv. Mater. Technol.202279210156810.1002/admt.202101568
    [Google Scholar]
  89. KaynakA. ZolfagharianA. Functional polymers in sensors and actuators: Fabrication and analysis.Polymers2020127156910.3390/polym12071569 32679850
    [Google Scholar]
  90. PatadiyaJ. GawandeA. JoshiG. KandasubramanianB. Additive manufacturing of shape memory polymer composites for futuristic technology.Ind. Eng. Chem. Res.20216044158851591210.1021/acs.iecr.1c03083
    [Google Scholar]
  91. McLellanK. SunY.C. NaguibH.E. A review of 4D printing: Materials, structures, and designs towards the printing of biomedical wearable devices.Bioprinting202227e0021710.1016/j.bprint.2022.e00217
    [Google Scholar]
  92. AbuzaidW. AlkhaderM. OmariM. Experimental analysis of heterogeneous shape recovery in 4D printed honeycomb structures.Polym. Test.20186810010910.1016/j.polymertesting.2018.03.050
    [Google Scholar]
  93. ArifZ.U. KhalidM.Y. ZolfagharianA. BodaghiM. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives.React. Funct. Polym.202217910537410.1016/j.reactfunctpolym.2022.105374
    [Google Scholar]
  94. KeD. ChenZ. MomoZ.Y. Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions.Smart Mater. Struct.202029202300110.1088/1361‑665X/ab5e6d
    [Google Scholar]
  95. ParhiR. Cross-linked hydrogel for pharmaceutical applications: A review.Adv. Pharm. Bull.20177451553010.15171/apb.2017.064 29399542
    [Google Scholar]
  96. ShiQ. LiuH. TangD. LiY. LiX.J. XuF. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications.NPG Asia Mater.20191116410.1038/s41427‑019‑0165‑3
    [Google Scholar]
  97. TranT.S. BaluR. MettuS. ChoudhuryR.N. DuttaN.K. 4D printing of hydrogels: Innovation in material design and emerging smart systems for drug delivery.Pharmaceuticals20221510128210.3390/ph15101282 36297394
    [Google Scholar]
  98. ChuH. YangW. SunL. 4D printing: A review on recent progresses.Micromachines202011979610.3390/mi11090796 32842588
    [Google Scholar]
  99. GladmanS.A. MatsumotoE.A. NuzzoR.G. MahadevanL. LewisJ.A. Biomimetic 4D printing.Nat. Mater.201615441341810.1038/nmat4544 26808461
    [Google Scholar]
  100. BakarichS.E. GorkinR.III PanhuisM. SpinksG.M. 4D printing with mechanically robust, thermally actuating hydrogels.Macromol. Rapid Commun.201536121211121710.1002/marc.201500079 25864515
    [Google Scholar]
  101. WangZ. CaiS. Recent progress in dynamic covalent chemistries for liquid crystal elastomers.J. Mater. Chem. B Mater. Biol. Med.20208316610662310.1039/D0TB00754D 32555841
    [Google Scholar]
  102. CollingsP.J. Liquid crystals: Nature’s delicate phase of matter.Available from: https://works.swarthmore.edu/fac-physics/194 2002
  103. UlaS.W. TrauguttN.A. VolpeR.H. PatelR.R. YuK. YakackiC.M. Liquid crystal elastomers: An introduction and review of emerging technologies.Liq. Cryst. Rev.2018617810710.1080/21680396.2018.1530155
    [Google Scholar]
  104. Le DuigouA. FruleuxT. MatsuzakiR. ChabaudG. UedaM. CastroM. 4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials.Mater. Des.202121111015810.1016/j.matdes.2021.110158
    [Google Scholar]
  105. Le DuigouA. ChabaudG. ScarpaF. CastroM. Bioinspired electro-thermo-hygro reversible shape-changing materials by 4D printing.Adv. Funct. Mater.20192940190328010.1002/adfm.201903280
    [Google Scholar]
  106. GuanZ. WangL. BaeJ. Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications.Mater. Horiz.2022971825184910.1039/D2MH00232A 35504034
    [Google Scholar]
