Skip to content
2000
image of Chitosan-grafted Graphene Materials for Drug Delivery in Wound Healing

Abstract

The effective and prompt treatment of wounds remains a significant challenge in clinical settings. Consequently, recent investigations have led to the development of a novel wound dressing production designed to expedite the process of wound healing with minimal adverse complications. Chitosan, identified as a natural biopolymer, emerges as an appealing option for fabricating environmentally friendly dressings due to its biologically degradable, nonpoisonous, and inherent antimicrobial properties. Concurrently, graphene oxide has garnered attention from researchers as an economical, biocompatible material with non-toxic attributes for applications in wound healing. Chitosan (CS) has been extensively studied in agglutination owing to its advantageous properties, such as Non-toxicity biological compatibility, degradability, and facilitation of collagen precipitation. Nonetheless, its limited Medium mechanical and antibacterial strength characteristics impede its widespread clinical application. In addressing these shortcomings, numerous researchers have embraced nanotechnology, specifically incorporating Metal nanoparticles (MNPs), to enhance the mechanical power and targeted germicide features of chitosan multistructures, yielding hopeful outcomes. Additionally, chitosan is a decreasing factor for MNPs, contributing to reduced cytotoxicity. Consequently, the combination of CS with MNPs manifests antibacterial function, superior mechanical power, and anti-inflammatory features, holding significant potential to expedite wound healing. This study delves into Based on chitosan graphene materials in the context of wound healing.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333493241014134711
2024-10-30
2024-12-23
Loading full text...

Full text loading...

References

  1. Khan M.A. Mujahid M. A review on recent advances in chitosan based composite for hemostatic dressings. Int. J. Biol. Macromol. 2019 124 138 147 10.1016/j.ijbiomac.2018.11.045 30447365
    [Google Scholar]
  2. Choudhary P. Ramalingam B. Das S.K. Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing. Int. J. Biol. Macromol. 2023 246 125347 10.1016/j.ijbiomac.2023.125347 37336371
    [Google Scholar]
  3. Valencia A.M. Valencia C.H. Zuluaga F. Grande-Tovar C.D. Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications. Heliyon 2021 7 5 e07058 10.1016/j.heliyon.2021.e07058 34095569
    [Google Scholar]
  4. Kumar V. Sharma N. Janghu P. Pasrija R. Umesh M. Chakraborty P. Sarojini S. Thomas J. Synthesis and characterization of chitosan nanofibers for wound healing and drug delivery application. J. Drug Deliv. Sci. Technol. 2023 87 104858 10.1016/j.jddst.2023.104858
    [Google Scholar]
  5. Khan Z.A. Jamil S. Akhtar A. Bashir M.M. Yar M. Chitosan based hybrid materials used for wound healing applications-A short review. Int. J. Polym. Mater. 2019
    [Google Scholar]
  6. Feng W. Wang Z. Biomedical applications of chitosan-graphene oxide nanocomposites. iScience 2022 25 1 103629 10.1016/j.isci.2021.103629 35106467
    [Google Scholar]
  7. Choudhary P. Ramalingam B. Das S.K. Fabrication of chitosan-reinforced multifunctional graphene nanocomposite as antibacterial scaffolds for hemorrhage control and wound-healing application. ACS Biomater. Sci. Eng. 2020 6 10 5911 5929 10.1021/acsbiomaterials.0c00923 33320555
    [Google Scholar]
  8. Feng W. Wang Z. Shear-thinning and self-healing chitosan- graphene oxide hydrogel for hemostasis and wound healing. Carbohydr. Polym. 2022 294 119824 10.1016/j.carbpol.2022.119824 35868773
    [Google Scholar]
  9. Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011 36 12 1629 1648 10.1016/j.progpolymsci.2011.05.007
    [Google Scholar]
  10. Long Y.Z. Li M.M. Gu C. Wan M. Duvail J.L. Liu Z. Fan Z. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011 36 10 1415 1442 10.1016/j.progpolymsci.2011.04.001
    [Google Scholar]
  11. Ravi Kumar M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000 46 1 1 27 10.1016/S1381‑5148(00)00038‑9
    [Google Scholar]
  12. Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 1998 15 9 1326 1331 10.1023/A:1011929016601 9755881
    [Google Scholar]
  13. Ali I.H. Ouf A. Elshishiny F. Taskin M.B. Song J. Dong M. Chen M. Siam R. Mamdouh W. Antimicrobial and wound-healing activities of graphene-reinforced electrospun chitosan/gelatin nanofibrous nanocomposite scaffolds. ACS Omega 2022 7 2 1838 1850 10.1021/acsomega.1c05095 35071876
    [Google Scholar]
  14. Moradi S. Hamedi H. Tonelli A.E. King M.W. Chitosan/graphene oxide composite films and their biomedical and drug delivery applications: A review. Appl. Sci. (Basel) 2021 11 17 7776 10.3390/app11177776
    [Google Scholar]
  15. Xu Z. Zou L. Xie F. Zhang X. Ou X. Gao G. Biocompatible carboxymethyl chitosan/GO-based sponge to improve the efficiency of hemostasis and wound healing. ACS Appl. Mater. Interfaces 2022 14 39 44799 44808 10.1021/acsami.2c09309 36150074
    [Google Scholar]
  16. Wang K. Pan S. Qi Z. Xia P. Xu H. Kong W. Li H. Xue P. Yang X. Fu C. Recent advances in chitosan-based metal nanocomposites for wound healing applications. Adv. Mater. Sci. Eng. 2020 2020 1 3827912 10.1155/2020/3827912
    [Google Scholar]
  17. Kenter M. A Novel Electroconductive Nanofibrous Scaffold for Bone Regeneration. Master's thesis, Western Michigan University, 2022.
