Skip to content
2000
Volume 31, Issue 9
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The effective and prompt treatment of wounds remains a significant challenge in clinical settings. Consequently, recent investigations have led to the development of a novel wound dressing production designed to expedite the process of wound healing with minimal adverse complications. Chitosan, identified as a natural biopolymer, emerges as an appealing option for fabricating environmentally friendly dressings due to its biologically degradable, nonpoisonous, and inherent antimicrobial properties. Concurrently, graphene oxide has garnered attention from researchers as an economical, biocompatible material with non-toxic attributes for applications in wound healing. Chitosan (CS) has been extensively studied in agglutination owing to its advantageous properties, such as Non-toxicity biological compatibility, degradability, and facilitation of collagen precipitation. Nonetheless, its limited Medium mechanical and antibacterial strength characteristics impede its widespread clinical application. In addressing these shortcomings, numerous researchers have embraced nanotechnology, specifically incorporating metal nanoparticles (MNPs), to enhance the mechanical power and targeted germicide features of chitosan multistructures, yielding hopeful outcomes. Additionally, chitosan is a decreasing factor for MNPs, contributing to reduced cytotoxicity. Consequently, the combination of CS with MNPs manifests antibacterial function, superior mechanical power, and anti-inflammatory features, holding significant potential to expedite wound healing. This study delves into based on chitosan graphene materials in the context of wound healing.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333493241014134711
2024-10-30
2025-03-07
Loading full text...

Full text loading...

References

  1. KhanM.A. MujahidM. A review on recent advances in chitosan based composite for hemostatic dressings.Int. J. Biol. Macromol.201912413814710.1016/j.ijbiomac.2018.11.04530447365
    [Google Scholar]
  2. ChoudharyP. RamalingamB. DasS.K. Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing.Int. J. Biol. Macromol.202324612534710.1016/j.ijbiomac.2023.12534737336371
    [Google Scholar]
  3. ValenciaA.M. ValenciaC.H. ZuluagaF. Grande-TovarC.D. Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications.Heliyon202175e0705810.1016/j.heliyon.2021.e0705834095569
    [Google Scholar]
  4. KumarV. SharmaN. JanghuP. PasrijaR. UmeshM. ChakrabortyP. SarojiniS. ThomasJ. Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application.J. Drug Deliv. Sci. Technol.20238710485810.1016/j.jddst.2023.104858
    [Google Scholar]
  5. KhanZ.A. JamilS. AkhtarA. BashirM.M. YarM. Chitosan based hybrid materials used for wound healing applications-A short review.Int. J. Polym. Mater. Polym Bomater2020
    [Google Scholar]
  6. FengW. WangZ. Biomedical applications of chitosan-graphene oxide nanocomposites.iScience202225110362910.1016/j.isci.2021.10362935106467
    [Google Scholar]
  7. ChoudharyP. RamalingamB. DasS.K. Fabrication of chitosan-reinforced multifunctional graphene nanocomposite as antibacterial scaffolds for hemorrhage control and wound-healing application.ACS Biomater. Sci. Eng.20206105911592910.1021/acsbiomaterials.0c0092333320555
    [Google Scholar]
  8. FengW. WangZ. Shear-thinning and self-healing chitosan- graphene oxide hydrogel for hemostasis and wound healing.Carbohydr. Polym.202229411982410.1016/j.carbpol.2022.11982435868773
    [Google Scholar]
  9. MecerreyesD. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes.Prog. Polym. Sci.201136121629164810.1016/j.progpolymsci.2011.05.007
    [Google Scholar]
  10. LongY.Z. LiM.M. GuC. WanM. DuvailJ.L. LiuZ. FanZ. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers.Prog. Polym. Sci.201136101415144210.1016/j.progpolymsci.2011.04.001
    [Google Scholar]
  11. Ravi KumarM.N.V. A review of chitin and chitosan applications.React. Funct. Polym.200046112710.1016/S1381‑5148(00)00038‑9
    [Google Scholar]
  12. IliumL. Chitosan and its use as a pharmaceutical excipient.Pharm. Res.19981591326133110.1023/A:10119290166019755881
    [Google Scholar]
  13. AliI.H. OufA. ElshishinyF. TaskinM.B. SongJ. DongM. ChenM. SiamR. MamdouhW. Antimicrobial and wound-healing activities of graphene-reinforced electrospun chitosan/gelatin nanofibrous nanocomposite scaffolds.ACS Omega2022721838185010.1021/acsomega.1c0509535071876
    [Google Scholar]
  14. MoradiS. HamediH. TonelliA.E. KingM.W. Chitosan/graphene oxide composite films and their biomedical and drug delivery applications: A review.Appl. Sci. (Basel)20211117777610.3390/app11177776
    [Google Scholar]
  15. XuZ. ZouL. XieF. ZhangX. OuX. GaoG. Biocompatible carboxymethyl chitosan/GO-based sponge to improve the efficiency of hemostasis and wound healing.ACS Appl. Mater. Interfaces20221439447994480810.1021/acsami.2c0930936150074
    [Google Scholar]
  16. WangK. PanS. QiZ. XiaP. XuH. KongW. LiH. XueP. YangX. FuC. Recent advances in chitosan-based metal nanocomposites for wound healing applications.Adv. Mater. Sci. Eng.202020201382791210.1155/2020/3827912
    [Google Scholar]
  17. KenterM. A Novel Electroconductive Nanofibrous Scaffold for Bone Regeneration.Master's thesis, Western Michigan University, 2022.
