Skip to content
2000
Volume 31, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326301240920040036
2024-12-17
2025-04-02
Loading full text...

Full text loading...

References

  1. RuddK.E. JohnsonS.C. AgesaK.M. ShackelfordK.A. TsoiD. KievlanD.R. ColombaraD.V. IkutaK.S. KissoonN. FinferS. Fleischmann-StruzekC. MachadoF.R. ReinhartK.K. RowanK. SeymourC.W. WatsonR.S. WestT.E. MarinhoF. HayS.I. LozanoR. LopezA.D. AngusD.C. MurrayC.J.L. NaghaviM. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study.Lancet20203951021920021110.1016/S0140‑6736(19)32989‑731954465
    [Google Scholar]
  2. GaieskiD.F. EdwardsJ.M. KallanM.J. CarrB.G. Benchmarking the incidence and mortality of severe sepsis in the United States.Crit. Care Med.20134151167117410.1097/CCM.0b013e31827c09f823442987
    [Google Scholar]
  3. JyotiA. KumarS. Kumar SrivastavaV. KaushikS. Govind SinghS. Neonatal sepsis at point of care.Clin. Chim. Acta2021521455810.1016/j.cca.2021.06.02134153274
    [Google Scholar]
  4. MoriyamaK. NishidaO. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification.Int. J. Mol. Sci.20212216888210.3390/ijms2216888234445610
    [Google Scholar]
  5. DrewryA.M. AblordeppeyE.A. MurrayE.T. BeiterE.R. WaltonA.H. HallM.W. HotchkissR.S. Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: A prospective observational study.Crit. Care201620133410.1186/s13054‑016‑1505‑027760554
    [Google Scholar]
  6. QuintoB.M.R. IizukaI.J. MonteJ.C.M. SantosB.F. PereiraV. DurãoM.S. DalboniM.A. CendorogloM. SantosO.F.P. BatistaM.C. TNF-α depuration is a predictor of mortality in critically ill patients under continuous veno-venous hemodiafiltration treatment.Cytokine201571225526010.1016/j.cyto.2014.10.02425461406
    [Google Scholar]
  7. ChoustermanB.G. SwirskiF.K. WeberG.F. Cytokine storm and sepsis disease pathogenesis.Semin. Immunopathol.201739551752810.1007/s00281‑017‑0639‑828555385
    [Google Scholar]
  8. van der PollT. van de VeerdonkF.L. SciclunaB.P. NeteaM.G. The immunopathology of sepsis and potential therapeutic targets.Nat. Rev. Immunol.201717740742010.1038/nri.2017.3628436424
    [Google Scholar]
  9. WiersingaW.J. LeopoldS.J. CranendonkD.R. van der PollT. Host innate immune responses to sepsis.Virulence201451364410.4161/viru.2543623774844
    [Google Scholar]
  10. MatthayM.A. ZemansR.L. ZimmermanG.A. ArabiY.M. BeitlerJ.R. MercatA. HerridgeM. RandolphA.G. CalfeeC.S. Acute respiratory distress syndrome.Nat. Rev. Dis. Primers2019511810.1038/s41572‑019‑0069‑030872586
    [Google Scholar]
  11. KellumJ.A. ProwleJ.R. Paradigms of acute kidney injury in the intensive care setting.Nat. Rev. Nephrol.201814421723010.1038/nrneph.2017.18429355173
    [Google Scholar]
  12. DrosatosK. LymperopoulosA. KennelP.J. PollakN. SchulzeP.C. GoldbergI.J. Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both?Curr. Heart Fail. Rep.201512213014010.1007/s11897‑014‑0247‑z25475180
    [Google Scholar]
  13. WidmannC.N. HenekaM.T. Long-term cerebral consequences of sepsis.Lancet Neurol.201413663063610.1016/S1474‑4422(14)70017‑124849863
    [Google Scholar]
  14. SchmidtE.P. YangY. JanssenW.J. GandjevaA. PerezM.J. BarthelL. ZemansR.L. BowmanJ.C. KoyanagiD.E. YuntZ.X. SmithL.P. ChengS.S. OverdierK.H. ThompsonK.R. GeraciM.W. DouglasI.S. PearseD.B. TuderR.M. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis.Nat. Med.20121881217122310.1038/nm.284322820644
    [Google Scholar]
  15. MeraS. TatulescuD. CismaruC. BondorC. SlavcoviciA. ZancV. CarstinaD. OlteanM. Multiplex cytokine profiling in patients with sepsis.Acta Pathol. Microbiol. Scand. Suppl.2011119215516310.1111/j.1600‑0463.2010.02705.x21208283
    [Google Scholar]
  16. Gouel-ChéronA. AllaouchicheB. GuignantC. DavinF. FloccardB. MonneretG. Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: A powerful association to predict the development of sepsis after major trauma.PLoS One201273e3309510.1371/journal.pone.003309522431998
    [Google Scholar]
  17. RiedemannN.C. GuoR.F. HollmannT.J. GaoH. NeffT.A. ReubenJ.S. SpeyerC.L. SarmaJ.V. WetselR.A. ZetouneF.S. WardP.A. Regulatory role of C5a in LPS‐induced IL‐6 production by neutrophils during sepsis.FASEB J.200418211610.1096/fj.03‑0708fje14688199
    [Google Scholar]
  18. Van SnickJ. Interleukin-6: An overview.Annu. Rev. Immunol.19908125327810.1146/annurev.iy.08.040190.0013452188664
    [Google Scholar]
  19. HsiehC.S. MacatoniaS.E. TrippC.S. WolfS.F. O’GarraA. MurphyK.M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages.Science19932605107547910.1126/science.8097338
    [Google Scholar]
  20. LeeS.J. JangB.C. LeeS.W. YangY.I. SuhS.I. ParkY.M. OhS. ShinJ.G. YaoS. ChenL. ChoiI.H. Interferon regulatory factor‐1 is prerequisite to the constitutive expression and IFN‐γ‐induced upregulation of B7‐H1 (CD274).FEBS Lett.2006580375576210.1016/j.febslet.2005.12.09316413538
    [Google Scholar]
  21. WeberG.F. ChoustermanB.G. HeS. FennA.M. NairzM. AnzaiA. BrennerT. UhleF. IwamotoY. RobbinsC.S. NoiretL. MaierS.L. ZönnchenT. RahbariN.N. SchölchS. Klotzsche-von AmelnA. ChavakisT. WeitzJ. HoferS. WeigandM.A. NahrendorfM. WeisslederR. SwirskiF.K. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis.Science201534762271260126510.1126/science.aaa426825766237
    [Google Scholar]
  22. HamiltonJ.A. Colony-stimulating factors in inflammation and autoimmunity.Nat. Rev. Immunol.20088753354410.1038/nri235618551128
    [Google Scholar]
  23. KumarS. SaxenaJ. SrivastavaV.K. KaushikS. SinghH. Abo-EL-SooudK. Abdel-DaimM.M. JyotiA. SalujaR. The interplay of oxidative stress and ROS scavenging: Antioxidants as a therapeutic potential in sepsis.Vaccines (Basel)20221010157510.3390/vaccines10101575
    [Google Scholar]
  24. KumarS. SrivastavaV.K. KaushikS. SaxenaJ. JyotiA. Free radicals, mitochondrial dysfunction and sepsis-induced organ dysfunction: A mechanistic Insight.Curr. Pharm. Des.202430316116810.2174/011381612827965523122805584238243948