    [Google Scholar]
  18. Montazeri A. Ranjbar Hamghavandi M. Sadat Nezhadfard M. Yeganeh Kari A. Chitosan/Graphene Oxide Nanocomposite Coatings on Magnesium Alloy: Corrosion and Biocompatibility Properties. Mater. Perform. Charact. 2023 12 1 152 169 10.1520/MPC20220106
    [Google Scholar]
  19. Du F. A W. Liu F. Wu B. Liu Y. Zheng W. Feng W. Li G. Wang X. Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal. Carbohydr. Polym. 2023 316 121058 10.1016/j.carbpol.2023.121058 37321741
    [Google Scholar]
  20. Nowroozi N. Faraji S. Nouralishahi A. Shahrousvand M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sci. 2021 264 118640 10.1016/j.lfs.2020.118640 33172598
    [Google Scholar]
  21. Peng H.T. Hemostatic agents for prehospital hemorrhage control: a narrative review. Mil. Med. Res. 2020 7 1 13 10.1186/s40779‑020‑00241‑z 32209132
    [Google Scholar]
  22. Dammann K. Gifford A. Kelley K. Stawicki S.P. Operative Hemostasis in Trauma and Acute Care Surgery: The Role of Biosurgical Agents. Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties Intechopen 2020
    [Google Scholar]
  23. Johansson P.I. Stensballe J. REVIEWS: Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets—a review of the current literature. Transfusion 2010 50 3 701 710 10.1111/j.1537‑2995.2009.02458.x 19929864
    [Google Scholar]
  24. Xuan H. Du Q. Li R. Shen X. Zhou J. Li B. Jin Y. Yuan H. Shape-memory-reduced graphene/chitosan cryogels for non-compressible wounds. Int. J. Mol. Sci. 2023 24 2 1389 10.3390/ijms24021389 36674906
    [Google Scholar]
  25. Özdemir D.G. Evcimen Duygulu N. Özarslan A.C. Ciftci F. Fabrication and characterization of Graphene oxide/Fucoidan/Chitosan reinforced Poly(vinyl alcohol) nanocomposites. J. Mol. Struct. 2024 1301 137330 10.1016/j.molstruc.2023.137330
    [Google Scholar]
  26. Mohanto S. Narayana S. Merai K.P. Kumar J.A. Bhunia A. Hani U. Al Fatease A. Gowda B.H.J. Nag S. Ahmed M.G. Paul K. Vora L.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int. J. Biol. Macromol. 2023 253 Pt 5 127143 10.1016/j.ijbiomac.2023.127143 37793512
    [Google Scholar]
  27. Kheirabadi B.S. Edens J.W. Terrazas I.B. Estep J.S. Klemcke H.G. Dubick M.A. Holcomb J.B. Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine. J. Trauma 2009 66 2 316 328 10.1097/TA.0b013e31819634a1 19204503
    [Google Scholar]
  28. Améduri B. Boutevin B. Kostov G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci. 2001 26 1 105 187 10.1016/S0079‑6700(00)00044‑7
    [Google Scholar]
  29. Wang Y. Liu S. Yu W. Functionalized graphene oxide-reinforced chitosan hydrogel as biomimetic dressing for wound healing. Macromol. Biosci. 2021 21 4 2000432 10.1002/mabi.202000432 33599084
    [Google Scholar]
  30. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012 64 18 23 10.1016/j.addr.2012.09.010 11755703
    [Google Scholar]
  31. Okay O. Polymeric Cryogels: Macroporous gels with remarkable properties. Springer 2014 10.1007/978‑3‑319‑05846‑7
    [Google Scholar]
  32. Bhatnagar B.S. Tchessalov S. Lewis L.M. Johnson R. Freeze drying of biologics. CRC Press 2013
    [Google Scholar]
  33. Lin X. Shen Y. Wang L. Multi-scale photoacoustic assessment of wound healing using chitosan–graphene oxide hemostatic sponge. Nanomaterials (Basel) 2021 11 11 2879 10.3390/nano11112879 34835644
    [Google Scholar]
  34. Li M. Zhang Z. Liang Y. He J. Guo B. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair. ACS Appl. Mater. Interfaces 2020 12 32 35856 35872 10.1021/acsami.0c08285 32805786
    [Google Scholar]
  35. Kim S. Lee M. Rational design of hydrogels to enhance osteogenic potential. Chem. Mater. 2020 32 22 9508 9530 10.1021/acs.chemmater.0c03018 33551566
    [Google Scholar]
  36. Das S. Das D. Rational design of peptide-based smart hydrogels for therapeutic applications. Front Chem. 2021 9 770102 10.3389/fchem.2021.770102 34869218
    [Google Scholar]
  37. Maleki M. Zarezadeh R. Nouri M. Sadigh A.R. Pouremamali F. Asemi Z. Kafil H.S. Alemi F. Yousefi B. Graphene oxide: a promising material for regenerative medicine and tissue engineering. Biomol. Concepts 2020 11 1 182 200 10.1515/bmc‑2020‑0017 34233430