    [Google Scholar]
  18. MontazeriA. Ranjbar HamghavandiM. Sadat NezhadfardM. Yeganeh KariA. Chitosan/graphene oxide nanocomposite coatings on magnesium alloy: Corrosion and biocompatibility properties.Mater. Perform. Charact.202312115216910.1520/MPC20220106
    [Google Scholar]
  19. DuF. AW. LiuF. WuB. LiuY. ZhengW. FengW. LiG. WangX. Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal.Carbohydr. Polym.202331612105810.1016/j.carbpol.2023.12105837321741
    [Google Scholar]
  20. NowrooziN. FarajiS. NouralishahiA. ShahrousvandM. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application.Life Sci.202126411864010.1016/j.lfs.2020.11864033172598
    [Google Scholar]
  21. PengH.T. Hemostatic agents for prehospital hemorrhage control: A narrative review.Mil. Med. Res.2020711310.1186/s40779‑020‑00241‑z32209132
    [Google Scholar]
  22. DammannK. GiffordA. KelleyK. StawickiS.P. Operative hemostasis in trauma and acute care surgery: The role of biosurgical agents.Contemporary Applications of Biologic Hemostatic Agents across Surgical SpecialtiesIntechopen2020
    [Google Scholar]
  23. JohanssonP.I. StensballeJ. REVIEWS: Hemostatic resuscitation for massive bleeding: The paradigm of plasma and platelets-a review of the current literature.Transfusion201050370171010.1111/j.1537‑2995.2009.02458.x19929864
    [Google Scholar]
  24. XuanH. DuQ. LiR. ShenX. ZhouJ. LiB. JinY. YuanH. Shape-memory-reduced graphene/chitosan cryogels for non-compressible wounds.Int. J. Mol. Sci.2023242138910.3390/ijms2402138936674906
    [Google Scholar]
  25. ÖzdemirD.G. Evcimen DuyguluN. ÖzarslanA.C. CiftciF. Fabrication and characterization of Graphene oxide/Fucoidan/Chitosan reinforced Poly(vinyl alcohol) nanocomposites.J. Mol. Struct.2024130113733010.1016/j.molstruc.2023.137330
    [Google Scholar]
  26. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  27. KheirabadiB.S. EdensJ.W. TerrazasI.B. EstepJ.S. KlemckeH.G. DubickM.A. HolcombJ.B. Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine.J. Trauma200966231632810.1097/TA.0b013e31819634a119204503
    [Google Scholar]
  28. AméduriB. BoutevinB. KostovG. Fluoroelastomers: Synthesis, properties and applications.Prog. Polym. Sci.200126110518710.1016/S0079‑6700(00)00044‑7
    [Google Scholar]
  29. WangY. LiuS. YuW. Functionalized graphene oxide-reinforced chitosan hydrogel as biomimetic dressing for wound healing.Macromol. Biosci.2021214200043210.1002/mabi.20200043233599084
    [Google Scholar]
  30. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.201264182310.1016/j.addr.2012.09.01011755703
    [Google Scholar]
  31. OkayO. Polymeric Cryogels: Macroporous gels with remarkable properties.Springer201410.1007/978‑3‑319‑05846‑7
    [Google Scholar]
  32. BhatnagarB.S. TchessalovS. LewisL.M. JohnsonR. Freeze drying of biologics.CRC Press2013
    [Google Scholar]
  33. LinX. ShenY. WangL. Multi-scale photoacoustic assessment of wound healing using chitosan–graphene oxide hemostatic sponge.Nanomaterials (Basel)20211111287910.3390/nano1111287934835644
    [Google Scholar]
  34. LiM. ZhangZ. LiangY. HeJ. GuoB. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair.ACS Appl. Mater. Interfaces20201232358563587210.1021/acsami.0c0828532805786
    [Google Scholar]
  35. KimS. LeeM. Rational design of hydrogels to enhance osteogenic potential.Chem. Mater.202032229508953010.1021/acs.chemmater.0c0301833551566
    [Google Scholar]
  36. DasS. DasD. Rational design of peptide-based smart hydrogels for therapeutic applications.Front Chem.2021977010210.3389/fchem.2021.77010234869218
    [Google Scholar]
  37. MalekiM. ZarezadehR. NouriM. SadighA.R. PouremamaliF. AsemiZ. KafilH.S. AlemiF. YousefiB. Graphene oxide: A promising material for regenerative medicine and tissue engineering.Biomol. Concepts202011118220010.1515/bmc‑2020‑001734233430
    [Google Scholar]
  38. YangY. DongZ. LiM. LiuL. LuoH. WangP. ZhangD. YangX. ZhouK. LeiS. Graphene oxide/copper nanoderivatives-modified chitosan/hyaluronic acid dressings for facilitating wound healing in infected full-thickness skin defects.Int. J. Nanomedicine2020158231824710.2147/IJN.S27863133149572