    [Google Scholar]
  25. KumarS. GuptaE. KaushikS. Kumar SrivastavaV. MehtaS. JyotiA. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis.Scand. J. Immunol.2018874e1265310.1111/sji.1265329484685
    [Google Scholar]
  26. JoffreJ. HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation.Antioxid. Redox Signal.202135151291130710.1089/ars.2021.002733637016
    [Google Scholar]
  27. JoffreJ. HellmanJ. InceC. Ait-OufellaH. Endothelial responses in sepsis.Am. J. Respir. Crit. Care Med.2020202336137010.1164/rccm.201910‑1911TR32101446
    [Google Scholar]
  28. GutteridgeJ.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage.Clin. Chem.199541121819182810.1093/clinchem/41.12.18197497639
    [Google Scholar]
  29. FialkowL. WangY. DowneyG.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function.Free Radic. Biol. Med.200742215316410.1016/j.freeradbiomed.2006.09.03017189821
    [Google Scholar]
  30. HuetO. DupicL. HarroisA. DuranteauJ. Oxidative stress and endothelial dysfunction during sepsis.Front. Biosci.20111611986199510.2741/383521196278
    [Google Scholar]
  31. NagarH. PiaoS. KimC.S. Role of mitochondrial oxidative stress in sepsis.Acute Crit. Care2018332657210.4266/acc.2018.0015731723865
    [Google Scholar]
  32. HuetO. ObataR. AubronC. Spraul-DavitA. CharpentierJ. LaplaceC. Nguyen-KhoaT. ContiM. VicautE. MiraJ.P. DuranteauJ. Plasma-induced endothelial oxidative stress is related to the severity of septic shock.Crit. Care Med.200735382182610.1097/01.CCM.0000257464.79067.AF17255877
    [Google Scholar]
  33. KhakpourS. WilhelmsenK. HellmanJ. Vascular endothelial cell Toll-like receptor pathways in sepsis.Innate Immun.201521882784610.1177/175342591560652526403174
    [Google Scholar]
  34. SalvadorB. ArranzA. FranciscoS. CórdobaL. PunzónC. LlamasM.Á. FresnoM. Modulation of endothelial function by Toll like receptors.Pharmacol. Res.2016108465610.1016/j.phrs.2016.03.03827073018
    [Google Scholar]
  35. PsenakovaK. HexnerovaR. SrbP. ObsilovaV. VeverkaV. ObsilT. The redox‐active site of thioredoxin is directly involved in apoptosis signal‐regulating kinase 1 binding that is modulated by oxidative stress.FEBS J.202028781626164410.1111/febs.1510131623019
    [Google Scholar]
  36. ChenX.L. ZhangQ. ZhaoR. DingX. TummalaP.E. MedfordR.M. Rac1 and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-α in endothelial cells.J. Pharmacol. Exp. Ther.2003305257358010.1124/jpet.102.04789412606638
    [Google Scholar]
  37. TakanoM. MeneshianA. SheikhE. YamakawaY. WilkinsK.B. HopkinsE.A. BulkleyG.B. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation.Am. J. Physiol. Heart Circ. Physiol.20022835H2054H206110.1152/ajpheart.01001.200112384485
    [Google Scholar]
  38. RadiR. CassinaA. HodaraR. Nitric oxide and peroxynitrite interactions with mitochondria.Biol. Chem.20023833-440140910.1515/BC.2002.04412033431
    [Google Scholar]
  39. KumarS. GuptaE. KaushikS. SrivastavaV.K. SaxenaJ. MehtaS. JyotiA. Quantification of NETs formation in neutrophil and its correlation with the severity of sepsis and organ dysfunction.Clin. Chim. Acta201949560661010.1016/j.cca.2019.06.00831181192
    [Google Scholar]
  40. LuoS. LeiH. QinH. XiaY. Molecular mechanisms of endothelial NO synthase uncoupling.Curr. Pharm. Des.201420223548355310.2174/1381612811319666074624180388
    [Google Scholar]
  41. BrownC.G. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols.Biochim. Biophys. Acta Bioenerg.200416584449
    [Google Scholar]
  42. LaczaZ. PankotaiE. BusijaD.W. Mitochondrial nitric oxide synthase: Current concepts and controversies.Front. Biosci.2009144436444310.2741/353919273361
    [Google Scholar]
  43. TsaoC.M. LiK.Y. ChenS.J. KaS.M. LiawW.J. HuangH.C. WuC.C. Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: Studies in a rat model.Crit. Care201418665210.1186/s13054‑014‑0652‑425432865
    [Google Scholar]
  44. VillaL.M. SalasE. Darley-UsmarV.M. RadomskiM.W. MoncadaS. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart.Proc. Natl. Acad. Sci. USA19949126123831238710.1073/pnas.91.26.123837809045
    [Google Scholar]
  45. EumH.A. ParkS.W. LeeS.M. Role of nitric oxide in the expression of hepatic vascular stress genes in response to sepsis.Nitric Oxide2007173-412613310.1016/j.niox.2007.08.00317889572
    [Google Scholar]
  46. DavisJ.S. DarcyC.J. YeoT.W. JonesC. McNeilY.R. StephensD.P. CelermajerD.S. AnsteyN.M. Asymmetric dimethylarginine, endothelial nitric oxide bioavailability and mortality in sepsis.PLoS One201162e1726010.1371/journal.pone.001726021364995
    [Google Scholar]
  47. WinklerM.S. KlugeS. HolzmannM. MoritzE. RobbeL. BauerA. ZahrteC. PrieflerM. SchwedhelmE. BögerR.H. GoetzA.E. NierhausA. ZoellnerC. Markers of nitric oxide are associated with sepsis severity: An observational study.Crit. Care201721118910.1186/s13054‑017‑1782‑228709458
    [Google Scholar]
  48. BrinkmannV. Neutrophil extracellular traps kill bacteria.Science20048030315321535
    [Google Scholar]
  49. ClarkS.R. MaA.C. TavenerS.A. McDonaldB. GoodarziZ. KellyM.M. PatelK.D. ChakrabartiS. McAvoyE. SinclairG.D. KeysE.M. Allen-VercoeE. DeVinneyR. DoigC.J. GreenF.H.Y. KubesP. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.Nat. Med.200713446346910.1038/nm156517384648
    [Google Scholar]
  50. TanakaK. KoikeY. ShimuraT. OkigamiM. IdeS. ToiyamaY. OkugawaY. InoueY. ArakiT. UchidaK. MohriY. MizoguchiA. KusunokiM. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model.PLoS One2014911e11188810.1371/journal.pone.011188825372699
    [Google Scholar]
  51. Jiménez-AlcázarM. RangaswamyC. PandaR. BitterlingJ. SimsekY.J. LongA.T. BilyyR. KrennV. RennéC. RennéT. KlugeS. PanzerU. MizutaR. MannherzH.G. KitamuraD. HerrmannM. NapireiM. FuchsT.A. Host DNases prevent vascular occlusion by neutrophil extracellular traps.PLoS One2017803581202120610.1126/science.aam8897