    [Google Scholar]
  38. Yang Y. Dong Z. Li M. Liu L. Luo H. Wang P. Zhang D. Yang X. Zhou K. Lei S. Graphene oxide/copper nanoderivatives-modified chitosan/hyaluronic acid dressings for facilitating wound healing in infected full-thickness skin defects. Int. J. Nanomedicine 2020 15 8231 8247 10.2147/IJN.S278631 33149572
    [Google Scholar]
  39. Wang C. Liang Y. Huang Y. Li M. Guo B. Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair. J. Mater. Sci. Technol. 2022 121 207 219 10.1016/j.jmst.2021.12.054
    [Google Scholar]
  40. Zheng Y. Xue J. Ma B. Huan Z. Wu C. Zhu Y. Mesoporous Bioactive Glass–Graphene Oxide Composite Aerogel with Effective Hemostatic and Antibacterial Activities. ACS Appl. Bio Mater. 2024 7 1 429 442 10.1021/acsabm.3c01030 38171011
    [Google Scholar]
  41. Damiri F. Gowda B.J. Andra S. Balu S. Rojekar S. Berrada M. Chitosan nanocomposites as scaffolds for bone tissue regeneration. Chitosan Nanocomposites: Bionanomechanical Applications. Springer 2023 377 394 10.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  42. Narayana S. Nasrine A. Gulzar Ahmed M. Sultana R. Jaswanth Gowda B.H. Surya S. Almuqbil M. Asdaq S.M.B. Alshehri S. Arif Hussain S. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation. Saudi Pharm. J. 2023 31 3 462 471 10.1016/j.jsps.2023.01.013 37026047
    [Google Scholar]
  43. Aranaz I. Alcántara A.R. Civera M.C. Arias C. Elorza B. Heras Caballero A. Acosta N. Chitosan: An overview of its properties and applications. Polymers (Basel) 2021 13 19 3256 10.3390/polym13193256 34641071
    [Google Scholar]
  44. Meyer-Déru L. David G. Auvergne R. Chitosan chemistry review for living organisms encapsulation. Carbohydr. Polym. 2022 295 119877 10.1016/j.carbpol.2022.119877 35989017
    [Google Scholar]
  45. Kou S.G. Peters L. Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr. Polym. 2022 282 119132 10.1016/j.carbpol.2022.119132 35123764
    [Google Scholar]
  46. Hahn T. Tafi E. Paul A. Salvia R. Falabella P. Zibek S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 2020 95 11 2775 2795 10.1002/jctb.6533
    [Google Scholar]
  47. Kumari S. Kishor R. Chitin and chitosan: origin, properties, and applications. Handbook of chitin and chitosan. Elsevier 2020 1 33
    [Google Scholar]
  48. An B. Cu (II) and As (V) adsorption kinetic characteristic of the multifunctional amino groups in chitosan. Processes (Basel) 2020 8 9 1194 10.3390/pr8091194
    [Google Scholar]
  49. Wang F. Pang Y. Chen G. Wang W. Chen Z. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydr. Polym. 2020 229 115529 10.1016/j.carbpol.2019.115529 31826519
    [Google Scholar]
  50. de Alvarenga E.S. Characterization and properties of chitosan. Biotechnol. Biopoly. 2011 10.5772/17020
    [Google Scholar]
  51. Li Q. Dunn E. Grandmaison E. Goosen M.F. Applications and properties of chitosan. Applications of Chitan and Chitosan. CRC Press 2020 3 29 10.1201/9781003072812‑2
    [Google Scholar]
  52. Kofuji K. Qian C.J. Nishimura M. Sugiyama I. Murata Y. Kawashima S. Relationship between physicochemical characteristics and functional properties of chitosan. Eur. Polym. J. 2005 41 11 2784 2791 10.1016/j.eurpolymj.2005.04.041
    [Google Scholar]
  53. Muzzarelli R.A.A. Chitin and its derivatives: New trends of applied research. Carbohydr. Polym. 1983 3 1 53 75 10.1016/0144‑8617(83)90012‑7
    [Google Scholar]
  54. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006 31 7 603 632 10.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  55. Muzzarelli R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009 76 2 167 182 10.1016/j.carbpol.2008.11.002
    [Google Scholar]
  56. Minagawa T. Okamura Y. Shigemasa Y. Minami S. Okamoto Y. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 2007 67 4 640 644 10.1016/j.carbpol.2006.07.007
    [Google Scholar]