    [Google Scholar]
  39. WangC. LiangY. HuangY. LiM. GuoB. Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair.J. Mater. Sci. Technol.202212120721910.1016/j.jmst.2021.12.054
    [Google Scholar]
  40. ZhengY. XueJ. MaB. HuanZ. WuC. ZhuY. Mesoporous bioactive glass-graphene oxide composite aerogel with effective hemostatic and antibacterial activities.ACS Appl. Bio Mater.20247142944210.1021/acsabm.3c0103038171011
    [Google Scholar]
  41. DamiriF. GowdaB.J. AndraS. BaluS. RojekarS. BerradaM. Chitosan nanocomposites as scaffolds for bone tissue regeneration.Chitosan Nanocomposites: Bionanomechanical Applications.Springer202337739410.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  42. NarayanaS. NasrineA. Gulzar AhmedM. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.01337026047
    [Google Scholar]
  43. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications.Polymers (Basel)20211319325610.3390/polym1319325634641071
    [Google Scholar]
  44. Meyer-DéruL. DavidG. AuvergneR. Chitosan chemistry review for living organisms encapsulation.Carbohydr. Polym.202229511987710.1016/j.carbpol.2022.11987735989017
    [Google Scholar]
  45. KouS.G. PetersL. MucaloM. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms.Carbohydr. Polym.202228211913210.1016/j.carbpol.2022.11913235123764
    [Google Scholar]
  46. HahnT. TafiE. PaulA. SalviaR. FalabellaP. ZibekS. Current state of chitin purification and chitosan production from insects.J. Chem. Technol. Biotechnol.202095112775279510.1002/jctb.6533
    [Google Scholar]
  47. KumariS. KishorR. Chitin and chitosan: Origin, properties, and applications.Handbook of chitin and chitosan.Elsevier2020133
    [Google Scholar]
  48. AnB. Cu (II) and As (V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan.Processes (Basel)202089119410.3390/pr8091194
    [Google Scholar]
  49. WangF. PangY. ChenG. WangW. ChenZ. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking.Carbohydr. Polym.202022911552910.1016/j.carbpol.2019.11552931826519
    [Google Scholar]
  50. de AlvarengaE.S. Characterization and properties of chitosan.Biotechnol. Biopoly.20119148-5310.5772/17020
    [Google Scholar]
  51. LiQ. DunnE. GrandmaisonE. GoosenM.F. Applications and properties of chitosan.Applications of Chitan and Chitosan.CRC Press202032910.1201/9781003072812‑2
    [Google Scholar]
  52. KofujiK. QianC.J. NishimuraM. SugiyamaI. MurataY. KawashimaS. Relationship between physicochemical characteristics and functional properties of chitosan.Eur. Polym. J.200541112784279110.1016/j.eurpolymj.2005.04.041
    [Google Scholar]
  53. MuzzarelliR.A.A. Chitin and its derivatives: New trends of applied research.Carbohydr. Polym.198331537510.1016/0144‑8617(83)90012‑7
    [Google Scholar]
  54. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  55. MuzzarelliR.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone.Carbohydr. Polym.200976216718210.1016/j.carbpol.2008.11.002
    [Google Scholar]
  56. MinagawaT. OkamuraY. ShigemasaY. MinamiS. OkamotoY. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing.Carbohydr. Polym.200767464064410.1016/j.carbpol.2006.07.007
    [Google Scholar]
  57. WangL. KhorE. WeeA. LimL.Y. Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing.J. Biomed. Mater. Res.200263561061810.1002/jbm.1038212209908
    [Google Scholar]
  58. QiL. XuZ. JiangX. HuC. ZouX. Preparation and antibacterial activity of chitosan nanoparticles.Carbohydr. Res.2004339162693270010.1016/j.carres.2004.09.00715519328
    [Google Scholar]
  59. UenoH. MoriT. FujinagaT. Topical formulations and wound healing applications of chitosan.Adv. Drug Deliv. Rev.200152210511510.1016/S0169‑409X(01)00189‑211718934
    [Google Scholar]
  60. JayakumarR. PrabaharanM. Sudheesh KumarP.T. NairS.V. TamuraH. Biomaterials based on chitin and chitosan in wound dressing applications.Biotechnol. Adv.201129332233710.1016/j.biotechadv.2011.01.00521262336
    [Google Scholar]