  107. MolaviH. MirzaeiK. BarjastehM. 3D-printed MOF monoliths: Fabrication strategies and environmental applications.Nano-Micro Lett.202416127210.1007/s40820‑024‑01487‑1 39145820
    [Google Scholar]
  108. LyS.T. KimJ.Y. 4D printing - fused deposition modeling printing with thermal-responsive shape memory polymers.Int J Prec Eng Manuf Green Technol20174326727210.1007/s40684‑017‑0032‑z
    [Google Scholar]
  109. DemolyF. DunnM.L. WoodK.L. QiH.J. AndréJ-C. The status, barriers, challenges, and future in design for 4D printing.Mater. Des.202121211019310.1016/j.matdes.2021.110193
    [Google Scholar]
  110. GibsonA. RosenD.W. StuckerB. Additive manufacturing technologies.New YorkSpringer201549810.1007/978‑1‑4939‑2113‑3
    [Google Scholar]
  111. HiemenzJ StratasysI. 3D printing with FDM: How it works.Amazon.com201115
    [Google Scholar]
  112. NanizA.M. AskariM. ZolfagharianA. NanizA.M. BodaghiM. 4D printing: A cutting-edge platform for biomedical applications.Biomed. Mater.202217606200110.1088/1748‑605X/ac8e42 36044881
    [Google Scholar]
  113. MorvanS. HochsmannR. SakamotoM. ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores.Rapid Prototyping J.20051117
    [Google Scholar]
  114. TurnerB.N. GoldS.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness.Rapid Prototyping J.201521325026110.1108/RPJ‑02‑2013‑0017
    [Google Scholar]
  115. WangZ. GuoY. CaiS. YangJ. Three-dimensional printing of liquid crystal elastomers and their applications.ACS Appl. Polym. Mater.2022453153316810.1021/acsapm.1c01598
    [Google Scholar]
  116. AmbuloC.P. FordM.J. SearlesK. MajidiC. WareT.H. 4D-printable liquid metal-liquid crystal elastomer composites.ACS Appl. Mater. Interfaces20211311128051281310.1021/acsami.0c19051 33356119
    [Google Scholar]
  117. LiuW. HeinrichM.A. ZhouY. Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks.Adv. Healthc. Mater.2017612160145110.1002/adhm.201601451 28464555
    [Google Scholar]
  118. LiuZ. ZhangM. BhandariB. YangC. Impact of rheological properties of mashed potatoes on 3D printing.J. Food Eng.2018220768210.1016/j.jfoodeng.2017.04.017
    [Google Scholar]
  119. RafieeM. FarahaniR.D. TherriaultD. Multi-material 3D and 4D printing: A survey.Adv. Sci.2020712190230710.1002/advs.201902307 32596102
    [Google Scholar]
  120. ParhiR. JenaG.K. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms.Drug Deliv. Transl. Res.202212102428246210.1007/s13346‑021‑01074‑6 34613595
    [Google Scholar]
  121. de-LeyvaA.Á. LinaresV. CasasM. CaraballoI. 3D printed drug delivery systems based on natural products.Pharmaceutics202012762010.3390/pharmaceutics12070620 32635214
    [Google Scholar]
  122. SurianoR. BernasconiR. MagagninL. LeviM. 4D printing of smart stimuliresponsive polymers.J. Electrochem. Soc.20191669B3274B328110.1149/2.0411909jes
    [Google Scholar]
  123. TangY. DaiB. SuB. ShiY. Recent advances of 4D printing technologies toward soft tactile sensors.Front. Mater.2021865804610.3389/fmats.2021.658046
    [Google Scholar]
  124. ClarkE.A. AlexanderM.R. IrvineD.J. 3D printing of tablets using inkjet with UV photoinitiation.Int. J. Pharm.20175291-252353010.1016/j.ijpharm.2017.06.085 28673860
    [Google Scholar]
  125. MurthyH. ThakurN. ShankhwarN. Nickel-based inks for flexible electronics-A review on recent trends.J. Adv. Manuf. Syst.202221359162410.1142/S0219686722500214
    [Google Scholar]
  126. WangZ. WangZ. ZhengY. HeQ. WangY. CaiS. Three-dimensional printing of functionally graded liquid crystal elastomer.Sci. Adv.2020639eabc003410.1126/sciadv.abc0034 32978149
    [Google Scholar]