    [Google Scholar]
  52. DelabrancheX. StielL. SeveracF. GaloisyA.C. MauvieuxL. ZobairiF. LavigneT. TotiF. Anglès-CanoE. MezianiF. Boisramé-HelmsJ. Evidence of netosis in septic shock-induced disseminated intravascular coagulation.Shock201747331331710.1097/SHK.000000000000071927488091
    [Google Scholar]
  53. YangS. QiH. KanK. ChenJ. XieH. GuoX. ZhangL. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis.Shock201747213213910.1097/SHK.000000000000074127617671
    [Google Scholar]
  54. McDonaldB. DavisR.P. KimS.J. TseM. EsmonC.T. KolaczkowskaE. JenneC.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice.Blood2017129101357136710.1182/blood‑2016‑09‑74129828073784
    [Google Scholar]
  55. GouldT.J. VuT.T. SwystunL.L. DwivediD.J. MaiS.H.C. WeitzJ.I. LiawP.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms.Arterioscler. Thromb. Vasc. Biol.20143491977198410.1161/ATVBAHA.114.30411425012129
    [Google Scholar]
  56. MartinodK. WagnerD.D. Thrombosis: Tangled up in NETs.Blood2014123182768277610.1182/blood‑2013‑10‑46364624366358
    [Google Scholar]
  57. BosmannM. GrailerJ.J. RuemmlerR. RusskampN.F. ZetouneF.S. SarmaJ.V. StandifordT.J. WardP.A. Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury.FASEB J.201327125010502110.1096/fj.13‑23638023982144
    [Google Scholar]
  58. LiR.H.L. TablinF. A comparative review of neutrophil extracellular traps in sepsis.Front. Vet. Sci.2018529110.3389/fvets.2018.0029130547040
    [Google Scholar]
  59. UsmaniJ. KhanT. AhmadR. SharmaM. Potential role of herbal medicines as a novel approach in sepsis treatment.Biomed. Pharmacother.202114411233710.1016/j.biopha.2021.11233734688080
    [Google Scholar]
  60. VincentJ.L. Current sepsis therapeutics.EBioMedicine20228610431810.1016/j.ebiom.2022.10431836470828
    [Google Scholar]
  61. LakbarI. MunozM. PaulyV. OrleansV. FabreC. FondG. VincentJ.L. BoyerL. LeoneM. Septic shock: Incidence, mortality and hospital readmission rates in French intensive care units from 2014 to 2018.Anaesth. Crit. Care Pain Med.202241310108210.1016/j.accpm.2022.10108235472583
    [Google Scholar]
  62. ImY. KangD. KoR.E. LeeY.J. LimS.Y. ParkS. NaS.J. ChungC.R. ParkM.H. OhD.K. LimC.M. SuhG.Y. LimC-M. HongS-B. OhD.K. SuhG.Y. JeonK. KoR-E. ChoY-J. LeeY.J. LimS.Y. ParkS. HeoJ. LeeJ. KimK.C. LeeY.J. ChangY. JeonK. LeeS-M. LimC-M. HongS-K. ChoW.H. KwakS.H. LeeH.B. AhnJ-J. SeongG.M. LeeS-I. ParkS. ParkT.S. LeeS.H. ChoiE.Y. MoonJ.Y. Time-to-antibiotics and clinical outcomes in patients with sepsis and septic shock: A prospective nationwide multicenter cohort study.Crit. Care20222611910.1186/s13054‑021‑03883‑035027073
    [Google Scholar]
  63. PatangiaD.V. Anthony RyanC. DempseyE. Paul RossR. StantonC. Impact of antibiotics on the human microbiome and consequences for host health.Microbiol. Open2022111e126010.1002/mbo3.126035212478
    [Google Scholar]
  64. MullishB.H. WilliamsH.R.T. Clostridium difficile infection and antibiotic-associated diarrhoea.Clin. Med. (Lond.)201818323724110.7861/clinmedicine.18‑3‑23729858434
    [Google Scholar]
  65. ZilahiG. McMahonM.A. PovoaP. Martin-LoechesI. Duration of antibiotic therapy in the intensive care unit.J. Thorac. Dis.20168123774378010.21037/jtd.2016.12.8928149576
    [Google Scholar]
  66. CagY. CaskurluH. FanY. CaoB. VahabogluH. Resistance mechanisms.Ann. Transl. Med.201641732610.21037/atm.2016.09.1427713884
    [Google Scholar]
  67. HemingN. SivanandamoorthyS. MengP. BounabR. AnnaneD. Immune effects of corticosteroids in sepsis.Front. Immunol.20189173610.3389/fimmu.2018.0173630105022
    [Google Scholar]
  68. AnnaneD. RenaultA. Brun-BuissonC. MegarbaneB. QuenotJ.P. SiamiS. CariouA. ForcevilleX. SchwebelC. MartinC. TimsitJ.F. MissetB. Ali BenaliM. ColinG. SouweineB. AsehnouneK. MercierE. ChimotL. CharpentierC. FrançoisB. BoulainT. PetitpasF. ConstantinJ.M. DhonneurG. BaudinF. CombesA. BohéJ. LoriferneJ.F. AmathieuR. CookF. SlamaM. LeroyO. CapellierG. DargentA. HissemT. MaximeV. BellissantE. Hydrocortisone plus fludrocortisone for adults with septic shock.N. Engl. J. Med.2018378980981810.1056/NEJMoa170571629490185
    [Google Scholar]
  69. VenkateshB. FinferS. CohenJ. RajbhandariD. ArabiY. BellomoR. BillotL. CorreaM. GlassP. HarwardM. JoyceC. LiQ. McArthurC. PernerA. RhodesA. ThompsonK. WebbS. MyburghJ. Adjunctive glucocorticoid therapy in patients with septic shock.N. Engl. J. Med.2018378979780810.1056/NEJMoa170583529347874
    [Google Scholar]
  70. AmmarM.A. AmmarA.A. WieruszewskiP.M. BissellB.D.T. T LongM. AlbertL. KhannaA.K. SachaG.L. Timing of vasoactive agents and corticosteroid initiation in septic shock.Ann. Intensive Care20221214710.1186/s13613‑022‑01021‑935644899
    [Google Scholar]
  71. DasS.K. MasudaM. SakuraiA. SakakibaraM. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects.Fitoterapia201081896196810.1016/j.fitote.2010.07.01020650308
    [Google Scholar]
  72. TuliH.S. SandhuS.S. SharmaA.K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin.3 Biotech2014411210.1007/s13205‑013‑0121‑9
    [Google Scholar]
  73. ZhouX. LuoL. DresselW. ShadierG. KrumbiegelD. SchmidtkeP. ZeppF. MeyerC.U. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis.Am. J. Chin. Med.200836596798010.1142/S0192415X0800638719051361
    [Google Scholar]
  74. WangZ.M. PengX. LeeK.L.D. TangJ.C. CheungP.C.K. WuJ.Y. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1.Food Chem.2011125263764310.1016/j.foodchem.2010.09.052
    [Google Scholar]
  75. ZhangX.L. Bi-ChengL. Al-AssafS. PhillipsG.O. PhillipsA.O. Cordyceps sinensis decreases TGF-β1 dependent epithelial to mesenchymal transdifferentiation and attenuates renal fibrosis.Food Hydrocoll.201228120021210.1016/j.foodhyd.2011.12.016
    [Google Scholar]