  61. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.2121017963217
    [Google Scholar]
  62. DengP. YaoL. ChenJ. TangZ. ZhouJ. Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing.Carbohydr. Polym.202227611871810.1016/j.carbpol.2021.11871834823762
    [Google Scholar]
  63. DuttaP.K. DuttaJ. TripathiV. Chitin and chitosan: Chemistry, properties and applications.J. Sci. Indus. Res.2004632031
    [Google Scholar]
  64. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  65. DoV.N. PhamT.H. Graphene and its one-dimensional patterns: from basic properties towards applications.Advances in Natural Sciences: Nanoscience and Nanotechnology20101303300110.1088/2043‑6254/1/3/033001
    [Google Scholar]
  66. WypychG. Graphene: Important results and applications.Elsevier2024
    [Google Scholar]
  67. KumarS. PratapS. KumarV. MishraR.K. GwagJ.S. ChakrabortyB. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.Luminescence202338790995310.1002/bio.433435850156
    [Google Scholar]
  68. AbergelD.S.L. ApalkovV. BerashevichJ. ZieglerK. ChakrabortyT. Properties of graphene: A theoretical perspective.Adv. Phys.201059426148210.1080/00018732.2010.487978
    [Google Scholar]
  69. FuchsJ.N. GoerbigM.O. Introduction to the physical properties of graphene.Lecture Notes.2008Available from: https://web.physics.ucsb.edu/~phys123B/w2015/pdf_CoursGraphene2008.pdf(accessed on 28-9-2024)
    [Google Scholar]
  70. BulinC. Combination mechanism of the ternary composite based on Fe3O4-chitosan-graphene oxide prepared by solvothermal method.Int. J. Biol. Macromol.202323112333710.1016/j.ijbiomac.2023.12333736690233
    [Google Scholar]
  71. HermeneanA. CodreanuA. HermanH. BaltaC. RosuM. MihaliC.V. IvanA. DinescuS. IonitaM. CostacheM. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects.Sci. Rep.2017711664110.1038/s41598‑017‑16599‑529192253
    [Google Scholar]
  72. PieklarzK. TylmanM. ModrzejewskaZ. Applications of chitosan–graphene oxide nanocomposites in medical science: A review.Prog. Chem. Appl. Chitin Deriv.2018XXIII2352410.15259/PCACD.23.001
    [Google Scholar]
  73. Ul-Islam M, Alabbosh KF, Manan S, Khan S, Ahmad F, Ullah MW. Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications. Adv Ind Eng Polym Res 2024; 7(1): 79-99.
  74. ZhaoM. ShiJ. CaiW. LiuK. ShenK. LiZ. WangY. HuD. Advances on graphene-based nanomaterials and mesenchymal stem cell-derived exosomes applied in cutaneous wound healing.Int. J. Nanomedicine2021162647266510.2147/IJN.S30032633854313
    [Google Scholar]
  75. KimY. ZharkinbekovZ. RaziyevaK. TabyldiyevaL. BerikovaK. ZhumagulD. TemirkhanovaK. SaparovA. Chitosan-based biomaterials for tissue regeneration.Pharmaceutics202315380710.3390/pharmaceutics1503080736986668
    [Google Scholar]
  76. GozaliD. HudayaA.R. SuharyaniI. WathoniN. A review on chitosan-based materials as potential wound dressing materials.Int J Appl Pharm202214273210.22159/ijap.2022.v14s4.PP23
    [Google Scholar]
  77. HosseiniS. EslahiN. JahanmardiR. Self-healing nanocomposite hydrogels based on chitosan/modified polyethylene glycol/graphene.Mater. Today Commun.202337107417
    [Google Scholar]
  78. MartínezJ.R. VallejoA.G. OyamaA.B. SantanaT.J. GarzaK. GonzálezE. Improved mechanical, optical, and electrical properties of chitosan films with the synergistic reinforcing effect of carbon nanotubes and reduced graphene oxide for potential optoelectronic applications.202310.21203/rs.3.rs‑2725043/v1
    [Google Scholar]
  79. GaoC. SongS. LvY. HuangJ. ZhangZ. Recent development of conductive hydrogels for tissue engineering: Review and perspective.Macromol. Biosci.2022228220005110.1002/mabi.20220005135472125
    [Google Scholar]
  80. AlafeefyA.M. Abdel-AzizH.A. VulloD. Al-TamimiA.M.S. AwaadA.S. MohamedM.A. CapassoC. SupuranC.T. Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-,[1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1, 3,4-thiadiazol-3(2H)-yl moieties.J. Enzyme Inhib. Med. Chem.2015301525610.3109/14756366.2013.87789724666294
    [Google Scholar]
