Skip to content
2000
Volume 31, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Ursolic acid, a natural pentacyclic triterpenoid compound, has been shown to have significant cardioprotective effects in various preclinical studies. This article reviews the various mechanisms by which ursolic acid achieves its cardioprotective effects, highlighting its potent anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Ursolic acid upregulates anti-oxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), effectively reducing oxidative stress, thereby decreasing reactive oxygen species (ROS) and improving lipid peroxidation levels. Furthermore, ursolic acid downregulates pro-inflammatory cytokines and inhibits key inflammatory pathways, such as nuclear factor kappa B (NF-κB), which results in its anti-inflammatory effects. These actions help in protecting cardiac tissues from acute and chronic inflammation. Ursolic acid also promotes mitochondrial function and energy metabolism by enhancing mitochondrial biogenesis and reducing dysfunction, which is critical during ischemia-reperfusion (I/R) injury. Additionally, ursolic acid influences multiple molecular pathways, including B-cell leukemia/lymphoma 2 protein (Bcl-2)/Bcl-2 associated x-protein (Bax), miR-21/extracellular signal-regulated kinase (ERK), and phosphoinositide 3-kinase (PIK)/protein kinase B (Akt), to reduce cardiomyocyte apoptosis. Collectively, these properties make ursolic acid a promising therapeutic agent for cardiovascular diseases (CVDs), warranting further research and clinical trials to harness its potential fully.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128344497241120025757
2024-12-20
2025-06-30
Loading full text...

Full text loading...

References

  1. BaligaM.S. ShivashankaraA.R. VenkateshS. BhatH.P. PalattyP.L. BhandariG. RaoS. Chapter 7 - Phytochemicals in the prevention of ethanol-induced hepatotoxicity: A revisit. Dietary interventions in liver disease. Academic Press 2019; pp. 79-89.
    [Google Scholar]
  2. FarhadiF. Baradaran RahimiV. MohamadiN. AskariV.R. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases.Biofactors2023493478501
    [Google Scholar]
  3. RoohbakhshY. Baradaran RahimiV. SilakhoriS. RajabiH. Rahmanian-DevinP. Samzadeh-KermaniA. RakhshandehH. HasanpourM. IranshahiM. MousaviS.H. AskariV.R. Evaluation of the effects of peritoneal lavage with Rosmarinus officinalis extract against the prevention of postsurgical-induced peritoneal adhesion.Planta Med.202086640541410.1055/a‑1118‑3918
    [Google Scholar]
  4. ZhaoM. WuF. TangZ. YangX. LiuY. WangF. ChenB. Anti-inflammatory and antioxidant activity of ursolic acid: A systematic review and meta-analysis.Front. Pharmacol.202314125694610.3389/fphar.2023.1256946
    [Google Scholar]
  5. IkedaY. MurakamiA. OhigashiH. Ursolic acid: An anti- and pro-inflammatory triterpenoid.Mol. Nutr. Food Res.2008521264210.1002/mnfr.200700389
    [Google Scholar]
  6. YinR. LiT. TianJ.X. XiP. LiuR.H. Ursolic acid, a potential anticancer compound for breast cancer therapy.Crit. Rev. Food Sci. Nutr.201858456857410.1080/10408398.2016.1203755
    [Google Scholar]
  7. MaJ.Q. DingJ. ZhangL. LiuC.M. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway.Clin. Res. Hepatol. Gastroenterol.201539218819710.1016/j.clinre.2014.09.007
    [Google Scholar]