  127. WuX. WangS. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent.ACS Appl. Mater. Interfaces2012494966497510.1021/am301334s 22889037
    [Google Scholar]
  128. JungC. LahijiS.F. KimY. KimH. JungH. Rapidly separable micropillar integrated dissolving microneedles.Pharmaceutics202012658110.3390/pharmaceutics12060581 32585966
    [Google Scholar]
  129. DalviM. KharatP. ThakorP. BhavanaV. SinghS.B. MehraN.K. Panorama of dissolving microneedles for transdermal drug delivery.Life Sci.202128411987710.1016/j.lfs.2021.119877 34384832
    [Google Scholar]
  130. QuanH. ZhangT. XuH. LuoS. NieJ. ZhuX. Photo-curing 3D printing technique and its challenges.Bioact. Mater.20205111011510.1016/j.bioactmat.2019.12.003 32021945
    [Google Scholar]
  131. ManapatJ.Z. ChenQ. YeP. AdvinculaR.C. 3D printing of polymer nanocomposites via stereolithography.Macromol. Mater. Eng.20173029160055310.1002/mame.201600553
    [Google Scholar]
  132. MitchellA. LafontU. HołyńskaM. SemprimoschnigC. Additive manufacturing - A review of 4D printing and future applications.Addit. Manuf.20182460662610.1016/j.addma.2018.10.038
    [Google Scholar]
  133. WuH. WangO. TianY. Selective laser sintering-based 4D printing of magnetism-responsive grippers.ACS Appl. Mater. Interfaces20211311126791268810.1021/acsami.0c17429 33369398
    [Google Scholar]
  134. KruthJ.P. LevyG. KlockeF. ChildsT.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing.CIRP Ann.200756273075910.1016/j.cirp.2007.10.004
    [Google Scholar]
  135. ZhangF. ZhuL. LiZ. The recent development of vat photopolymerization: A review.Addit. Manuf.20214810242310.1016/j.addma.2021.102423
    [Google Scholar]
  136. PagacM. HajnysJ. MaQ.P. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing.Polymers202113459810.3390/polym13040598 33671195
    [Google Scholar]
  137. LarrañetaE. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Microneedles: A new frontier in nanomedicine delivery.Pharm. Res.20163351055107310.1007/s11095‑016‑1885‑5 26908048
    [Google Scholar]
  138. YangW. CaiS. YuanZ. Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening.Mater. Des.201918310818210.1016/j.matdes.2019.108182
    [Google Scholar]
  139. YangW. CaiS. ChenY. Modular and customized fabrication of 3D functional microgels for bottom‐up tissue engineering and drug screening.Adv. Mater. Technol.202055190084710.1002/admt.201900847
    [Google Scholar]
  140. ZhouL.Y. FuJ. HeY. A review of 3D printing technologies for soft polymer materials.Adv. Funct. Mater.20203028200018710.1002/adfm.202000187
    [Google Scholar]
  141. YuC. SchimelmanJ. WangP. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications.Chem. Rev.202012019106951074310.1021/acs.chemrev.9b00810 32323975
    [Google Scholar]
  142. ShiK. TanD.K. NokhodchiA. ManiruzzamanM. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil.Pharmaceutics201911415010.3390/pharmaceutics11040150 30939760
    [Google Scholar]
  143. WangY. SunL. MeiZ. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma.Mater. Des.202018610833610.1016/j.matdes.2019.108336
    [Google Scholar]
  144. ChinnakornA NuansingW BodaghiM Recent progress of 4D printing in cancer therapeutics studies.SLAS Technol2023S2472-63032300013410.1016/j.slast.2023.02.002
    [Google Scholar]
  145. SheikhA. AbourehabM.A.S. KesharwaniP. The clinical significance of 4D printing.Drug Discov. Today202328110339110.1016/j.drudis.2022.103391 36195204
    [Google Scholar]
  146. NoviaskyJ. LoV. LuftD.D. SaseenJ. Clinical inquiries. Which medications can be split without compromising efficacy and safety?J. Fam. Pract.2006558707708 16882445