  81. LiuJ. CuiL. LosicD. Graphene and graphene oxide as new nanocarriers for drug delivery applications.Acta Biomater.20139129243925710.1016/j.actbio.2013.08.01623958782
    [Google Scholar]
  82. HosseiniS.M. MazinaniS. AbdoussM. KalhorH. KalantariK. AmiriI.S. RamezaniZ. Designing chitosan nanoparticles embedded into graphene oxide as a drug delivery system.Polym. Bull.202279154155410.1007/s00289‑020‑03506‑8
    [Google Scholar]
  83. GhosalK. AgatemorC. ŠpitálskyZ. ThomasS. KnyE. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites.Chem. Eng. J.20193581262127810.1016/j.cej.2018.10.117
    [Google Scholar]
  84. XiaN. LiuL. SunZ. ZhouB. Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing.J. Nanomater.20152015189267410.1155/2015/892674
    [Google Scholar]
  85. YangJ.K. Fluorescent graphene oxide-based optical biosensors for detection of disease-related protease: Research on the development of a fluorescent graphene oxide-based optical biosensor for the detection of disease-related proteolytic enzymes.Seoul National University Graduate School2017
    [Google Scholar]
  86. GurunathanS. HanJ.W. EppakayalaV. KimJ.H. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach.Colloids Surf. B Biointerfaces201310277277710.1016/j.colsurfb.2012.09.01123107955
    [Google Scholar]
  87. LiuS. ZengT.H. HofmannM. BurcombeE. WeiJ. JiangR. KongJ. ChenY. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress.ACS Nano2011596971698010.1021/nn202451x21851105
    [Google Scholar]
  88. LiuS. HuM. ZengT.H. WuR. JiangR. WeiJ. WangL. KongJ. ChenY. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.Langmuir20122833123641237210.1021/la302390822827339
    [Google Scholar]
  89. KhanM.U.A. YaqoobZ. AnsariM.N.M. RazakS.I.A. RazaM.A. SajjadA. HaiderS. BusraF.M. Chitosan/poly vinyl alcohol/graphene oxide based pH-responsive composite hydrogel films: Drug release, anti-microbial and cell viability studies.Polymers (Basel)20211318312410.3390/polym1318312434578025
    [Google Scholar]
  90. EslahiN. LotfiR. ZandiN. MazaheriM. SoleimaniF. SimchiA. Graphene-based polymer nanocomposites in biomedical applications.Innovations in graphene-based polymer composites.Elsevier202219924510.1016/B978‑0‑12‑823789‑2.00016‑9
    [Google Scholar]
  91. D’AmoraU. DacroryS. HasaninM.S. LongoA. SorienteA. KamelS. RaucciM.G. AmbrosioL. SciallaS. Advances in the physico-chemical, antimicrobial and angiogenic properties of graphene-oxide/cellulose nanocomposites for wound healing.Pharmaceutics202315233810.3390/pharmaceutics1502033836839660
    [Google Scholar]
  92. SoniA. BhandariM.P. TripathiG.K. BundelaP. KhiriyaP.K. KhareP.S. KashyapM.K. DeyA. VellingiriB. SundaramurthyS. SureshA. Pérez de la LastraJ.M. Nano-biotechnology in tumour and cancerous disease: A perspective review.J. Cell. Mol. Med.202327673776210.1111/jcmm.1767736840363
    [Google Scholar]
  93. IdumahC.I. Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites.Emergent Mater.20236377780710.1007/s42247‑023‑00465‑4
    [Google Scholar]
  94. WangJ. YuY. LiY. Molecular modeling in drug delivery.Explor Comput Pharm: AI Model Pharma20244029310.1002/9781119987260.ch9
    [Google Scholar]
  95. ShahmoradiS. GolzarH. HashemiM. MansouriV. OmidiM. YazdianF. YadegariA. TayebiL. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing.Nanotechnology2018294747510110.1088/1361‑6528/aadedc30179859
    [Google Scholar]
  96. Di GiulioM. ZappacostaR. Di LodovicoS. Di CampliE. SianiG. FontanaA. CelliniL. Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms.Antimicrob. Agents Chemother.2018627e00547-1810.1128/AAC.00547‑1829661876
    [Google Scholar]
  97. LiuY. ZhangQ. ZhouN. TanJ. AshleyJ. WangW. WuF. ShenJ. ZhangM. Study on a novel poly (vinyl alcohol)/graphene oxide-citicoline sodium-lanthanum wound dressing: Biocompatibility, bioactivity, antimicrobial activity, and wound healing effect.Chem. Eng. J.202039512505910.1016/j.cej.2020.125059
    [Google Scholar]
  98. ZhangL. PornpattananangkulD. HuC.M. HuangC.M. Development of nanoparticles for antimicrobial drug delivery.Curr. Med. Chem.201017658559410.2174/09298671079041629020015030