  8. SafaeiR. SakhaeeK. SaberifarM. FadaeiM.S. EdalatJooS. FadaeiM.R. Baradaran RahimiV. AskariV.R. Mechanistic insights into the xanthones present in mangosteen fruit (Garcinia mangostana) and their applications in diabetes and related complications.J. Food Biochem.2023202312710.1155/2023/5334312
    [Google Scholar]
  9. MohamadiN. Baradaran RahimiV. FadaeiM.R. SharifiF. AskariV.R. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications.Inflammopharmacology20233162885289910.1007/s10787‑023‑01373‑z
    [Google Scholar]
  10. HosseiniA. AlipourA. Baradaran RahimiV. AskariV.R. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation.Biofactors202349232235010.1002/biof.1923
    [Google Scholar]
  11. AkhlaghipourI. Nasimi ShadA. AskariV.R. MaharatiA. Baradaran RahimiV. How caffeic acid and its derivatives combat diabetes and its complications: A systematic review.J. Funct. Foods202311010586210.1016/j.jff.2023.105862
    [Google Scholar]
  12. OhC.J. KilI.S. ParkC.I. YangC.H. ParkJ.W. Ursolic acid regulates high glucose-induced apoptosis.Free Radic. Res.200741663864410.1080/10715760701227526
    [Google Scholar]
  13. CheckerR. SandurS.K. SharmaD. PatwardhanR.S. JayakumarS. KohliV. SethiG. AggarwalB.B. SainisK.B. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT.PLoS One201272e3131810.1371/journal.pone.0031318
    [Google Scholar]
  14. ChenJ. WongH.S. LeongP.K. LeungH.Y. ChanW.M. KoK.M. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: A possible mechanism underlying its beneficial effect on exercise endurance.Food Funct.2017872425243610.1039/C7FO00127D
    [Google Scholar]
  15. SultanF. KaurR. TarfainN.U. MirA.H. DumkaV.K. SharmaS.K. Singh SainiS.P. Protective effect of rosuvastatin pretreatment against acute myocardial injury by regulating Nrf2, Bcl-2/Bax, iNOS, and TNF-α expressions affecting oxidative/nitrosative stress and inflammation.Hum. Exp. Toxicol.2022410960327121106606510.1177/09603271211066065
    [Google Scholar]
  16. WangX. GongY. ZhouB. YangJ. ChengY. ZhaoJ. QiM. Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats.Biomed. Pharmacother.2018971461146710.1016/j.biopha.2017.11.032
    [Google Scholar]
  17. NaßJ. AbdelfatahS. EfferthT. Ursolic acid enhances stress resistance, reduces ROS accumulation and prolongs life span in C. elegans serotonin-deficient mutants.Food Funct.20211252242225610.1039/D0FO02208J
    [Google Scholar]
  18. SinghA. AnsariV. MahmoodT. AhsanF. WasimR. ShariqM. ParveenS. ShamimA. Ursolic acid: Historical aspects to promising pharmacological actions for the treatment of central nervous system diseases.Curr. Cosmet. Sci.202321E200223213793
    [Google Scholar]
  19. IqbalJ. AbbasiB.A. AhmadR. MahmoodT. KanwalS. AliB. KhalilA.T. ShahS.A. AlamM.M. BadshahH. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications.Biomed. Pharmacother.201810875275610.1016/j.biopha.2018.09.096
    [Google Scholar]
  20. KamisahY. JalilJ. YunosN.M. ZainalabidinS. Cardioprotective properties of kaempferol: A review.Plants20231211209610.3390/plants12112096
    [Google Scholar]
  21. Monge GarciaM.I. JianZ. SettelsJ.J. HunleyC. CecconiM. HatibF. PinskyM.R. Performance comparison of ventricular and arterial dP/dt max for assessing left ventricular systolic function during different experimental loading and contractile conditions.Crit. Care (Fullerton)201822112
    [Google Scholar]