    [Google Scholar]
  147. HabibW.A. AlaniziA.S. AbdelhamidM.M. AlaniziF.K. Accuracy of tablet splitting: Comparison study between hand splitting and tablet cutter.Saudi Pharm. J.201422545445910.1016/j.jsps.2013.12.014 25473334
    [Google Scholar]
  148. PeekB.T. AchiA.A. CoombsS.J. Accuracy of tablet splitting by elderly patients.JAMA2002288445145210.1001/jama.288.4.446 12132974
    [Google Scholar]
  149. SkowyraJ. PietrzakK. AlhnanM.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing.Eur. J. Pharm. Sci.201568111710.1016/j.ejps.2014.11.009 25460545
    [Google Scholar]
  150. LarushL KanerI FluksmanA 3D printing of responsive hydrogels for drug-delivery systems.J 3D Print Med2017121910.2217/3dp‑2017‑0009
    [Google Scholar]
  151. OkwuosaT.C. PereiraB.C. ArafatB. CieszynskaM. IsrebA. AlhnanM.A. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy.Pharm. Res.201734242743710.1007/s11095‑016‑2073‑3 27943014
    [Google Scholar]
  152. GoyanesA. FinaF. MartoranaA. SedoughD. GaisfordS. BasitA.W. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing.Int. J. Pharm.20175271-2213010.1016/j.ijpharm.2017.05.021 28502898
    [Google Scholar]
  153. GuptaM.K. MengF. JohnsonB.N. 3D printed programmable release capsules.Nano Lett.20151585321532910.1021/acs.nanolett.5b01688 26042472
    [Google Scholar]
  154. WilletsK.A. DuyneV.R.P. Localized surface plasmon resonance spectroscopy and sensing.Annu. Rev. Phys. Chem.200758126729710.1146/annurev.physchem.58.032806.104607 17067281
    [Google Scholar]
  155. ZuS. WangZ. ZhangS. A bioinspired 4D printed hydrogel capsule for smart controlled drug release.Mater. Today Chem.20222410078910.1016/j.mtchem.2022.100789
    [Google Scholar]
  156. MahmoudD.B. SiegmundS.M. Utilizing 4D printing to design smart gastroretentive, esophageal, and intravesical drug delivery systems.Adv. Healthc. Mater.20231210220263110.1002/adhm.202202631 36571721
    [Google Scholar]
  157. GhoshA. YoonC. OngaroF. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery.Front. Mech. Eng.20173710.3389/fmech.2017.00007 31516892
    [Google Scholar]
  158. FuscoS. SakarM.S. KennedyS. An integrated microrobotic platform for on-demand, targeted therapeutic interventions.Adv. Mater.201426695295710.1002/adma.201304098 24510666
    [Google Scholar]
  159. GraciasD.H. Stimuli responsive self-folding using thin polymer films.Curr. Opin. Chem. Eng.20132111211910.1016/j.coche.2012.10.003
    [Google Scholar]
  160. WuZ.L. MosheM. GreenerJ. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses.Nat. Commun.20134158610.1038/ncomms2549
    [Google Scholar]
  161. MalachowskiK. BregerJ. KwagH.R. Stimuli-responsive theragrippers for chemomechanical controlled release.Angew. Chem. Int. Ed.201453318045804910.1002/anie.201311047 24634136
    [Google Scholar]
  162. LiuW. WangD. HuangJ. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.Mater. Sci. Eng. C201770Pt 297698210.1016/j.msec.2016.04.014 27772729
    [Google Scholar]
  163. LiuX. ZhaoK. GongT. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect.Biomacromolecules20141531019103010.1021/bm401911p 24467335
    [Google Scholar]
  164. VehseM. PetersenS. SternbergK. SchmitzK-P. SeitzH. Drug delivery from poly(ethylene glycol) diacrylate scaffolds produced by DLC based micro‐stereolithography.Macromol. Symp.20143461434710.1002/masy.201400060
    [Google Scholar]
  165. GazzanigaA. FoppoliA. CereaM. Towards 4D printing in pharmaceutics.Int. J. Pharm. X2023510017110.1016/j.ijpx.2023.100171 36876052