  76. PatelS. GoyalA. Recent developments in mushrooms as anti-cancer therapeutics: A review.3 Biotech20122111510.1007/s13205‑011‑0036‑2
    [Google Scholar]
  77. DengJ.S. JiangW.P. ChenC.C. LeeL.Y. LiP.Y. HuangW.C. LiaoJ.C. ChenH.Y. HuangS.S. HuangG.J. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF- κ B/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice.Oxid. Med. Cell. Longev.2020202011710.1155/2020/791276332089779
    [Google Scholar]
  78. LeeM-J. LeeJ-C. HsiehJ-H. LinM-Y. ShihI-A. YouH-L. WangK. Cordycepin inhibits the proliferation of malignant peripheral nerve sheath tumor cells through the p53/Sp1/tubulin pathway.Am. J. Cancer Res.20211141247126633948356
    [Google Scholar]
  79. LuH.Y. TsaiW.C. LiuJ.S. HuangC.H. Preparation and evaluation of Cordyceps militaris polysaccharide- and sesame oil-loaded nanoemulsion for the treatment of candidal vaginitis in mice.Biomed. Pharmacother.202316711550610.1016/j.biopha.2023.11550637716120
    [Google Scholar]
  80. HanF. DouM. WangY. XuC. LiY. DingX. XueW. ZhengJ. TianP. DingC. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress.Acta Biochim. Biophys. Sin. (Shanghai)202052212513210.1093/abbs/gmz14531951250
    [Google Scholar]
  81. JiaoC. LiangH. LiuL. LiS. ChenJ. XieY. Transcriptomic analysis of the anti-inflammatory effect of Cordyceps militaris extract on acute gouty arthritis.Front. Pharmacol.202213103510110.3389/fphar.2022.103510136313318
    [Google Scholar]
  82. HuangR. ZhuZ. WuS. WangJ. ChenM. LiuW. HuangA. ZhangJ. WuQ. DingY. Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice.Food Res. Int.202215711119710.1016/j.foodres.2022.11119735761521
    [Google Scholar]
  83. KopalliS.R. ChaK.M. ChoJ.Y. KimS.K. KoppulaS. Cordycepin from Medicinal Fungi Cordyceps militaris mitigates inflammaging-associated testicular damage via regulating NF-κB/MAPKs signaling in naturally aged rats.Mycobiology2022501869510.1080/12298093.2022.203551535291597
    [Google Scholar]
  84. YuM. YueJ. HuiN. ZhiY. HayatK. YangX. ZhangD. ChuS. ZhouP. Anti-hyperlipidemia and gut microbiota community regulation effects of selenium-rich Cordyceps militaris polysaccharides on the high-fat diet-fed mice model.Foods20211010225210.3390/foods1010225234681302
    [Google Scholar]
  85. HuangY.P. ChenD.R. LinW.J. LinY.H. ChenJ.Y. KuoY.H. ChungJ.G. HsiaT.C. HsiehW.T. Ergosta-7,9(11),22-trien-3β-ol attenuates inflammatory responses via inhibiting MAPK/AP-1 induced IL-6/JAK/STAT pathways and activating NRF2/HO-1 signaling in lps-stimulated macrophage-like cells.Antioxidants2021109143010.3390/antiox1009143034573062
    [Google Scholar]
  86. JiY. TaoT. ZhangJ. SuA. ZhaoL. ChenH. HuQ. Comparison of effects on colitis-associated tumorigenesis and gut microbiota in mice between Ophiocordyceps sinensis and Cordyceps militaris.Phytomedicine20219015365310.1016/j.phymed.2021.15365334330600
    [Google Scholar]
  87. HsiehW.T. HsuM.H. LinW.J. XiaoY.C. LyuP.C. LiuY.C. LinW.Y. KuoY.H. ChungJ.G. Ergosta-7, 9 (11), 22-trien-3β-ol interferes with LPS docking to LBP, CD14, and TLR4/MD-2 co-receptors to attenuate the NF-κB inflammatory pathway in vitro and drosophila.Int. J. Mol. Sci.20212212651110.3390/ijms2212651134204506
    [Google Scholar]
  88. WeiP. WangK. LuoC. HuangY. MisilimuD. WenH. JinP. LiC. GongY. GaoY. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury.J. Neuroinflammation202118113710.1186/s12974‑021‑02188‑x34130727
    [Google Scholar]
  89. RupaE. LiJ. ArifM. YaxiH. PujaA. ChanA. HoangV.A. KalirajL. YangD. KangS. Cordyceps militaris fungus extracts-mediated nanoemulsion for improvement antioxidant, antimicrobial, and anti-inflammatory activities.Molecules20202523573310.3390/molecules2523573333291776
    [Google Scholar]
  90. LeeM. KimJ. ParkJ. ChoiJ. SongB. ChoiY. KimD.S. KimK. SongH. HwangD. Protective role of fermented mulberry leave extract in LPS‑induced inflammation and autophagy of RAW264.7 macrophage cells.Mol. Med. Rep.20202264685469510.3892/mmr.2020.1156333174019
    [Google Scholar]
  91. WangL. HeY. LiY. PeiC. OlatunjiO.J. TangJ. FamurewaA.C. WangH. YanB. Protective effects of nucleosides‐rich extract from cordyceps cicadae against cisplatin induced testicular damage.Chem. Biodivers.20201711e200067110.1002/cbdv.20200067133007148
    [Google Scholar]
  92. LeeM.R. KimJ.E. ParkJ.W. KangM.J. ChoiH.J. BaeS.J. ChoiY.W. KimK.M. HongJ.T. HwangD.Y. Fermented mulberry (Morus alba) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway.BMC Complement. Med. Ther.202020128310.1186/s12906‑020‑03076‑232948162
    [Google Scholar]
  93. ChenL. ZhangL. WangW. QiuW. LiuL. NingA. CaoJ. HuangM. ZhongM. Polysaccharides isolated from Cordyceps sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet.PLoS One2020156e023297210.1371/journal.pone.023297232512581
    [Google Scholar]
  94. YangJ. ZhouY. ShiJ. Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK.Life Sci.202025111764510.1016/j.lfs.2020.11764532268154
    [Google Scholar]
  95. LiL.Q. SongA.X. YinJ.Y. SiuK.C. WongW.T. WuJ.Y. Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models.Int. J. Biol. Macromol.20201491042105010.1016/j.ijbiomac.2020.02.02232035153
    [Google Scholar]
  96. UpatchaN. KaokaenP. SorraksaN. PhonchaiR. KunhormP. ChaicharoenaudomrungN. NoisaP. Nanoencapsulated cordyceps extract enhances collagen synthesis and skin cell regeneration through antioxidation and autophagy.J. Microencapsul.202340530331710.1080/02652048.2023.219800836999274
    [Google Scholar]
  97. LuT.H. ChangJ.W. JhouB.Y. HsuJ.H. LiT.J. LeeL.Y. ChenY.L. ChangH.H. ChenC.C. WuP.S. LinD.P.C. Preventative effects of Cordyceps cicadae mycelial extracts on the early-stage development of cataracts in UVB-induced mice cataract model.Nutrients20231514310310.3390/nu1514310337513520
    [Google Scholar]