  22. SrinivasanA. KimJ. KhaliqueO. GeevargheseA. RusliM. ShahT. Di FrancoA. AlakbarliJ. GoldburgS. RozenstrauchM. DevereuxR.B. WeinsaftJ.W. Echocardiographic linear fractional shortening for quantification of right ventricular systolic function-A cardiac magnetic resonance validation study.Echocardiography201734334835810.1111/echo.13438
    [Google Scholar]
  23. MuH. LiuH. ZhangJ. HuangJ. ZhuC. LuY. ShiY. WangY. Ursolic acid prevents doxorubicin-induced cardiac toxicity in mice through eNOS activation and inhibition of eNOS uncoupling.J. Cell. Mol. Med.20192332174218310.1111/jcmm.14130
    [Google Scholar]
  24. BhattL. SinghP. SebastianB. JoshiV. Ursolic acid prevents cyclophosphamide induced myocardial oxidative tissue damage in wistar rats.Indian J. Tradit. Knowl.2020193525532
    [Google Scholar]
  25. YangY. LiC. XiangX. DaiZ. ChangJ. ZhangM. CaiH. ZhangH. ZhangM. GuoY. WuZ. Ursolic acid prevents endoplasmic reticulum stress-mediated apoptosis induced by heat stress in mouse cardiac myocytes.J. Mol. Cell. Cardiol.20146710311110.1016/j.yjmcc.2013.12.018
    [Google Scholar]
  26. HussJ.M. KellyD.P. Mitochondrial energy metabolism in heart failure: A question of balance.J. Clin. Invest.2005115354755510.1172/JCI24405
    [Google Scholar]
  27. Mohammadzadeh ShabestariM. EshraghiA. Hakim AttarF. GhaderiF. PoorzandH. Mohammadzadeh ShabestariA.H. AlizadehB. MorovatdarN. ShahriB. AlimiH. TayyebiM. GholoobiA. AskariV.R. GarivaniY.A. Mohammadzadeh ShabestariM. Baradaran RahimiV. Evaluation of short and mid-term clinical outcomes in patients with aortic coarctation treated with self-expandable stents.Sci. Rep.20241411174810.1038/s41598‑024‑62607‑w
    [Google Scholar]
  28. AskariV.R. KhosraviK. Baradaran RahimiV. GarzoliS. A mechanistic review on how berberine use combats diabetes and related complications: Molecular, cellular, and metabolic effects.Pharmaceuticals (Basel)2023171710.3390/ph17010007
    [Google Scholar]
  29. ChistiakovD.A. ShkuratT.P. MelnichenkoA.A. GrechkoA.V. OrekhovA.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review.Ann. Med.201850212112710.1080/07853890.2017.1417631
    [Google Scholar]
  30. DominicE.A. RamezaniA. AnkerS.D. VermaM. MehtaN. RaoM. Mitochondrial cytopathies and cardiovascular disease.Heart2014100861161810.1136/heartjnl‑2013‑304657
    [Google Scholar]
  31. MirzaeiA. MirzaeiA. Najjar KhalilabadS. AskariV.R. Baradaran RahimiV. Promising influences of hesperidin and hesperetin against diabetes and its complications: A systematic review of molecular, cellular, and metabolic effects.EXCLI J.20232212351263
    [Google Scholar]
  32. EhtiatiS. AlizadehM. FarhadiF. KhalatbariK. AjiboyeB.O. Baradaran RahimiV. AskariV.R. Promising influences of caffeic acid and caffeic acid phenethyl ester against natural and chemical toxins: A comprehensive and mechanistic review.J. Funct. Foods202310710563710.1016/j.jff.2023.105637
    [Google Scholar]
  33. McCommisK.S. FinckB.N. Mitochondrial pyruvate transport: A historical perspective and future research directions.Biochem. J.2015466344345410.1042/BJ20141171
    [Google Scholar]
  34. TrottaA.P. GellesJ.D. SerasingheM.N. LoiP. ArbiserJ.L. ChipukJ.E. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.J. Biol. Chem.201729228117271173910.1074/jbc.M117.786442
    [Google Scholar]
  35. KarthikeyanK. Sarala BaiB.R. Niranjali DevarajS. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: An in vivo study.Life Sci.20078123-241615162110.1016/j.lfs.2007.09.033
    [Google Scholar]
  36. PandaS. KarA. BiswasS. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury.Sci. Rep.2017711614610.1038/s41598‑017‑16075‑0