  57. Wang L. Khor E. Wee A. Lim L.Y. Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing. J. Biomed. Mater. Res. 2002 63 5 610 618 10.1002/jbm.10382 12209908
    [Google Scholar]
  58. Qi L. Xu Z. Jiang X. Hu C. Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004 339 16 2693 2700 10.1016/j.carres.2004.09.007 15519328
    [Google Scholar]
  59. Ueno H. Mori T. Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 2001 52 2 105 115 10.1016/S0169‑409X(01)00189‑2 11718934
    [Google Scholar]
  60. Jayakumar R. Prabaharan M. Sudheesh Kumar P.T. Nair S.V. Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011 29 3 322 337 10.1016/j.biotechadv.2011.01.005 21262336
    [Google Scholar]
  61. Boateng J.S. Matthews K.H. Stevens H.N.E. Eccleston G.M. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 2008 97 8 2892 2923 10.1002/jps.21210 17963217
    [Google Scholar]
  62. Deng P. Yao L. Chen J. Tang Z. Zhou J. Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydr. Polym. 2022 276 118718 10.1016/j.carbpol.2021.118718 34823762
    [Google Scholar]
  63. Dutta P.K. Dutta J. Tripathi V. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Indus. Res. 2004 63 20 31
    [Google Scholar]
  64. Khan M.S. Jaswanth Gowda B.H. Almalki W.H. Singh T. Sahebkar A. Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov. Today 2024 29 1 103819 10.1016/j.drudis.2023.103819 37940034
    [Google Scholar]
  65. Do V.N. Pham T.H. Graphene and its one-dimensional patterns: from basic properties towards applications. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010 1 3 033001 10.1088/2043‑6254/1/3/033001
    [Google Scholar]
  66. Wypych G. Graphene: Important results and applications. Elsevier 2024
    [Google Scholar]
  67. Kumar S. Pratap S. Kumar V. Mishra R.K. Gwag J.S. Chakraborty B. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review. Luminescence 2023 38 7 909 953 10.1002/bio.4334 35850156
    [Google Scholar]
  68. Abergel D.S.L. Apalkov V. Berashevich J. Ziegler K. Chakraborty T. Properties of graphene: a theoretical perspective. Adv. Phys. 2010 59 4 261 482 10.1080/00018732.2010.487978
    [Google Scholar]
  69. Fuchs J.N. Goerbig M.O. Introduction to the physical properties of graphene. Lecture Notes 2008 Available from: https://web.physics.ucsb.edu/~phys123B/w2015/pdf_CoursGraphene2008.pdf(accessed on 28-9-2024)
    [Google Scholar]
  70. Bulin C. Combination mechanism of the ternary composite based on Fe3O4-chitosan-graphene oxide prepared by solvothermal method. Int. J. Biol. Macromol. 2023 231 123337 10.1016/j.ijbiomac.2023.123337 36690233
    [Google Scholar]
  71. Hermenean A. Codreanu A. Herman H. Balta C. Rosu M. Mihali C.V. Ivan A. Dinescu S. Ionita M. Costache M. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects. Sci. Rep. 2017 7 1 16641 10.1038/s41598‑017‑16599‑5 29192253
    [Google Scholar]
  72. Pieklarz K. Tylman M. Modrzejewska Z. Applications of chitosan–graphene oxide nanocomposites in medical science: a review. Prog. Chem. Appl. Chitin Deriv. 2018 XXIII 23 5 24 10.15259/PCACD.23.001
    [Google Scholar]
  73. 2018
  74. Zhao M. Shi J. Cai W. Liu K. Shen K. Li Z. Wang Y. Hu D. Advances on graphene-based nanomaterials and mesenchymal stem cell-derived exosomes applied in cutaneous wound healing. Int. J. Nanomedicine 2021 16 2647 2665 10.2147/IJN.S300326 33854313
    [Google Scholar]
  75. Kim Y. Zharkinbekov Z. Raziyeva K. Tabyldiyeva L. Berikova K. Zhumagul D. Temirkhanova K. Saparov A. Chitosan-based biomaterials for tissue regeneration. Pharmaceutics 2023 15 3 807 10.3390/pharmaceutics15030807 36986668
    [Google Scholar]
  76. Gozali D. Hudaya A.R. Suharyani I. Wathoni N. A review on chitosan-based materials as potential wound dressing materials. International Journal of Applied Pharmaceutics 2022 14 27 32 10.22159/ijap.2022.v14s4.PP23
    [Google Scholar]
  77. Hosseini S. Eslahi N. Jahanmardi R. Self-healing nanocomposite hydrogels based on chitosan/ modified polyethylene glycol/graphene. Mater. Today Commun. 2023 37 107417
    [Google Scholar]