    [Google Scholar]
  166. ChoH. JammalamadakaU. TappaK. 3D printing of poloxamer 407 nanogel discs and their applications in adjuvant ovarian cancer therapy.Mol. Pharm.201916255256010.1021/acs.molpharmaceut.8b00836 30608705
    [Google Scholar]
  167. WangZ. LiuC. ChenB. LuoY. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds.Int. J. Biol. Macromol.2021168384510.1016/j.ijbiomac.2020.12.023 33301844
    [Google Scholar]
  168. ShiX. ChengY. WangJ. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer.Theranostics20201023106521066410.7150/thno.47933 32929372
    [Google Scholar]
  169. SultanS. AbdelhamidH.N. ZouX. CelloMOF: Nanocellulose enabled 3D printing of metal-organic frameworks.Adv. Funct. Mat.201929180537210.1002/adfm.201805372
    [Google Scholar]
  170. ChenC. ChenX. ZhangH. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.Acta Biomater.20175543444210.1016/j.actbio.2017.04.005 28392307
    [Google Scholar]
  171. WeiX. LiuC. WangZ. LuoY. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer.Int. J. Pharm.202058011921910.1016/j.ijpharm.2020.119219 32165221
    [Google Scholar]
  172. LiuC. WangZ. WeiX. ChenB. LuoY. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing.Acta Biomater.202113131432510.1016/j.actbio.2021.07.011 34256189
    [Google Scholar]
  173. LiJ. ÁvilaE.F.B. GaoW. ZhangL. WangJ. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification.Sci. Robot.201724eaam643110.1126/scirobotics.aam6431 31552379
    [Google Scholar]
  174. GrifantiniK. The state of nanorobotics in medicine.IEEE Pulse2019105131710.1109/MPULS.2019.2937150 31603764
    [Google Scholar]
  175. MairL.O. AdamG. ChowdhuryS. Soft capsule magnetic millirobots for region-specific drug delivery in the central nervous system.Front. Robot. AI2021870256610.3389/frobt.2021.702566 34368238
    [Google Scholar]
  176. HuM. GeX. ChenX. MaoW. QianX. YuanW.E. Micro/Nanorobot: A promising targeted drug delivery system.Pharmaceutics202012766510.3390/pharmaceutics12070665 32679772
    [Google Scholar]
  177. XinC. JinD. HuY. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment.ACS Nano20211511180481805910.1021/acsnano.1c06651 34664936
    [Google Scholar]
  178. LiW. GuanQ. LiM. SaizE. HouX. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications.Prog. Polym. Sci.202314010166510.1016/j.progpolymsci.2023.101665
    [Google Scholar]
  179. BozuyukU. YasaO. YasaI.C. CeylanH. KizilelS. SittiM. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers.ACS Nano20181299617962510.1021/acsnano.8b05997 30203963
    [Google Scholar]
  180. CeylanH. YasaI.C. YasaO. TabakA.F. GiltinanJ. SittiM. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release.ACS Nano20191333353336210.1021/acsnano.8b09233 30742410
    [Google Scholar]
  181. WangX. QinX.H. HuC. 3D printed enzymatically biodegradable soft helical microswimmers.Adv. Funct. Mater.20182845180410710.1002/adfm.201804107
    [Google Scholar]
  182. ChenZ. LuW. LiY. LiuP. YangY. JiangL. Solid-liquid state transformable magnetorheological millirobot.ACS Appl. Mater. Interfaces20221426300073002010.1021/acsami.2c05251 35727886
    [Google Scholar]
  183. MiyashitaS. GuitronS. LudersdorferM. An untethered miniature origami robot that self-folds, walks, swims, and degrades.IEEE International Conference on Robotics and Automation (ICRA)Seattle, WA, USA20151490610.1109/ICRA.2015.7139386
    [Google Scholar]
  184. XuH. SánchezM.M. MagdanzV. SchwarzL. HebenstreitF. SchmidtO.G. Sperm-hybrid micromotor for targeted drug delivery.ACS Nano201812132733710.1021/acsnano.7b06398 29202221