    [Google Scholar]
  37. RadhigaT. SenthilS. SundaresanA. PugalendiK.V. Ursolic acid modulates MMPs, collagen-I, α-SMA, and TGF-β expression in Isoproterenol-induced myocardial infarction in rats.Hum. Exp. Toxicol.201938778579310.1177/0960327119842620
    [Google Scholar]
  38. BigdeluL. AlimiH. PoorzandH. GhaderiF. AfsharS. RafighdoostA.H. Baradaran RahimiV. Relationship between New York functional class and duke activity status index with the severity of mitral valve stenosis and echocardiographic parameters: Is left atrial strain a better predictor?Int. J. Cardiovasc. Imaging20244051115112210.1007/s10554‑024‑03082‑2
    [Google Scholar]
  39. WynnT.A. Cellular and molecular mechanisms of fibrosis.J. Pathol.2008214219921010.1002/path.2277
    [Google Scholar]
  40. FrangogiannisN.G. Cardiac fibrosis.Cardiovasc. Res.202111761450148810.1093/cvr/cvaa324
    [Google Scholar]
  41. WebberM. JacksonS.P. MoonJ.C. CapturG. Myocardial fibrosis in heart failure: Anti-fibrotic therapies and the role of cardiovascular magnetic resonance in drug trials.Cardiol. Ther.20209236337610.1007/s40119‑020‑00199‑y
    [Google Scholar]
  42. Javidi Dasht BayazR. AskariV.R. TayyebiM. AhmadiM. Heidari-BakavoliA. Baradaran RahimiV. Increasing cardiac troponin-I level as a cardiac injury index correlates with in-hospital mortality and biofactors in severe hospitalised COVID-19 patients.J. Infect. Chemother.202329325025610.1016/j.jiac.2022.11.007
    [Google Scholar]
  43. YangJ-J. GongY. ShiJ. QiM-Y. Study on the effect of ursolic acid (UA) on the myocardial fibrosis of experimental diabetic mice.J. Appl. Physiol.2013294353356
    [Google Scholar]
  44. ZhouT. WangJ. XuJ. ZhengC. NiuY. WangC. XuF. YuanL. ZhaoX. LiangL. XuP. A smart fluorescent probe for NO detection and application in myocardial fibrosis imaging.Anal. Chem.20209275064507210.1021/acs.analchem.9b05435
    [Google Scholar]
  45. RehfeldtK.H. MauermannW.J. NuttallG.A. OliverW.C. 18 - Cardiomyopathies.Perioperative Transesophageal Echocardiography. ReichD.L. FischerG.W. PhiladelphiaW.B. Saunders201416719010.1016/B978‑1‑4557‑0761‑4.00018‑9
    [Google Scholar]
  46. McKennaW.J. JudgeD.P. Epidemiology of the inherited cardiomyopathies.Nat. Rev. Cardiol.2021181223610.1038/s41569‑020‑0428‑2
    [Google Scholar]
  47. DongX. LiuS. ZhangL. YuS. HuoL. QileM. LiuL. YangB. YuJ. Downregulation of miR-21 is involved in direct actions of ursolic acid on the heart: Implications for cardiac fibrosis and hypertrophy.Cardiovasc. Ther.201533416116710.1111/1755‑5922.12125
    [Google Scholar]
  48. DavignonJ. GanzP. Role of endothelial dysfunction in atherosclerosis.Circulation200410923Suppl. 1III-27III-32
    [Google Scholar]
  49. WidlanskyM.E. GokceN. KeaneyJ.F.Jr VitaJ.A. The clinical implications of endothelial dysfunction.J. Am. Coll. Cardiol.20034271149116010.1016/S0735‑1097(03)00994‑X
    [Google Scholar]
  50. NatarajanS. GlickH. CriquiM. HorowitzD. LipsitzS.R. KinosianB. Cholesterol measures to identify and treat individuals at risk for coronary heart disease.Am. J. Prev. Med.2003251505710.1016/S0749‑3797(03)00092‑8
    [Google Scholar]
  51. PackardC.J. FordI. RobertsonM. ShepherdJ. BlauwG.J. MurphyM.B. BollenE.L.E.M. BuckleyB.M. CobbeS.M. GawA. HylandM. JukemaJ.W. KamperA.M. MacfarlaneP.W. PerryI.J. StottD.J. SweeneyB.J. TwomeyC. WestendorpR.G.J. Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).Circulation2005112203058306510.1161/CIRCULATIONAHA.104.526848