  78. Martínez J.R. Vallejo A.G. Oyama A.B. Santana T.J. Garza K. González E. Improved mechanical, optical, and electrical properties of chitosan films with the synergistic reinforcing effect of carbon nanotubes and reduced graphene oxide for potential optoelectronic applications. 2023 10.21203/rs.3.rs‑2725043/v1
    [Google Scholar]
  79. Gao C. Song S. Lv Y. Huang J. Zhang Z. Recent development of conductive hydrogels for tissue engineering: review and perspective. Macromol. Biosci. 2022 22 8 2200051 10.1002/mabi.202200051 35472125
    [Google Scholar]
  80. Alafeefy A.M. Abdel-Aziz H.A. Vullo D. Al-Tamimi A.M.S. Awaad A.S. Mohamed M.A. Capasso C. Supuran C.T. Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. J. Enzyme Inhib. Med. Chem. 2015 30 1 52 56 10.3109/14756366.2013.877897 24666294
    [Google Scholar]
  81. Liu J. Cui L. Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013 9 12 9243 9257 10.1016/j.actbio.2013.08.016 23958782
    [Google Scholar]
  82. Hosseini S.M. Mazinani S. Abdouss M. Kalhor H. Kalantari K. Amiri I.S. Ramezani Z. Designing chitosan nanoparticles embedded into graphene oxide as a drug delivery system. Polym. Bull. 2022 79 1 541 554 10.1007/s00289‑020‑03506‑8
    [Google Scholar]
  83. Ghosal K. Agatemor C. Špitálsky Z. Thomas S. Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem. Eng. J. 2019 358 1262 1278 10.1016/j.cej.2018.10.117
    [Google Scholar]
  84. Xia N. Liu L. Sun Z. Zhou B. Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing. J. Nanomater. 2015 2015 1 892674 10.1155/2015/892674
    [Google Scholar]
  85. Yang J.K. Fluorescent graphene oxide-based optical biosensors for detection of disease-related protease:Research on the development of a fluorescent graphene oxide-based optical biosensor for the detection of disease-related proteolytic enzymes. Seoul National University Graduate School 2017
    [Google Scholar]
  86. Gurunathan S. Han J.W. Eppakayala V. Kim J.H. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloids Surf. B Biointerfaces 2013 102 772 777 10.1016/j.colsurfb.2012.09.011 23107955
    [Google Scholar]
  87. Liu S. Zeng T.H. Hofmann M. Burcombe E. Wei J. Jiang R. Kong J. Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 2011 5 9 6971 6980 10.1021/nn202451x 21851105
    [Google Scholar]
  88. Liu S. Hu M. Zeng T.H. Wu R. Jiang R. Wei J. Wang L. Kong J. Chen Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012 28 33 12364 12372 10.1021/la3023908 22827339
    [Google Scholar]
  89. Khan M.U.A. Yaqoob Z. Ansari M.N.M. Razak S.I.A. Raza M.A. Sajjad A. Haider S. Busra F.M. Chitosan/poly vinyl alcohol/graphene oxide based pH-responsive composite hydrogel films: Drug release, anti-microbial and cell viability studies. Polymers (Basel) 2021 13 18 3124 10.3390/polym13183124 34578025
    [Google Scholar]
  90. Eslahi N. Lotfi R. Zandi N. Mazaheri M. Soleimani F. Simchi A. Graphene-based polymer nanocomposites in biomedical applications. Innovations in graphene-based polymer composites. Elsevier 2022 199 245 10.1016/B978‑0‑12‑823789‑2.00016‑9
    [Google Scholar]
  91. D’Amora U. Dacrory S. Hasanin M.S. Longo A. Soriente A. Kamel S. Raucci M.G. Ambrosio L. Scialla S. Advances in the physico-chemical, antimicrobial and angiogenic properties of graphene-oxide/cellulose nanocomposites for wound healing. Pharmaceutics 2023 15 2 338 10.3390/pharmaceutics15020338 36839660
    [Google Scholar]
  92. Soni A. Bhandari M.P. Tripathi G.K. Bundela P. Khiriya P.K. Khare P.S. Kashyap M.K. Dey A. Vellingiri B. Sundaramurthy S. Suresh A. Pérez de la Lastra J.M. Nano-biotechnology in tumour and cancerous disease: A perspective review. J. Cell. Mol. Med. 2023 27 6 737 762 10.1111/jcmm.17677 36840363
    [Google Scholar]
  93. Idumah C.I. Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites. Emergent Mater. 2023 6 3 777 807 10.1007/s42247‑023‑00465‑4
    [Google Scholar]
  94. Wang J. Yu Y. Li Y. Molecular Modeling in Drug Delivery. Exploring Computational Pharmaceutics: AI and Modeling in Pharma 2024 40 293 10.1002/9781119987260.ch9
    [Google Scholar]