    [Google Scholar]
  185. HuX. GeZ. WangX. JiaoN. TungS. LiuL. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing.Compos., Part B Eng.202222810945110.1016/j.compositesb.2021.109451
    [Google Scholar]
  186. WangZ. LiuL. XiangS. Formulation and characterization of a 3D-printed cryptotanshinoneloaded niosomal hydrogel for topical therapy of acne.AAPS Pharm Sci Tech202021515910.1208/s12249‑020‑01677‑1 32476076
    [Google Scholar]
  187. LiM. LiW. GuanQ. Sweat-resistant bioelectronic skin sensor.Device20231110000610.1016/j.device.2023.100006
    [Google Scholar]
  188. LiW. LiuH. MiY. Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals.Friction2022101809310.1007/s40544‑020‑0416‑x
    [Google Scholar]
  189. ChoudhuryP. KumarS. SinghA. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering.Carbohydr. Polym.2018189879810.1016/j.carbpol.2018.01.079 29580430
    [Google Scholar]
  190. MilnerP.E. ParkesM. PuetzerJ.L. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement.Acta Biomater.20186510211110.1016/j.actbio.2017.11.002 29109026
    [Google Scholar]
  191. WangY. MiaoY. ZhangJ. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery.Mater. Sci. Eng. C201884445110.1016/j.msec.2017.11.025 29519442
    [Google Scholar]
  192. DaiW. GuoH. GaoB. Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability.Chem. Eng. J.201935693494910.1016/j.cej.2018.09.078
    [Google Scholar]
  193. LeeJ.S. KangM.J. LeeJ.H. LimD.W. Injectable hydrogels of stimuli-responsive elastin and calmodulin-based triblock copolypeptides for controlled drug release.Biomacromolecules20222352051206310.1021/acs.biomac.2c00053 35411765
    [Google Scholar]
  194. ZhaoY.D. LaiJ.H. WangM. 4D printing of self-folding hydrogel tubes for potential tissue engineering applications.Nano Life2021114214100110.1142/S1793984421410014
    [Google Scholar]
  195. FangJ.H. HsuH.H. HsuR.S. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting.NPG Asia Mater.20201216110.1038/s41427‑020‑00244‑1
    [Google Scholar]
  196. XuX. AwadA. MartinezR.P. GaisfordS. GoyanesA. BasitA.W. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications.J. Control. Release202132974375710.1016/j.jconrel.2020.10.008 33031881
    [Google Scholar]
  197. HanD. MordeR.S. MarianiS. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion.Adv. Funct. Mater.20203011190919710.1002/adfm.201909197
    [Google Scholar]
  198. LimS.H. KathuriaH. TanJ.J.Y. KangL. 3D printed drug delivery and testing systems - A passing fad or the future?Adv. Drug Deliv. Rev.201813213916810.1016/j.addr.2018.05.006 29778901
    [Google Scholar]
  199. van LithR. BakerE. WareH. 3D-printing strong high-resolution antioxidant bioresorbable vascular stents.Adv. Mater. Technol.201619160013810.1002/admt.201600138
    [Google Scholar]
  200. HuT. YangC. LinS. YuQ. WangG. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives.Mater. Sci. Eng. C20189116317810.1016/j.msec.2018.04.100 30033243
    [Google Scholar]
  201. KhalajR. TabrizA.G. OkerekeM.I. DouroumisD. 3D printing advances in the development of stents.Int. J. Pharm.202160912115310.1016/j.ijpharm.2021.121153 34624441
    [Google Scholar]
  202. FaruqueM.O. LeeY. WyckoffG.J. LeeC.H. Application of 4D printing and AI to cardiovascular devices.J. Drug Deliv. Sci. Technol.20238010416210.1016/j.jddst.2023.104162
    [Google Scholar]
  203. VeerubhotlaK. LeeC.H. Design of biodegradable 3D-printed cardiovascular stent.Bioprinting202226e0020410.1016/j.bprint.2022.e00204
    [Google Scholar]