    [Google Scholar]
  99. JayakumarR. MenonD. ManzoorK. NairS.V. TamuraH. Biomedical applications of chitin and chitosan based nanomaterials-A short review.Carbohydr. Polym.201082222723210.1016/j.carbpol.2010.04.074
    [Google Scholar]
  100. GhosalK. ManakhovA. ZajíčkováL. ThomasS. Structural and surface compatibility study of modified electrospun poly (ε-caprolactone)(PCL) composites for skin tissue engineering.AAPS PharmSciTech2017181728110.1208/s12249‑016‑0500‑826883261
    [Google Scholar]
  101. FrenchT. HowardI.L. Chitin: Fundamental biopolymer properties and applications discussion.2023Available from: https://www.cee.msstate.edu/wp-content/uploads/Chitin-White-Paper-CMRC-WP-23-1.pdf(accessed on 28-9-2024)
    [Google Scholar]
  102. GhodsiS. KamranifarM. FatehizadehA. TaheriE. BinaB. HublikarL.V. GanachariS.V. NadagoudaM. AminabhaviT.M. New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain – A systematic review.Environ. Res.202424911839810.1016/j.envres.2024.11839838331155
    [Google Scholar]
  103. SaheedI.O. OhW.D. SuahF.B.M. Chitosan modifications for adsorption of pollutants – A review.J. Hazard. Mater.202140812488910.1016/j.jhazmat.2020.12488933418525
    [Google Scholar]
  104. El KnidriH. LaajebA. LahsiniA. Chitin and chitosan: Chemistry, solubility, fiber formation, and their potential applications.Handbook of Chitin and Chitosan.Elsevier2020355710.1016/B978‑0‑12‑817970‑3.00002‑X
    [Google Scholar]
  105. HossainM.R. MallikA.K. RahmanM.M. Fundamentals of chitosan for biomedical applications.Handbook of Chitin and Chitosan.Elsevier202019923010.1016/B978‑0‑12‑817966‑6.00007‑8
    [Google Scholar]
  106. KhanN.R. ShahK.U. NawazA. WongT.W. Chitosan based composites and their applications in tissue engineering.Encyclopedia of Marine BiotechnologyJohn Wiley & Sons202010.1002/9781119143802.ch38
    [Google Scholar]
  107. Banafati ZadehF. ZamanianA. Glutaraldehyde: Introducing optimum condition for cross-linking the chitosan/gelatin scaffolds for bone tissue engineering.Int J Eng202235101967198010.5829/IJE.2022.35.10A.15
    [Google Scholar]
  108. ZarabiM. KhosraviN. Habibi RezaeiM. Chitosan, a biomimetic biopolymer: Sources, characteristics and its applications in biomedical.Sci Cult.2021112209219
    [Google Scholar]
  109. Hoseini-GhahfarokhiM. MirkianiS. MozaffariN. Abdolahi SadatluM.A. GhasemiA. AbbaspourS. AkbarianM. FarjadainF. KarimiM. Applications of graphene and graphene oxide in smart drug/gene delivery: Is the world still flat?Int. J. Nanomedicine2020159469949610.2147/IJN.S26587633281443
    [Google Scholar]
  110. MousaviS.M. HashemiS.A. GhasemiY. AmaniA.M. BabapoorA. ArjmandO. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: Review study.Drug Metab. Rev.2019511124110.1080/03602532.2018.152232830741033
    [Google Scholar]
  111. SharmaD. KumarR. KulkarniM.P. JhaC.B. WadhwaS. MathurR. Graphene oxide as drug carriers: Problems and solutions.Smart Nanotechnology with Applications.CRC Press202016718710.1201/9781003097532‑12
    [Google Scholar]
  112. KhalilW.F. El-SayyadG.S. El RoubyW.M.A. SadekM.A. FarghaliA.A. El-BatalA.I. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria.Int. J. Biol. Macromol.20201641370138310.1016/j.ijbiomac.2020.07.20532735925
    [Google Scholar]
  113. GoudaM.H. KhowdiaryM.M. AlsnaniH. RoushdyN. YoussefM.E. ElnoubyM. ElessawyN.A. Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste.J. Contam. Hydrol.202426410436210.1016/j.jconhyd.2024.10436238735087
    [Google Scholar]
  114. WrońskaN. AnouarA. El AchabyM. ZawadzkaK. KędzierskaM. MiłowskaK. KatirN. DraouiK. RóżalskaS. PiwońskiI. BryszewskaM. El KadibA. LisowskaK. Chitosan-functionalized graphene nanocomposite films: Interfacial interplay and biological activity.Materials (Basel)202013499810.3390/ma1304099832102202
    [Google Scholar]
  115. XiaM.Y. XieY. YuC.H. ChenG.Y. LiY.H. ZhangT. PengQ. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications.J. Control. Release2019307163110.1016/j.jconrel.2019.06.01131185232
    [Google Scholar]