    [Google Scholar]
  52. IngelssonE. SchaeferE.J. ContoisJ.H. McNamaraJ.R. SullivanL. KeyesM.J. PencinaM.J. SchoonmakerC. WilsonP.W.F. D’AgostinoR.B. VasanR.S. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women.JAMA2007298777678510.1001/jama.298.7.776
    [Google Scholar]
  53. ArsenaultB.J. RanaJ.S. StroesE.S.G. DesprésJ.P. ShahP.K. KasteleinJ.J.P. WarehamN.J. BoekholdtS.M. KhawK.T. Beyond low-density lipoprotein cholesterol: Respective contributions of non–high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women.J. Am. Coll. Cardiol.2009551354110.1016/j.jacc.2009.07.057
    [Google Scholar]
  54. Kazemi PordanjaniM. BanitalebiE. RoghaniM. HemmatiR. Ursolic acid enhances the effect of exercise training on vascular aging by reducing oxidative stress in aged type 2 diabetic rats.Food Sci. Nutr.202311269670810.1002/fsn3.3105
    [Google Scholar]
  55. RadhigaT. RajamanickamC. SenthilS. PugalendiK.V. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in Isoproterenol-induced myocardial ischemic rats.Food Chem. Toxicol.201250113971397710.1016/j.fct.2012.07.067
    [Google Scholar]
  56. DingQ. WhiteS.P. LingC. ZhouW. Resistin and cardiovascular disease.Trends Cardiovasc. Med.2011211202710.1016/j.tcm.2012.01.004
    [Google Scholar]
  57. WitkowskaA. Soluble ICAM-1: A marker of vascular inflammation and lifestyle.Cytokine200531212713410.1016/j.cyto.2005.04.007
    [Google Scholar]
  58. DemerathE. TowneB. BlangeroJ. SiervogelR.M. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women.Ann. Hum. Biol.200128666467810.1080/03014460110048530
    [Google Scholar]
  59. SinghV. KaurR. KumariP. PasrichaC. SinghR. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders.Clin. Chim. Acta202354811748710.1016/j.cca.2023.117487
    [Google Scholar]
  60. LinY.T. YuY.M. ChangW.C. ChiangS.Y. ChanH.C. LeeM.F. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases.Can. J. Physiol. Pharmacol.201694662763310.1139/cjpp‑2015‑0407
    [Google Scholar]
  61. SiesH. BerndtC. JonesD.P. Oxidative stress.Annu. Rev. Biochem.201786171574810.1146/annurev‑biochem‑061516‑045037
    [Google Scholar]
  62. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S158513
    [Google Scholar]
  63. BurtonG.J. JauniauxE. Oxidative stress.Best Pract. Res. Clin. Obstet. Gynaecol.201125328729910.1016/j.bpobgyn.2010.10.016
    [Google Scholar]
  64. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.001
    [Google Scholar]
  65. TurnerM.D. NedjaiB. HurstT. PenningtonD.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Mol Cell Res201418431125632582
    [Google Scholar]
  66. FrangogiannisN.G. The inflammatory response in myocardial injury, repair, and remodelling.Nat. Rev. Cardiol.201411525526510.1038/nrcardio.2014.28
    [Google Scholar]
  67. KishoreR. KrishnamurthyP. GarikipatiV.N.S. BenedictC. NickoloffE. KhanM. JohnsonJ. GumpertA.M. KochW.J. VermaS.K. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy.J. Mol. Cell. Cardiol.20158920321310.1016/j.yjmcc.2015.11.004
    [Google Scholar]
  68. GoswamiS.K. RanjanP. DuttaR.K. VermaS.K. Management of inflammation in cardiovascular diseases.Pharmacol. Res.202117310591210.1016/j.phrs.2021.105912
    [Google Scholar]
  69. WangC. ZhangC. LiuL. AX. ChenB. LiY. DuJ. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury.Mol. Ther.201725119220410.1016/j.ymthe.2016.09.001
    [Google Scholar]