  98. ShaoL. JiangS. LiY. YuL. LiuH. MaL. YangS. Aqueous extract of Cordyceps cicadae (Miq.) promotes hyaluronan synthesis in human skin fibroblasts: A potential moisturizing and anti-aging ingredient.PLoS One2023187e027447910.1371/journal.pone.027447937418356
    [Google Scholar]
  99. MohdA.A. NikNNNMD. NurulIMI. PohGC. MohdFI. ShiamalaDR. Antioxidant and cytotoxicity activity of Cordyceps militaris extracts against human colorectal cancer cell line.J. Appl. Pharm. Sci.20201110510910.7324/JAPS.2021.110711
    [Google Scholar]
  100. ZhangX. LiJ. YangB. LengQ. LiJ. WangX. LuJ. OlatunjiO.J. TangJ. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet‐induced metabolic syndrome in rats.Chem. Biodivers.2021185e210006510.1002/cbdv.20210006533738897
    [Google Scholar]
  101. ChangC.Y. YangP.X. YuT.L. LeeC.L. Cordyceps cicadae NTTU 868 mycelia fermented with deep ocean water minerals prevents D-galactose-induced memory deficits by inhibiting oxidative inflammatory factors and aging-related risk factors.Nutrients2023158196810.3390/nu1508196837111188
    [Google Scholar]
  102. YangQ. JiaB. LiuX. FangJ. ZhaoL. XuL. FangM. GongZ. SunH. Molecular cloning, expression and macrophage activation of an immunoregulatory protein from Cordyceps militaris.Molecules20212623710710.3390/molecules2623710734885688
    [Google Scholar]
  103. HeM.T. ParkC.H. ShinY.S. ChoiJ.M. ChoE.J. Caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), protects aβ1-42-induced neurologic damage in c6 glial cells.Int. J. Med. Mushrooms202022121203121310.1615/IntJMedMushrooms.202003705533463937
    [Google Scholar]
  104. LiY. JiangX. XuH. LvJ. ZhangG. DouX. ZhangY. LiX. Acremonium terricola culture plays anti-inflammatory and antioxidant roles by modulating MAPK signaling pathways in rats with lipopolysaccharide-induced mastitis.Food Nutr. Res.20206410.29219/fnr.v64.364933281536
    [Google Scholar]
  105. PohsaS. HanchangW. SingpoongaN. ChaiprasartP. TaepavaraprukP. Effects of cultured Cordycep militaris on sexual performance and erectile function in streptozotocin-induced diabetic male rats.BioMed Res. Int.2020202011010.1155/2020/419839733274209
    [Google Scholar]
  106. FuS. LuW. YuW. HuJ. Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice.Biosci. Rep.2019396BSR2019078910.1042/BSR2019078931186277
    [Google Scholar]
  107. YuanG. AnL. SunY. XuG. DuP. Improvement of learning and memory induced by Cordyceps polypeptide treatment and the underlying mechanism.Evid. Based Complement. Alternat. Med.201820181941926410.1155/2018/941926429736181
    [Google Scholar]
  108. GawasG. AyyanarM. GuravN. HaseD. MuradeV. NadafS. KhanM.S. ChikhaleR. KalaskarM. GuravS. Process optimization for the bioinspired synthesis of gold nanoparticles using Cordyceps militaris, its characterization, and assessment of enhanced therapeutic efficacy.Pharmaceuticals (Basel)2023169131110.3390/ph1609131137765119
    [Google Scholar]
  109. EiamthawornK. KaewkodT. BovonsombutS. TragoolpuaY. Efficacy of Cordyceps militaris extracts against some skin pathogenic bacteria and antioxidant activity.J. Fungi (Basel)20228432710.3390/jof804032735448557
    [Google Scholar]
  110. SolakovN. KostovaM. LoginovskaK. MarkovZ. de OliveiraA.C. MuhovskiY. Investigation of adenosine precursors and biologically active peptides in cultured fresh mycelium of wild medicinal Mushrooms.Appl. Sci. (Basel)202212201061810.3390/app122010618
    [Google Scholar]
  111. WangJ. GongY. TanH. LiW. YanB. ChengC. WanJ. SunW. YuanC. YaoL.H. Cordycepin suppresses glutamatergic and GABAergic synaptic transmission through activation of A1 adenosine receptor in rat hippocampal CA1 pyramidal neurons.Biomed. Pharmacother.202214511244610.1016/j.biopha.2021.11244634808556
    [Google Scholar]
  112. ZhangX.L. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting DRP1-mediated mitochondrial fission.Neurotoxicology20218411310.1016/j.neuro.2021.02.002
    [Google Scholar]
  113. WenY.T. JhouB.Y. HsuJ.H. FuH.I. ChenY.L. ShihY.C. ChenC.C. TsaiR.K. Neuroprotective effects of Cordyceps cicadae (ascomycetes) mycelium extract in the rat model of optic nerve crush.Int. J. Med. Mushrooms2022242414810.1615/IntJMedMushrooms.202104152235446521
    [Google Scholar]
  114. HeM.T. ParkC.H. ChoE.J. Caterpillar medicinal mushroom, Cordyceps militaris (Ascomycota), attenuates Aβ1–42 –induced amyloidogenesis and inflammatory response by suppressing amyloid precursor protein progression and p38 MAPK/JNK activation.Int. J. Med. Mushrooms20212311718310.1615/IntJMedMushrooms.202104040434936310
    [Google Scholar]
  115. MushtaqI. MushtaqI. AkhlaqA. UsmanS. IshtiaqA. KhanM. MustafaG. KhanM.S. UroojI. BibiS. LiaqatF. AkhtarZ. MurtazaI. Cardioprotective effect of tetra(aniline) containing terpolymers through miR-15a-5p and MFN-2 regulation against hypertrophic responses.Arch. Biochem. Biophys.202374710976310.1016/j.abb.2023.10976337739116
    [Google Scholar]
  116. LiuJ. XinY. QiuZ. ZhangQ. HeT. QiuY. WangW. Cordyceps sinensis -mediated biotransformation of notoginsenoside R1 into 25-OH-20( S/R )-R2 with elevated cardioprotective effect against DOX-induced cell injury.RSC Advances20221221129381294610.1039/D2RA01470J35497008
    [Google Scholar]
  117. FuH.I. HsuJ.H. LiT.J. YehS.H. ChenC.C. Safety assessment of HEA‐enriched Cordyceps cicadae mycelia on the central nervous system (CNS), cardiovascular system, and respiratory system in ICR male mice.Food Sci. Nutr.2021994905491510.1002/fsn3.244034532002
    [Google Scholar]
  118. WuZ.H. ChiuC.H. ChenC.C. ChyauC.C. ChengC.H. Amelioration of cyclosporine A-induced acute nephrotoxicity by Cordyceps cicadae mycelia via Mg+2 reabsorption and the inhibition of GRP78-IRE1-CHOP pathway: In vivo and in vitro.Int. J. Mol. Sci.202324177210.3390/ijms24010772
    [Google Scholar]