  204. ChenZ. JinZ. YangL. A self-expandable C-shaped 3D printing tracheal stent for combinatorial controlled paclitaxel release and tracheal support.Mater. Today Chem.20222410076010.1016/j.mtchem.2021.100760
    [Google Scholar]
  205. LinM. FirooziN. TsaiC.T. WallaceM.B. KangY. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies.Acta Biomater.20198311912910.1016/j.actbio.2018.10.035 30366130
    [Google Scholar]
  206. FouladianP. KohlhagenJ. ArafatM. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers.Biomater. Sci.20208236625663610.1039/D0BM01355B 33057525
    [Google Scholar]
  207. ZhouY. ZhouD. CaoP. 4D printing of shape memory vascular stent based on βCD-gPolycaprolactone.Macromol. Rapid Commun.20214214210017610.1002/marc.202100176 34121258
    [Google Scholar]
  208. ZhangX. ChenG. SunL. YeF. ShenX. ZhaoY. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing.Chem. Eng. J.202140612674110.1016/j.cej.2020.126741
    [Google Scholar]
  209. SunX. LangQ. ZhangH. Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration.Adv. Funct. Mater.2017272160461710.1002/adfm.201604617
    [Google Scholar]
  210. LevinA. GongS. ChengW. Wearable smart bandage-based bio-sensors.Biosensors202313446210.3390/bios13040462 37185537
    [Google Scholar]
  211. MiraniB. PaganE. CurrieB. An advanced multifunctional hydrogel‐based dressing for wound monitoring and drug delivery.Adv. Healthc. Mater.2017619170071810.1002/adhm.201700718 28944601
    [Google Scholar]
  212. ZhangY. Epidemiology of esophageal cancer.World J. Gastroenterol.201319345598560610.3748/wjg.v19.i34.5598 24039351
    [Google Scholar]
  213. LucendoA.J. GonzálezA.L. InfanteM.J. AriasÁ. Determinant factors of quality of life in adult patients with eosinophilic esophagitis.United European Gastroenterol. J.201861384510.1177/2050640617707095 29435312
    [Google Scholar]
  214. SudhakarY. KuotsuK. BandyopadhyayA.K. Buccal bioadhesive drug delivery - A promising option for orally less efficient drugs.J. Control. Release20061141154010.1016/j.jconrel.2006.04.012 16828915
    [Google Scholar]
  215. ClarkeJ. JagannathS. KallooA. LongV. BeitlerD. KantsevoyS. An endoscopically implantable device stimulates the lower esophageal sphincter on demand by remote control: A study using a canine model.Endoscopy2007391727610.1055/s‑2006‑945102 17252464
    [Google Scholar]
  216. BabaeeS. PajovicS. KirtaneA.R. Temperature-responsive biometamaterials for gastrointestinal applications.Sci. Transl. Med.201911488eaau858110.1126/scitranslmed.aau8581 30996082
    [Google Scholar]
  217. PrasherA. ShrivastavaR. DahlD. Steroid eluting esophageal-targeted drug delivery devices for treatment of eosinophilic esophagitis.Polymers202113455710.3390/polym13040557 33668571
    [Google Scholar]
  218. BalakrishnanM. GeorgeR. SharmaA. GrahamD.Y. Changing trends in stomach cancer throughout the world.Curr. Gastroenterol. Rep.20171983610.1007/s11894‑017‑0575‑8 28730504
    [Google Scholar]
  219. IngersollK.S. CohenJ. The impact of medication regimen factors on adherence to chronic treatment: A review of literature.J. Behav. Med.200831321322410.1007/s10865‑007‑9147‑y 18202907
    [Google Scholar]
  220. PrinderreP. SauzetC. FuxenC. Advances in gastro retentive drug-delivery systems.Expert Opin. Drug Deliv.2011891189120310.1517/17425247.2011.592828 21671821
    [Google Scholar]
  221. MelocchiA. UboldiM. InverardiN. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion.Int. J. Pharm.201957111870010.1016/j.ijpharm.2019.118700 31526838
    [Google Scholar]