  95. Shahmoradi S. Golzar H. Hashemi M. Mansouri V. Omidi M. Yazdian F. Yadegari A. Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology 2018 29 47 475101 10.1088/1361‑6528/aadedc 30179859
    [Google Scholar]
  96. Di Giulio M. Zappacosta R. Di Lodovico S. Di Campli E. Siani G. Fontana A. Cellini L. Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 2018 62 7 e00547-18 10.1128/AAC.00547‑18 29661876
    [Google Scholar]
  97. Liu Y. Zhang Q. Zhou N. Tan J. Ashley J. Wang W. Wu F. Shen J. Zhang M. Study on a novel poly (vinyl alcohol)/graphene oxide-citicoline sodium-lanthanum wound dressing: Biocompatibility, bioactivity, antimicrobial activity, and wound healing effect. Chem. Eng. J. 2020 395 125059 10.1016/j.cej.2020.125059
    [Google Scholar]
  98. Zhang L. Pornpattananangkul D. Hu C.M. Huang C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010 17 6 585 594 10.2174/092986710790416290 20015030
    [Google Scholar]
  99. Jayakumar R. Menon D. Manzoor K. Nair S.V. Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010 82 2 227 232 10.1016/j.carbpol.2010.04.074
    [Google Scholar]
  100. Ghosal K. Manakhov A. Zajíčková L. Thomas S. Structural and surface compatibility study of modified electrospun poly (ε-caprolactone)(PCL) composites for skin tissue engineering. AAPS PharmSciTech 2017 18 1 72 81 10.1208/s12249‑016‑0500‑8 26883261
    [Google Scholar]
  101. French T. Howard I.L. Chitin: Fundamental biopolymer properties and applications discussion. 2023 Available from: https://www.cee.msstate.edu/wp-content/uploads/Chitin-White-Paper-CMRC-WP-23-1.pdf(accessed on 28-9-2024)
    [Google Scholar]
  102. Ghodsi S. Kamranifar M. Fatehizadeh A. Taheri E. Bina B. Hublikar L.V. Ganachari S.V. Nadagouda M. Aminabhavi T.M. New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain – A systematic review. Environ. Res. 2024 249 118398 10.1016/j.envres.2024.118398 38331155
    [Google Scholar]
  103. Saheed I.O. Oh W.D. Suah F.B.M. Chitosan modifications for adsorption of pollutants – A review. J. Hazard. Mater. 2021 408 124889 10.1016/j.jhazmat.2020.124889 33418525
    [Google Scholar]
  104. El Knidri H. Laajeb A. Lahsini A. Chitin and chitosan: chemistry, solubility, fiber formation, and their potential applications. Handbook of Chitin and Chitosan. Elsevier 2020 35 57 10.1016/B978‑0‑12‑817970‑3.00002‑X
    [Google Scholar]
  105. Hossain M.R. Mallik A.K. Rahman M.M. Fundamentals of chitosan for biomedical applications. Handbook of Chitin and Chitosan. Elsevier 2020 199 230 10.1016/B978‑0‑12‑817966‑6.00007‑8
    [Google Scholar]
  106. Khan N.R. Shah K.U. Nawaz A. Wong T.W. Chitosan based composites and their applications in tissue engineering. Encyclopedia of Marine Biotechnology John Wiley & Sons 2020 10.1002/9781119143802.ch38
    [Google Scholar]
  107. Banafati Zadeh F. Zamanian A. Glutaraldehyde: Introducing Optimum Condition for Cross-linking the Chitosan/Gelatin Scaffolds for Bone Tissue Engineering. International Journal of Engineering 2022 35 10 1967 1980 10.5829/IJE.2022.35.10A.15
    [Google Scholar]
  108. Zarabi M. Khosravi N. Habibi Rezaei M. Chitosan, a Biomimetic Biopolymer: Sources, Characteristics and its Applications in Biomedical. Science Cultivation. 2021 11 2 209 219
    [Google Scholar]
  109. Hoseini-Ghahfarokhi M. Mirkiani S. Mozaffari N. Abdolahi Sadatlu M.A. Ghasemi A. Abbaspour S. Akbarian M. Farjadain F. Karimi M. Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int. J. Nanomedicine 2020 15 9469 9496 10.2147/IJN.S265876 33281443
    [Google Scholar]
  110. Mousavi S.M. Hashemi S.A. Ghasemi Y. Amani A.M. Babapoor A. Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metab. Rev. 2019 51 1 12 41 10.1080/03602532.2018.1522328 30741033
    [Google Scholar]
  111. Sharma D. Kumar R. Kulkarni M.P. Jha C.B. Wadhwa S. Mathur R. Graphene Oxide as Drug Carriers: Problems and Solutions. Smart Nanotechnology with Applications. CRC Press 2020 167 187 10.1201/9781003097532‑12
    [Google Scholar]