  119. MaC. WangX. ShaoW. ZhaoQ. WeiJ. LiuZ. LiC. Effects of a Cordyceps militaris with Herba epimedii complex on chronic renal failure induced by adenine in vivo.Nat. Prod. Commun.20221761934578X221105310.1177/1934578X221105373
    [Google Scholar]
  120. ZhuL. YuT. YangL. LiuT. SongZ. LiuS. ZhangD. TangC. Polysaccharide from Cordyceps cicadae inhibit mitochondrial apoptosis to ameliorate drug-induced kidney injury via Bax/Bcl-2/Caspase-3 pathway.J. Funct. Foods20229710524410.1016/j.jff.2022.105244
    [Google Scholar]
  121. CaiY. FengZ. JiaQ. GuoJ. ZhangP. ZhaoQ. WangY.X. LiuY.N. LiuW.J. Cordyceps cicadae ameliorates renal hypertensive injury and fibrosis through the regulation of SIRT1-mediated autophagy.Front. Pharmacol.20221280109410.3389/fphar.2021.80109435222012
    [Google Scholar]
  122. ZhengR. ZhangW. SongJ. ZhongY. ZhuR. Cordycepin from Cordyceps militaris ameliorates diabetic nephropathy via the miR-193b-5p/MCL-1 axis.Chin. Med.202318113410.1186/s13020‑023‑00842‑537833817
    [Google Scholar]
  123. ZhengY. LiS. LiC. ShaoY. ChenA. Aqueous two-phase extraction, antioxidant and renal protective effects of polysaccharides from spores of Cordyceps cicadae.Processes (Basel)202210234810.3390/pr10020348
    [Google Scholar]
  124. ZhangY. XuL. LuY. ZhangJ. YangM. TianY. DongJ. LiaoL. Protective effect of Cordyceps sinensis against diabetic kidney disease through promoting proliferation and inhibiting apoptosis of renal proximal tubular cells.BMC Complement. Med. Ther.202323110910.1186/s12906‑023‑03901‑437024857
    [Google Scholar]
  125. PuS. YangZ. ZhangX. LiM. HanN. YangX. HeJ. YuG. MengX. JiaQ. ShaoH. Fermented cordyceps powder alleviates silica-induced pulmonary inflammation and fibrosis in rats by regulating the Th immune response.Chin. Med.202318113110.1186/s13020‑023‑00823‑837828528
    [Google Scholar]
  126. HuZ. LaiY. MaC. ZuoL. XiaoG. GaoH. XieB. HuangX. GanH. HuangD. YaoN. FengB. RuJ. ChenY. CaiD. Cordyceps militaris extract induces apoptosis and pyroptosis via caspase‐3/PARP/GSDME pathways in A549 cell line.Food Sci. Nutr.2022101213810.1002/fsn3.263635035907
    [Google Scholar]
  127. SongS.Y. ParkJ.H. ParkS.J. KangI.C. YooH.S. Synergistic effect of HAD-B1 and afatinib against gefitinib resistance of non-small cell lung cancer.Integr. Cancer Ther.2022211534735422114431110.1177/1534735422114431136565160
    [Google Scholar]
  128. ZhaoH. DengB. LiD. JiaL. YangF. Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway.J. Funct. Foods20229510515210.1016/j.jff.2022.105152
    [Google Scholar]
  129. YangJ. NiJ.L. GaoY.Y. Protective effects of cordycepin of Cordyceps militaris on ANIT induced cholestatic liver injury.Junwu Xuebao2021401160116910.13346/j.mycosystema.200282
    [Google Scholar]
  130. LanT. YuY. ZhangJ. LiH. WengQ. JiangS. TianS. XuT. HuS. YangG. ZhangY. WangW. WangL. ZhuQ. RongX. GuoJ. Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the AMP‐activated protein kinase signaling pathway.Hepatology202174268670310.1002/hep.3174933576035
    [Google Scholar]
  131. XiaoY. ZhangX. HuangQ. Protective effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells.Int. J. Biol. Macromol.202221333935110.1016/j.ijbiomac.2022.05.17335649440
    [Google Scholar]
  132. PhullA.R. AhmedM. ParkH.J. Cordyceps militaris as a bio functional food source: Pharmacological potential, anti-inflammatory actions and related molecular mechanisms.Microorganisms202210240510.3390/microorganisms1002040535208860
    [Google Scholar]
  133. ChengY.H. HsiehY.C. YuY.H. Effect of Cordyceps militaris hot water extract on immunomodulation-associated gene expression in broilers, Gallus gallus.J. Poult. Sci.201956212813910.2141/jpsa.018006732055207
    [Google Scholar]
  134. KimY.S. ShinW.B. DongX. KimE.K. NawarathnaW.P.A.S. KimH. ParkP.J. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages.Food Sci. Biotechnol.20172661633164010.1007/s10068‑017‑0233‑930263700
    [Google Scholar]
  135. ChenM. CheungF.W.K. ChanM.H. HuiP.K. IpS.P. LingY.H. CheC.T. LiuW.K. Protective roles of Cordyceps on lung fibrosis in cellular and rat models.J. Ethnopharmacol.2012143244845410.1016/j.jep.2012.06.03322796203
    [Google Scholar]
  136. WangJ. LiuY.M. CaoW. YaoK.W. LiuZ.Q. GuoJ.Y. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats.Metab. Brain Dis.201227215916510.1007/s11011‑012‑9282‑122327557
    [Google Scholar]
  137. TangJ. XiongL. ShuX. ChenW. LiW. LiJ. MaL. XiaoY. LiL. Antioxidant effects of bioactive compounds isolated from Cordyceps and their protective effects against UVB‐irradiated HaCaT cells.J. Cosmet. Dermatol.20191861899190610.1111/jocd.1289530865373
    [Google Scholar]
  138. ReisF.S. BarrosL. CalhelhaR.C. ĆirićA. van GriensvenL.J.L.D. SokovićM. FerreiraI.C.F.R. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties.Food Chem. Toxicol.201362919810.1016/j.fct.2013.08.03323994083
    [Google Scholar]
  139. LiJ. ZhongL. ZhuH. WangF. The protective effect of cordycepin on D-galactosamine/lipopolysaccharide-induced acute liver injury.Mediators Inflamm.2017201711210.1155/2017/394670628522898
    [Google Scholar]
  140. YuanJ. WangA. HeY. SiZ. XuS. ZhangS. WangK. WangD. LiuY. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats.Brain Res. Bull.201612717117610.1016/j.brainresbull.2016.09.01027646481
    [Google Scholar]
  141. LanL. WangS. DuanS. ZhouX. LiY. Cordyceps militaris carotenoids protect human retinal endothelial cells against the oxidative injury and apoptosis resulting from H2O2.Evid. Based complement. Alternat. Med.2022202211210.1155/2022/125909336212977
    [Google Scholar]
  142. KumarS. GuptaE. GuptaN. KaushikS. SrivastavaV.K. KumarS. MehtaS. JyotiA. Functional role of iNOS-Rac2 interaction in neutrophil extracellular traps (NETs) induced cytotoxicity in sepsis.Clin. Chim. Acta2021513434910.1016/j.cca.2020.12.00433309799