  116. SaeedM. JabeenR. KazmiM.B. IslamA. Recent developments in the prevention of biofilms and the use of nanotechnology.Int. J. Adv. Res. Med. Sci.2021212149
    [Google Scholar]
  117. JinL. ChenQ. HuX. ChenH. LuY. ZhangY. ZhouH. BaiY. Enhanced mechanical strength and antibacterial properties of Chitosan/Graphene oxide composite fibres.Cellulose20222973889390010.1007/s10570‑022‑04523‑8
    [Google Scholar]
  118. LiX.X. DongJ.Y. LiY.H. ZhongJ. YuH. YuQ.Q. LeiM. Fabrication of Ag–ZnO@ carboxymethyl cellulose/K-carrageenan/graphene oxide/konjac glucomannan hydrogel for effective wound dressing in nursing care for diabetic foot ulcers.Appl. Nanosci.202010372973810.1007/s13204‑019‑01194‑z
    [Google Scholar]
  119. ChenS. WangH. JianZ. FeiG. QianW. LuoG. WangZ. XiaH. Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application.Macromol. Biosci.2020203190038510.1002/mabi.20190038532058669
    [Google Scholar]
  120. Al homsiR. EltahirS. JagalJ. Ali AbdelkareemM. GhoneimM.M. Rawas-QalajiM.M. GreishK. HaiderM. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride.Int. J. Pharm.202262112178610.1016/j.ijpharm.2022.12178635500689
    [Google Scholar]
  121. Ulker TuranC. GuvenilirY. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections.Eur. J. Pharm. Sci.202217010611310.1016/j.ejps.2021.10611334986416
    [Google Scholar]
  122. SinghH. DhankaM. YadavI. GautamS. BashirS.M. MishraN.C. AroraT. HassanS. Technological interventions enhancing curcumin bioavailability in wound-healing therapeutics.Tissue Eng. Part B Rev.202430223025310.1089/ten.teb.2023.008537897069
    [Google Scholar]
  123. dos SantosJ. de OliveiraR.S. de OliveiraT.V. VelhoM.C. KonradM.V. da SilvaG.S. DeonM. BeckR.C.R. 3D printing and nanotechnology: A multiscale alliance in personalized medicine.Adv. Funct. Mater.20213116200969110.1002/adfm.202009691
    [Google Scholar]
  124. AbdallaO. WahabM.A. AbdalaA. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation.J. Environ. Chem. Eng.20208510426910.1016/j.jece.2020.104269
    [Google Scholar]
  125. HanZ. HuangL. QuH. WangY. ZhangZ. RongQ. SangZ. WangY. KipperM.J. TangJ. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment.J. Mater. Sci.202156169545957410.1007/s10853‑021‑05873‑7
    [Google Scholar]
  126. KhandegarV. KaurP.J. ChananaP. Chitosan and graphene oxide-based nanocomposites for water purification and medical applications: A review.BioResources20211648525856610.15376/biores.16.4.8525‑8566
    [Google Scholar]
  127. KausarA. AhmadI. Graphene and nanocomposites-imprints on environmentally sustainable production and applications based on ecological aspects.Charact Appl Nanomater202362422610.24294/can.v6i2.4226
    [Google Scholar]
  128. JustinR. ChenB. Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites.Carbohydr. Polym.2014103708010.1016/j.carbpol.2013.12.01224528702
    [Google Scholar]
  129. KurniawanA. MuneekaewS. HungC.W. ChouS.H. WangM.J. Modulated transdermal delivery of nonsteroidal anti-inflammatory drug by macroporous poly(vinyl alcohol)-graphene oxide nanocomposite films.Int. J. Pharm.201956670871610.1016/j.ijpharm.2019.06.02931212056
    [Google Scholar]
  130. FazalT. MurtazaB.N. ShahM. IqbalS. RehmanM. JaberF. DeraA.A. AwwadN.S. IbrahiumH.A. Recent developments in natural biopolymer based drug delivery systems.RSC Advances20231333230872312110.1039/D3RA03369D37529365
    [Google Scholar]
  131. WahbaM.I. Enhancement of the mechanical properties of chitosan.J. Biomater. Sci. Polym. Ed.202031335037510.1080/09205063.2019.169264131766978
    [Google Scholar]
  132. RasoulzadehzaliM. NamaziH. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin.Int. J. Biol. Macromol.2018116546310.1016/j.ijbiomac.2018.04.14029705108
    [Google Scholar]
  133. NepalA. TranH.D.N. NguyenN.T. TaH.T. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis.Bioact. Mater.20232723125610.1016/j.bioactmat.2023.04.00837122895
    [Google Scholar]
  134. GuoW. DingX. ZhangH. LiuZ. HanY. WeiQ. OkoroO.V. ShavandiA. NieL. Recent advances of chitosan-based hydrogels for skin-wound dressings.Gels202410317510.3390/gels1003017538534593