  112. Khalil W.F. El-Sayyad G.S. El Rouby W.M.A. Sadek M.A. Farghali A.A. El-Batal A.I. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int. J. Biol. Macromol. 2020 164 1370 1383 10.1016/j.ijbiomac.2020.07.205 32735925
    [Google Scholar]
  113. Gouda M.H. Khowdiary M.M. Alsnani H. Roushdy N. Youssef M.E. Elnouby M. Elessawy N.A. Adsorption and antibacterial studies of a novel hydrogel adsorbent based on ternary eco-polymers doped with sulfonated graphene oxide developed from upcycled plastic waste. J. Contam. Hydrol. 2024 264 104362 10.1016/j.jconhyd.2024.104362 38735087
    [Google Scholar]
  114. Wrońska N. Anouar A. El Achaby M. Zawadzka K. Kędzierska M. Miłowska K. Katir N. Draoui K. Różalska S. Piwoński I. Bryszewska M. El Kadib A. Lisowska K. Chitosan-functionalized graphene nanocomposite films: interfacial interplay and biological activity. Materials (Basel) 2020 13 4 998 10.3390/ma13040998 32102202
    [Google Scholar]
  115. Xia M.Y. Xie Y. Yu C.H. Chen G.Y. Li Y.H. Zhang T. Peng Q. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J. Control. Release 2019 307 16 31 10.1016/j.jconrel.2019.06.011 31185232
    [Google Scholar]
  116. Saeed M. Jabeen R. Kazmi M.B. Islam A. Recent developments in the prevention of biofilms and the use of nanotechnology. Int. J. Adv. Res. Med. Sci. 2021 2 1 21 49
    [Google Scholar]
  117. Jin L. Chen Q. Hu X. Chen H. Lu Y. Zhang Y. Zhou H. Bai Y. Enhanced mechanical strength and antibacterial properties of Chitosan/Graphene oxide composite fibres. Cellulose 2022 29 7 3889 3900 10.1007/s10570‑022‑04523‑8
    [Google Scholar]
  118. Li X.X. Dong J.Y. Li Y.H. Zhong J. Yu H. Yu Q.Q. Lei M. Fabrication of Ag–ZnO@ carboxymethyl cellulose/K-carrageenan/graphene oxide/konjac glucomannan hydrogel for effective wound dressing in nursing care for diabetic foot ulcers. Appl. Nanosci. 2020 10 3 729 738 10.1007/s13204‑019‑01194‑z
    [Google Scholar]
  119. Chen S. Wang H. Jian Z. Fei G. Qian W. Luo G. Wang Z. Xia H. Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol. Biosci. 2020 20 3 1900385 10.1002/mabi.201900385 32058669
    [Google Scholar]
  120. Al homsi R. Eltahir S. Jagal J. Ali Abdelkareem M. Ghoneim M.M. Rawas-Qalaji M.M. Greish K. Haider M. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int. J. Pharm. 2022 621 121786 10.1016/j.ijpharm.2022.121786 35500689
    [Google Scholar]
  121. Ulker Turan C. Guvenilir Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur. J. Pharm. Sci. 2022 170 106113 10.1016/j.ejps.2021.106113 34986416
    [Google Scholar]
  122. Singh H. Dhanka M. Yadav I. Gautam S. Bashir S.M. Mishra N.C. Arora T. Hassan S. Technological Interventions Enhancing Curcumin Bioavailability in Wound-Healing Therapeutics. Tissue Eng. Part B Rev. 2024 30 2 230 253 10.1089/ten.teb.2023.0085 37897069
    [Google Scholar]
  123. dos Santos J. de Oliveira R.S. de Oliveira T.V. Velho M.C. Konrad M.V. da Silva G.S. Deon M. Beck R.C.R. 3D printing and nanotechnology: a multiscale alliance in personalized medicine. Adv. Funct. Mater. 2021 31 16 2009691 10.1002/adfm.202009691
    [Google Scholar]
  124. Abdalla O. Wahab M.A. Abdala A. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. J. Environ. Chem. Eng. 2020 8 5 104269 10.1016/j.jece.2020.104269
    [Google Scholar]
  125. Han Z. Huang L. Qu H. Wang Y. Zhang Z. Rong Q. Sang Z. Wang Y. Kipper M.J. Tang J. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 2021 56 16 9545 9574 10.1007/s10853‑021‑05873‑7
    [Google Scholar]
  126. Khandegar V. Kaur P.J. Chanana P. Chitosan and graphene oxide-based nanocomposites for water purification and medical applications: A review. BioResources 2021 16 4 8525 8566 10.15376/biores.16.4.8525‑8566
    [Google Scholar]
  127. Kausar A. Ahmad I. Graphene and nanocomposites—Imprints on environmentally sustainable production and applications based on ecological aspects. Characterization and Application of Nanomaterials 2023 6 2 4226 10.24294/can.v6i2.4226
    [Google Scholar]
  128. Justin R. Chen B. Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr. Polym. 2014 103 70 80 10.1016/j.carbpol.2013.12.012 24528702