    [Google Scholar]
  143. ShinS. LeeS. KwonJ. MoonS. LeeS. LeeC.K. ChoK. HaN.J. KimK. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages.Immune Netw.2009939810510.4110/in.2009.9.3.9820107539
    [Google Scholar]
  144. YingX. PengL. ChenH. ShenY. YuK. ChengS. Cordycepin prevented IL-β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes.Int. Orthop.20143871519152610.1007/s00264‑013‑2219‑424346509
    [Google Scholar]
  145. PoojaP. AnandS. Studies on antibacterial activity of Cordyceps militaris (L.) link.Int. J. Pharma Bio Sci.201454
    [Google Scholar]
  146. RenL. HemarY. PereraC.O. LewisG. KrissansenG.W. BuchananP.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms.Bioactive Carbohydr. Diet. Fibre201432415110.1016/j.bcdf.2014.01.003
    [Google Scholar]
  147. WangL. LiuC.C. WangY.Y. XuH. SuH. ChengX. Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract.Curr. Appl. Phys.201616996997310.1016/j.cap.2016.05.025
    [Google Scholar]
  148. ZhouX. CaiG. HeY. TongG. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor.Exp. Ther. Med.20161231812181610.3892/etm.2016.353627588098
    [Google Scholar]
  149. ZhangY. WuY.T. ZhengW. HanX.X. JiangY.H. HuP.L. TangZ.X. ShiL.E. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae.J. Funct. Foods20173827327910.1016/j.jff.2017.09.047
    [Google Scholar]
  150. MishraJ. RajputR. SinghK. BansalA. MisraK. Antioxidant-rich peptide fractions derived from high-altitude chinese caterpillar medicinal mushroom Ophiocordyceps sinensis (Ascomycetes) inhibit bacterial pathogens.Int. J. Med. Mushrooms201921215516810.1615/IntJMedMushrooms.201903001330806222
    [Google Scholar]
  151. HuangF. LiW. XuH. QinH. HeZ.G. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase.PLoS One2019146e021844910.1371/journal.pone.021844931199855
    [Google Scholar]
  152. KumarS. PayalN. SrivastavaV.K. KaushikS. SaxenaJ. JyotiA. Neutrophil extracellular traps and organ dysfunction in sepsis.Clin. Chim. Acta202152315216210.1016/j.cca.2021.09.01234537216
    [Google Scholar]
  153. ChengZ. HeW. ZhouX. LvQ. XuX. YangS. ZhaoC. GuoL. Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro.Eur. J. Pharmacol.20116641-3202810.1016/j.ejphar.2011.04.05221554870
    [Google Scholar]
  154. LiuZ. LiP. ZhaoD. TangH. GuoJ. Anti-inflammation effects of Cordyceps sinensis mycelium in focal cerebral ischemic injury rats.Inflammation201134663964410.1007/s10753‑010‑9273‑521080047
    [Google Scholar]
  155. HeM.T. LeeA.Y. ParkC.H. ChoE.J. Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro.Nutr. Res. Pract.201913427928510.4162/nrp.2019.13.4.27931388403
    [Google Scholar]
  156. WangD. WangJ. WangD. YuX. OlatunjiO.J. OuyangZ. WeiY. Neuroprotective effects of butanol fraction of Cordyceps cicadae on glutamate‐induced damage in PC12 cells involving oxidative toxicity.Chem. Biodivers.2018151e170038510.1002/cbdv.20170038529113024
    [Google Scholar]
  157. OlatunjiO.J. FengY. OlatunjiO.O. TangJ. WeiY. OuyangZ. SuZ. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage.Carbohydr. Polym.201615318719510.1016/j.carbpol.2016.06.10827561486
    [Google Scholar]
  158. PalM. BhardwajA. ManickamM. TulsawaniR. SrivastavaM. SugadevR. MisraK. Protective efficacy of the caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), from India in neuronal hippocampal cells against hypoxia.Int. J. Med. Mushrooms201517982984010.1615/IntJMedMushrooms.v17.i9.3026756295
    [Google Scholar]
  159. LiZ. ZhangZ. ZhangJ. JiaJ. DingJ. LuoR. LiuZ. Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.J. Med. Food201215121057106310.1089/jmf.2011.210523216110
    [Google Scholar]
  160. HwangS. ChoG.S. RyuS. KimH.J. SongH.Y. YuneT.Y. JuC. KimW.K. Post-ischemic treatment of WIB801C, standardized Cordyceps extract, reduces cerebral ischemic injury via inhibition of inflammatory cell migration.J. Ethnopharmacol.201618616918010.1016/j.jep.2016.03.05227036628
    [Google Scholar]
  161. BaiX. TanT.Y. LiY.X. LiY. ChenY.F. MaR. WangS.Y. LiQ. LiuZ.Q. The protective effect of Cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway.Biomed. Pharmacother.202012410983410.1016/j.biopha.2020.10983431978767
    [Google Scholar]
  162. JiangX. TangP-C. ChenQ. ZhangX. FanY-Y. YuB.C. GuX-X. SunY. GeX-Q. ZhangX-L. Cordycepin exerts neuroprotective effects via an anti-apoptotic mechanism based on the mitochondrial pathway in a rotenone-induced parkinsonism rat model.CNS Neurol. Disord. Drug Targets201918860962010.2174/187152731866619090515213831486758
    [Google Scholar]
  163. SunY. HuangW. TangP. ZhangX. ZhangX. YuB. FanY-Y. GeX. ZhangX-L. Neuroprotective effects of natural cordycepin on LPS-induced Parkinson’s disease through suppressing TLR4/NF-κB/NLRP3-mediated pyroptosis.J. Funct. Foods20207510427410.1016/j.jff.2020.104274
    [Google Scholar]
  164. YanX.F. ZhangZ.M. YaoH.Y. GuanY. ZhuJ.P. ZhangL.H. JiaY.L. WangR.W. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors.Phytother. Res.201327111597160410.1002/ptr.489923192916
    [Google Scholar]
  165. ParkE.S. KangD.H. YangM.K. KangJ.C. JangY.C. ParkJ.S. KimS.K. ShinH.S. Cordycepin, 3′-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression.Cardiovasc. Toxicol.20141411910.1007/s12012‑013‑9232‑024178833
    [Google Scholar]
  166. GuY.Y. WangH. WangS. GaoH. QiuM.C. Effects of Cordyceps sinensis on the expressions of NF-B and TGF-β 1 in myocardium of diabetic rats. Evidence-Based complement.Altern. Med.2015201536963110.1155/2015/36963126697096
    [Google Scholar]
  167. WangH.B. DuanM.X. XuM. HuangS.H. YangJ. YangJ. LiuL.B. HuangR. WanC.X. MaZ.G. WuQ.Q. TangQ.Z. Cordycepin ameliorates cardiac hypertrophy via activating the AMPKα pathway.J. Cell. Mol. Med.20192385715572710.1111/jcmm.1448531225721
    [Google Scholar]