  70. MartinR. GutierrezB. CordovaC. San RomanA. AlvarezY. HernandezM. CachofeiroV. NietoM.L. Secreted phospholipase A2-IIA modulates transdifferentiation of cardiac fibroblast through EGFR transactivation: An inflammation–fibrosis link.Cells20209239610.3390/cells9020396
    [Google Scholar]
  71. VermaS.K. GarikipatiV.N.S. KrishnamurthyP. KhanM. ThorneT. QinG. LosordoD.W. KishoreR. IL-10 accelerates re-endothelialization and inhibits post-injury intimal hyperplasia following carotid artery denudation.PLoS One2016111e014761510.1371/journal.pone.0147615
    [Google Scholar]
  72. SaravananR. PugalendiV. Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart.Pharmacol. Rep.200658141
    [Google Scholar]
  73. FuY. LiuT. HeS. ZhangY. TanY. BaiY. ShiJ. DengW. QiuJ. WangZ. ChenY. JinQ. XieM. WangJ. Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway.Front. Pharmacol.202314118937210.3389/fphar.2023.1189372
    [Google Scholar]
  74. JiaW. JiongZ. The effect of ursolic acid on oxidative stress and lipid metabolism in mice with acute myocardial infarction.Editorial Office Chin J Arterioscler20182611418
    [Google Scholar]
  75. LiobikasJ. MajieneD. TrumbeckaiteS. KursvietieneL. MasteikovaR. KopustinskieneD.M. SavickasA. BernatonieneJ. Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria.J. Nat. Prod.20117471640164410.1021/np200060p
    [Google Scholar]
  76. SenthilS. SrideviM. PugalendiK.V. Protective effect of ursolic acid against myocardial ischemia induced by Isoproterenol in rats.Toxicol. Mech. Methods2007171576510.1080/15376510600822649
    [Google Scholar]
  77. ChenL. QinY. LiuB. GaoM. LiA. LiX. GongG. PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure.Front. Cell Dev. Biol.20221087135710.3389/fcell.2022.871357
    [Google Scholar]
  78. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature2009458724110561060
    [Google Scholar]
  79. FanH. DingR. LiuW. zhangX. LiR. WeiB. SuS. JinF. WeiC. HeX. LiX. DuanC. Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats.Redox Biol.20214010185610.1016/j.redox.2021.101856
    [Google Scholar]
  80. MikhailovV. MikhailovaM. PulkrabekD.J. DongZ. VenkatachalamM.A. SaikumarP. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane.J. Biol. Chem.200127621183611837410.1074/jbc.M100655200
    [Google Scholar]
  81. ChengE.H-Y.A. WeiM.C. WeilerS. FlavellR.A. MakT.W. LindstenT. KorsmeyerS.J. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK- mediated mitochondrial apoptosis.Mol. Cell20018370571110.1016/S1097‑2765(01)00320‑3
    [Google Scholar]
  82. KarbowskiM. NorrisK.L. ClelandM.M. JeongS.-Y. YouleR.J. Role of Bax and Bak in mitochondrial morphogenesis.Nature20064437112658662
    [Google Scholar]
  83. CantóC. AuwerxJ. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.Curr. Opin. Lipidol.20092029810510.1097/MOL.0b013e328328d0a4
    [Google Scholar]
  84. XuL.L. SuH.X. LiP.B. LiH.H. Ursolic acid ameliorates myocardial ischaemia/reperfusion injury by improving mitochondrial function via immunoproteasome-PP2A-AMPK signalling.Nutrients2023154104910.3390/nu15041049
    [Google Scholar]
  85. ReedJ.C. Double identity for proteins of the Bcl-2 family.Nature1997387663577377610.1038/42867
    [Google Scholar]
  86. AdamsJ.M. CoryS. The Bcl-2 protein family: Arbiters of cell survival.Science199828153811322132610.1126/science.281.5381.1322
    [Google Scholar]
  87. ReedJ.C. Bcl-2 family proteins.Oncogene199817253225323610.1038/sj.onc.1202591