    [Google Scholar]
  135. ReinkeJ.M. SorgH. Wound repair and regeneration.Eur. Surg. Res.2012491354310.1159/00033961322797712
    [Google Scholar]
  136. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: mechanisms, signaling, and translation.Sci. Translat. Med.2014265265sr6sr610.1126/scitranslmed.3009337
    [Google Scholar]
  137. ArfinT. Chitosan and its derivatives: Overview of commercial applications in diverse fields.Chitosan: Derivatives Composites ApplWiley2017pp. 115-49.10.1002/9781119364849.ch5
    [Google Scholar]
  138. BiswalA. SwainS.K. Chitosan: A Smart Biomaterial.Chitosan Nanocomposites: Bionanomechanical Applications.Springer2023125
    [Google Scholar]
  139. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  140. LuB. LiT. ZhaoH. LiX. GaoC. ZhangS. XieE. Graphene-based composite materials beneficial to wound healing.Nanoscale2012492978298210.1039/c2nr11958g22453925
    [Google Scholar]
  141. ShanmugamD.K. MadhavanY. ManimaranA. KaliarajG.S. MohanrajK.G. KandhasamyN. Amirtharaj MosasK.K. Efficacy of graphene-based nanocomposite gels as a promising wound healing biomaterial.Gels2022912210.3390/gels901002236661790
    [Google Scholar]
  142. NguyenH.T. HoT.L. PratomoA. IlsanN.A. HuangT. ChenC.H. ChuangE.Y. Enzymatically triggered graphene oxide released from multifunctional carriers boosts anti- pathogenic properties for promising wound-healing applications.Mater. Sci. Eng. C202112811226510.1016/j.msec.2021.11226534474824
    [Google Scholar]
  143. ShariatiA. HosseiniS.M. CheginiZ. SeifalianA. ArabestaniM.R. Graphene-based materials for inhibition of wound infection and accelerating wound healing.Biomed. Pharmacother.202315811418410.1016/j.biopha.2022.11418436587554
    [Google Scholar]
  144. YousefiM. GhahremanzadehR. NejadmoghaddamM.R. SamadiF.Y. NajafzadehS. FatidehF.M. MohammadiZ. Minai-TehraniA. Nanofabrication of chitosan-based dressing to treat the infected wounds: In vitro and in vivo evaluations.Future Sci. OA2024101FSO92110.2144/fsoa‑2023‑007738827799
    [Google Scholar]
  145. BalakumarS. MaheshN. KamarajM. SaranyaT. BabuP.S. AravindJ. KimW. GovarthananM. Customized carbon composite nanomaterials for the mitigation of emerging contaminants: A review of recent trends.Carbon Letters20243441091111410.1007/s42823‑024‑00715‑3
    [Google Scholar]
  146. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  147. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  148. AhamedJ. Jaswanth GowdaB.H. AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  149. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  150. NarayanaS. AhmedM.G. GowdaB.J. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J. Pharm. Sci.20217121
    [Google Scholar]
  151. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  152. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  153. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  154. NagS. MitraO. SankarganeshP BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  155. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  156. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  157. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  158. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  159. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  160. HsuC.Y. AjajY. MahmoudZ.H. Kamil GhadirG. Khalid AlaniZ. HusseinM.M. Abed HusseinS. Morad KarimM. Al-khalidiA. AbbasJ.K. Hussein KareemA. kianfarE. Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study.Results Chem.2024710133210.1016/j.rechem.2024.101332
    [Google Scholar]
  161. ElhamiN. PazhangM. Beygi-khosrowshahiY. DehghaniA. Development of nanocomposites based on chitosan/reduced graphene oxide for wound healing application.Int. J. Biol. Macromol.2024258Pt 112883210.1016/j.ijbiomac.2023.12883238128799
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333493241014134711
Loading
/content/journals/cpd/10.2174/0113816128333493241014134711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test