  222. ZhangS. BellingerA.M. GlettigD.L. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices.Nat. Mater.201514101065107110.1038/nmat4355 26213897
    [Google Scholar]
  223. BellingerA.M. JafariM. GrantT.M. Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals.Sci. Transl. Med.20168365365ra15710.1126/scitranslmed.aag2374 27856796
    [Google Scholar]
  224. KirtaneA.R. AbouzidO. MinahanD. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy.Nat. Commun.201891210.1038/s41467‑017‑02294‑6 29317618
    [Google Scholar]
  225. XuX. GoyanesA. TrenfieldS.J. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery.Mater. Sci. Eng. C202112011177310.1016/j.msec.2020.111773 33545904
    [Google Scholar]
  226. MelocchiA. InverardiN. UboldiM. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): Design concept and 4D printing feasibility.Int. J. Pharm.201955929931110.1016/j.ijpharm.2019.01.045 30707934
    [Google Scholar]
  227. ShakibaniaS. GhazanfariL. SarmazdehR.M. KhakbizM. Medical application of biomimetic 4D printing.Drug Dev. Ind. Pharm.202147452153410.1080/03639045.2020.1862179 33307855
    [Google Scholar]
  228. TarazonaR.L.K. CampbellZ.T. WareT.H. Stimuli-responsive engineered living materials.Soft Matter202117478580910.1039/D0SM01905D 33410841
    [Google Scholar]
  229. GilbertC. EllisT. Biological engineered living materials: Growing functional materials with genetically programmable properties.ACS Synth. Biol.20198111510.1021/acssynbio.8b00423 30576101
    [Google Scholar]
  230. NguyenP.Q. CourchesneN.M.D. ThatteD.A. PraveschotinuntP. JoshiN.S. Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials.Adv. Mater.20183019170484710.1002/adma.201704847 29430725
    [Google Scholar]
  231. LiuS. XuW. Engineered living materials-based sensing and actuation.Front Sensors2020158630010.3389/fsens.2020.586300
    [Google Scholar]
  232. GilbertC. TangT.C. OttW. Living materials with programmable functionalities grown from engineered microbial co-cultures.Nat. Mater.202120569170010.1038/s41563‑020‑00857‑5 33432140
    [Google Scholar]
  233. LiW. ZhouR. OuyangY. Harnessing biomimicry for controlled adhesion on material surfaces.Small20242045240185910.1002/smll.202401859 39031996
    [Google Scholar]
  234. WuS. YueL. JinY. Ring origami: Snap‐folding of rings with different geometries.Adv. Intell. Syst.202139210010710.1002/aisy.202100107
    [Google Scholar]
  235. SunX. WuS. DaiJ. Phase diagram and mechanics of snap-folding of ring origami by twisting.Int. J. Solids Struct.202224811168510.1016/j.ijsolstr.2022.111685
    [Google Scholar]
  236. KalsoomU. NesterenkoP.N. PaullB. Recent developments in 3D printable composite materials.RSC Advances2016665603556037110.1039/C6RA11334F
    [Google Scholar]
  237. AgarwalT. HannS.Y. ChiesaI. 4D printing in biomedical applications: Emerging trends and technologies.J. Mater. Chem. B Mater. Biol. Med.20219377608763210.1039/D1TB01335A 34586145
    [Google Scholar]
  238. FatimaS. HaleemA. BahlS. JavaidM. MahlaS.K. SinghS. Exploring the significant applications of Internet of Things (IoT) with 3D printing using advanced materials in medical field.Mater. Today Proc.2021454844485110.1016/j.matpr.2021.01.305
    [Google Scholar]
  239. DingZ WeegerO QiHJ DunnML. 4D rods: 3D structures via programmable 1D composite rods.Mater Des20181372566510.1016/j.matdes.2017.10.004
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128341715241216060613
Loading
/content/journals/cpd/10.2174/0113816128341715241216060613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test