    [Google Scholar]
  88. RuvoloP.P. DengX. MayW.S. Phosphorylation of Bcl2 and regulation of apoptosis.Leukemia200115451552210.1038/sj.leu.2402090
    [Google Scholar]
  89. GreenD.R. KroemerG. The pathophysiology of mitochondrial cell death.Science2004305568462662910.1126/science.1099320
    [Google Scholar]
  90. ChipukJ.E. GreenD.R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?Trends Cell Biol.200818415716410.1016/j.tcb.2008.01.007
    [Google Scholar]
  91. EskesR. DesagherS. AntonssonB. MartinouJ.C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane.Mol. Cell. Biol.200020392993510.1128/MCB.20.3.929‑935.2000
    [Google Scholar]
  92. WeiM.C. ZongW.X. ChengE.H.Y. LindstenT. PanoutsakopoulouV. RossA.J. RothK.A. MacGregorG.R. ThompsonC.B. KorsmeyerS.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death.Science2001292551772773010.1126/science.1059108
    [Google Scholar]
  93. XuC. Bailly-MaitreB. ReedJ.C. Endoplasmic reticulum stress: Cell life and death decisions.J. Clin. Invest.2005115102656266410.1172/JCI26373
    [Google Scholar]
  94. KimR. EmiM. TanabeK. MurakamiS. Role of the unfolded protein response in cell death.Apoptosis200611151310.1007/s10495‑005‑3088‑0
    [Google Scholar]
  95. RonD. WalterP. Signal integration in the endoplasmic reticulum unfolded protein response.Nat. Rev. Mol. Cell Biol.20078751952910.1038/nrm2199
    [Google Scholar]
  96. ScorranoL. OakesS.A. OpfermanJ.T. ChengE.H. SorcinelliM.D. PozzanT. KorsmeyerS.J. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis.Science2003300561613513910.1126/science.1081208
    [Google Scholar]
  97. ThomeniusM.J. DistelhorstC.W. Bcl-2 on the endoplasmic reticulum: Protecting the mitochondria from a distance.J. Cell Sci.2003116224493449910.1242/jcs.00829
    [Google Scholar]
  98. ReedJ.C. Bcl-2–family proteins and hematologic malignancies: History and future prospects.Blood200811173322333010.1182/blood‑2007‑09‑078162
    [Google Scholar]
  99. DebatinK.M. PoncetD. KroemerG. Chemotherapy: Targeting the mitochondrial cell death pathway.Oncogene200221578786880310.1038/sj.onc.1206039
    [Google Scholar]
  100. RadhigaT. RajamanickamC. SundaresanA. EzhumalaiM. PugalendiK.V. Effect of ursolic acid treatment on apoptosis and DNA damage in isoproterenol-induced myocardial infarction.Biochimie20129451135114210.1016/j.biochi.2012.01.015
    [Google Scholar]
  101. BaoL. YanY. XuC. JiW. ShenS. XuG. ZengY. SunB. QianH. ChenL. WuM. SuC. ChenJ. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through Akt/ERK pathways.Cancer Lett.2013337222623610.1016/j.canlet.2013.05.007
    [Google Scholar]
  102. LiuY. RenL. LiuW. XiaoZ. MiR-21 regulates the apoptosis of keloid fibroblasts by caspase-8 and the mitochondria-mediated apoptotic signaling pathway via targeting FasL.Biochem. Cell Biol.201896554855510.1139/bcb‑2017‑0306
    [Google Scholar]
  103. PapM. CooperG.M. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β signaling pathway.Mol. Cell. Biol.200222257858610.1128/MCB.22.2.578‑586.2002
    [Google Scholar]
  104. LiC. LiY. HeL. AgarwalA.R. ZengN. CadenasE. StilesB.L. PI3K/Akt signaling regulates bioenergetics in immortalized hepatocytes.Free Radic. Biol. Med.201360294010.1016/j.freeradbiomed.2013.01.013
    [Google Scholar]
  105. TsurutaF. MasuyamaN. GotohY. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria.J. Biol. Chem.200227716140401404710.1074/jbc.M108975200
    [Google Scholar]