  168. ZhangM.H. PanM.M. NiH.F. ChenJ.F. XuM. GongY.X. ChenP.S. LiuB.C. [Effect of Cordyceps sinensis powder on renal oxidative stress and mitochondria functions in 5/6 nephrectomized rats].Chung Kuo Chung Hsi I Chieh Ho Tsa Chih201535444344926043568
    [Google Scholar]
  169. SongJ. WangY. LiuC. HuangY. HeL. CaiX. LuJ. LiuY. WangD. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway.Food Funct.2016742006201510.1039/C5FO01017A27008597
    [Google Scholar]
  170. AkbarS.R. LongD.M. HussainK. AlhajhusainA. AhmedU.S. IqbalH.I. AliA.W. LeonardR. DaltonC. Hyperuricemia: An early marker for severity of Illness in sepsis.Int. J. Nephrol.201520151810.1155/2015/30102126294973
    [Google Scholar]
  171. YongT. ZhangM. ChenD. ShuaiO. ChenS. SuJ. JiaoC. FengD. XieY. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine.J. Ethnopharmacol.201619440341110.1016/j.jep.2016.10.00127717908
    [Google Scholar]
  172. ZhangY. DuY. YuH. ZhouY. GeF. Protective effects of Ophiocordyceps lanpingensis on glycerol-induced acute renal failure in mice.J. Immunol. Res.201720171810.1155/2017/201258529159186
    [Google Scholar]
  173. ZhengR. ZhuR. LiX. LiX. ShenL. ChenY. ZhongY. DengY. N6-(2-Hydroxyethyl) adenosine from Cordyceps cicadae ameliorates renal interstitial fibrosis and prevents inflammation via TGF-β1/Smad and NF-κB signaling pathway.Front. Physiol.20189122910.3389/fphys.2018.0122930233405
    [Google Scholar]
  174. SunT. DongW. JiangG. YangJ. LiuJ. ZhaoL. MaP. Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB Redox signaling pathway.Oxid. Med. Cell. Longev.2019201911610.1155/2019/785086331049139
    [Google Scholar]
  175. LiuS. TangJ. HuangL. XuQ. LingX. LiuJ. Cordyceps militaris alleviates severity of murine acute lung injury through miRNAs-mediated CXCR2 inhibition.Cell. Physiol. Biochem.20153652003201110.1159/00043016826202360
    [Google Scholar]
  176. YangX. LiY. HeY. LiT. WangW. ZhangJ. WeiJ. DengY. LinR. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process.Int. Immunopharmacol.201526240140810.1016/j.intimp.2015.04.01725912153
    [Google Scholar]
  177. WangN. LiJ. HuangX. ChenW. ChenY. Herbal medicine Cordyceps sinensis improves health‐related quality of life in moderate‐to‐severe asthma.Evid. Based Complement. Alternat. Med.201620161613459310.1155/2016/613459328050193
    [Google Scholar]
  178. HsiaoF.S.H. ChengY.H. WangS.K. YuY.H. Cordyceps militaris hot water extract inhibits lipopolysaccharide-induced inflammatory response in porcine alveolar macrophages by regulation of mitogen-activated protein kinase signaling pathway.Can. J. Anim. Sci.201798CJAS-2016-024410.1139/CJAS‑2016‑0244
    [Google Scholar]
  179. YangL. JiaoX. WuJ. ZhaoJ. LiuT. XuJ. MaX. CaoL. LiuL. LiuY. ChiJ. ZouM. LiS. XuJ. DongL. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease.Exp. Ther. Med.20181532731273810.3892/etm.2018.577729456676
    [Google Scholar]
  180. ZhengY. LiL. CaiT. Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway.Respir. Physiol. Neurobiol.202027610341210.1016/j.resp.2020.10341232044448
    [Google Scholar]
  181. PengY. HuangK. ShenL. TaoY. LiuC. Cultured Mycelium Cordyceps sinensis alleviates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells.Acta Pharmacol. Sin.201637220421610.1038/aps.2015.12926592510
    [Google Scholar]
  182. TangH. WeiW. WangW. ZhaZ. LiT. ZhangZ. LuoC. YinH. HuangF. WangY. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality.Carbohydr. Polym.2017163435310.1016/j.carbpol.2017.01.01928267517
    [Google Scholar]
  183. LiuC.Y. LiL. HaoX.Y. YuanY. WuX.P. FuJ.S. Protective effects of polysaccharides from post-harvest waste substrate of Cordyceps militaris MF27 on oxidative damage to liver cells.Junwu Xuebao20203940942010.13346/j.mycosystema.190245
    [Google Scholar]
  184. HungY.P. LeeC.L. Higher anti-liver fibrosis effect of Cordyceps militaris-fermented product cultured with deep oceanwater via inhibiting proinflammatory factors and fibrosis-related factors expressions.Mar. Drugs201715616810.3390/md1506016828594374
    [Google Scholar]
  185. DongK.Z. GaoY.S. WangX.H. MaY.Q. SuL. Protective effect of mycelial polysaccharides from Cordyceps sinensis on immunological liver injury in mice.Med. J. Chinese People’s Lib. Army20164128428810.11855/j.issn.0577‑7402.2016.04.05
    [Google Scholar]
  186. WangL. HuangQ. HuangY. XieJ. QuC. ChenJ. ZhengL. YiT. ZengH. LiH. Comparison of protective effect of ordinary Cordyceps militaris and selenium-enriched Cordyceps militaris on triptolide-induced acute hepatotoxicity and the potential mechanisms.J. Funct. Foods20184636537710.1016/j.jff.2018.05.016
    [Google Scholar]
  187. KeB.J. LeeC.L. Cordyceps cicadae NTTU 868 mycelium prevents CCl 4 -induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines.J. Funct. Foods20184321422310.1016/j.jff.2018.02.010
    [Google Scholar]
  188. ChenS. WangJ. FangQ. DongN. NieS. Polysaccharide from natural Cordyceps sinensis ameliorated intestinal injury and enhanced antioxidant activity in immunosuppressed mice.Food Hydrocoll.20198966166710.1016/j.foodhyd.2018.11.018
    [Google Scholar]
  189. Han Y, Liu Y, Chen W. Synergistic protective effects of Cordyceps militaris polysaccharide supplemented yogurt on alcoholic liver injury in kunming mice.Shipin Kexue/Food Sci.20204120921410.7506/spkx1002‑6630‑20181120‑228
    [Google Scholar]
  190. GuL. YuT. LiuJ. LuY. Evaluation of the mechanism of Cordyceps polysaccharide action on rat acute liver failure.Arch. Med. Sci.20201651218122510.5114/aoms.2020.9423632864011
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326301240920040036
Loading
/content/journals/cpd/10.2174/0113816128326301240920040036
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cordyceps; free radicals; inflammation; organ dysfunction; organ protection; sepsis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test