  106. ShimadaK. CrotherT.R. KarlinJ. DagvadorjJ. ChibaN. ChenS. RamanujanV.K. WolfA.J. VergnesL. OjciusD.M. RentsendorjA. VargasM. GuerreroC. WangY. FitzgeraldK.A. UnderhillD.M. TownT. ArditiM. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.Immunity201236340141410.1016/j.immuni.2012.01.009
    [Google Scholar]
  107. Alfonso-LoechesS. Ureña-PeraltaJ.R. Morillo-BarguesM.J. Oliver-De La CruzJ. GuerriC. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells.Front. Cell. Neurosci.2014821610.3389/fncel.2014.00216
    [Google Scholar]
  108. MolagodaI.M.N. AthapaththuA.M.G.K. ChoiY.H. ParkC. JinC.Y. KangC.H. LeeM.H. KimG.Y. Fisetin inhibits NLRP3 inflammasome by suppressing TLR4/MD2-mediated mitochondrial ROS production.Antioxidants2021108121510.3390/antiox10081215
    [Google Scholar]
  109. AoyagiT. MatsuiT. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure.Curr. Pharm. Des.201117181818182410.2174/138161211796390976
    [Google Scholar]
  110. EisenreichA. RauchU. PI3K inhibitors in cardiovascular disease.Cardiovasc. Ther.2011291293610.1111/j.1755‑5922.2010.00206.x
    [Google Scholar]
  111. QinW. CaoL. MasseyI.Y. Role of PI3K/Akt signaling pathway in cardiac fibrosis.Mol. Cell. Biochem.2021476114045405910.1007/s11010‑021‑04219‑w
    [Google Scholar]
  112. MorelloF. PerinoA. HirschE. Phosphoinositide 3-kinase signalling in the vascular system.Cardiovasc. Res.200882226127110.1093/cvr/cvn325
    [Google Scholar]
  113. WangN. HanY. TaoJ. HuangM. YouY. ZhangH. LiuS. ZhangX. YanC. Overexpression of CREG attenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/Akt pathway.Atherosclerosis2011218254355110.1016/j.atherosclerosis.2011.08.002
    [Google Scholar]
  114. LeiJ. Ming-jieG. XuanX. Ursolic acid attenuate myocardial ischemia reperfusion injury in diabetic rats.Nat Prod Res Develop2017295843
    [Google Scholar]
  115. ZhouJ. LinH. LvT. HaoJ. ZhangH. SunS. YangJ. ChiJ. GuoH. Inappropriate activation of TLR4/NF-κB is a cause of heart failure.Cardiovasc. Innov. Appl.20227198910.15212/CVIA.2022.0020
    [Google Scholar]
  116. TongY. WangZ. CaiL. LinL. LiuJ. ChengJ. NLRP3 inflammasome and its central role in the cardiovascular diseases.Oxid. Med. Cell. Longev.202020201810.1155/2020/4293206
    [Google Scholar]
  117. BianZ. LiuH. XuF. DuY. Ursolic acid protects against anoxic injury in cardiac microvascular endothelial cells by regulating intercellular adhesion molecule-1 and toll-like receptor 4/MyD88/NF-κB pathway.Hum. Exp. Toxicol.2022410960327122109362610.1177/09603271221093626
    [Google Scholar]
  118. JiangY. WangJ-X. WangL-N. SuP. HanS-Y. Inhibition effect and mechanism of ursolic acid on myocardial injury in GK rats with spontaneous type 2 diabetes mellitus.Lat. Am. J. Pharm.2022411019031910
    [Google Scholar]
  119. MaX. BaiY. LiuK. HanY. ZhangJ. LiuY. HouX. HaoE. HouY. BaiG. Ursolic acid inhibits the cholesterol biosynthesis and alleviates high fat diet-induced hypercholesterolemia via irreversible inhibition of HMGCS1 in vivo.Phytomedicine202210315423310.1016/j.phymed.2022.154233
    [Google Scholar]
  120. XiaoH. HuW. GuJ. LiD. Mechanism of ursolic acid inhibiting myocardial injury in mice.J. Biomater. Tissue Eng.20211191799180410.1166/jbt.2021.2623
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128344497241120025757
Loading
/content/journals/cpd/10.2174/0113816128344497241120025757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test