    [Google Scholar]
  129. Kurniawan A. Muneekaew S. Hung C.W. Chou S.H. Wang M.J. Modulated transdermal delivery of nonsteroidal anti-inflammatory drug by macroporous poly(vinyl alcohol)-graphene oxide nanocomposite films. Int. J. Pharm. 2019 566 708 716 10.1016/j.ijpharm.2019.06.029 31212056
    [Google Scholar]
  130. Fazal T. Murtaza B.N. Shah M. Iqbal S. Rehman M. Jaber F. Dera A.A. Awwad N.S. Ibrahium H.A. Recent developments in natural biopolymer based drug delivery systems. RSC Advances 2023 13 33 23087 23121 10.1039/D3RA03369D 37529365
    [Google Scholar]
  131. Wahba M.I. Enhancement of the mechanical properties of chitosan. J. Biomater. Sci. Polym. Ed. 2020 31 3 350 375 10.1080/09205063.2019.1692641 31766978
    [Google Scholar]
  132. Rasoulzadehzali M. Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int. J. Biol. Macromol. 2018 116 54 63 10.1016/j.ijbiomac.2018.04.140 29705108
    [Google Scholar]
  133. Nepal A. Tran H.D.N. Nguyen N.T. Ta H.T. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact. Mater. 2023 27 231 256 10.1016/j.bioactmat.2023.04.008 37122895
    [Google Scholar]
  134. Guo W. Ding X. Zhang H. Liu Z. Han Y. Wei Q. Okoro O.V. Shavandi A. Nie L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024 10 3 175 10.3390/gels10030175 38534593
    [Google Scholar]
  135. Reinke J.M. Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012 49 1 35 43 10.1159/000339613 22797712
    [Google Scholar]
  136. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Translat. Med. 2014 265 265sr6 sr6 10.1126/scitranslmed.3009337
    [Google Scholar]
  137. Arfin T. Chitosan and its derivatives: Overview of commercial applications in diverse fields. Chitosan: Derivatives, Composites and Applications Wiley 2017 10.1002/9781119364849.ch5
    [Google Scholar]
  138. Biswal A. Swain S.K. Chitosan: A Smart Biomaterial. Chitosan Nanocomposites: Bionanomechanical Applications. Springer 2023 1 25
    [Google Scholar]
  139. Sameer Khan M. Jaswanth Gowda B.H. Hasan N. Gupta G. Singh T. Md S. Kesharwani P. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives. Eur. Polym. J. 2024 206 112800 10.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  140. Lu B. Li T. Zhao H. Li X. Gao C. Zhang S. Xie E. Graphene-based composite materials beneficial to wound healing. Nanoscale 2012 4 9 2978 2982 10.1039/c2nr11958g 22453925
    [Google Scholar]
  141. Shanmugam D.K. Madhavan Y. Manimaran A. Kaliaraj G.S. Mohanraj K.G. Kandhasamy N. Amirtharaj Mosas K.K. Efficacy of graphene-based nanocomposite gels as a promising wound healing biomaterial. Gels 2022 9 1 22 10.3390/gels9010022 36661790
    [Google Scholar]
  142. Nguyen H.T. Ho T.L. Pratomo A. Ilsan N.A. Huang T. Chen C.H. Chuang E.Y. Enzymatically triggered graphene oxide released from multifunctional carriers boosts anti- pathogenic properties for promising wound-healing applications. Mater. Sci. Eng. C 2021 128 112265 10.1016/j.msec.2021.112265 34474824
    [Google Scholar]
  143. Shariati A. Hosseini S.M. Chegini Z. Seifalian A. Arabestani M.R. Graphene-based materials for inhibition of wound infection and accelerating wound healing. Biomed. Pharmacother. 2023 158 114184 10.1016/j.biopha.2022.114184 36587554
    [Google Scholar]
  144. Yousefi M. Ghahremanzadeh R. Nejadmoghaddam M.R. Samadi F.Y. Najafzadeh S. Fatideh F.M. Mohammadi Z. Minai-Tehrani A. Nanofabrication of chitosan-based dressing to treat the infected wounds: in vitro and in vivo evaluations. Future Sci. OA 2024 10 1 FSO921 10.2144/fsoa‑2023‑0077 38827799
    [Google Scholar]
  145. Balakumar S. Mahesh N. Kamaraj M. Saranya T. Babu P.S. Aravind J. Kim W. Govarthanan M. Customized carbon composite nanomaterials for the mitigation of emerging contaminants: a review of recent trends. Carbon Letters 2024 34 4 1091 1114 10.1007/s42823‑024‑00715‑3
    [Google Scholar]
  146. Hani U. Jaswanth Gowda B.H. Siddiqua A. Wahab S. Begum M.Y. Sathishbabu P. Usmani S. Ahmad M.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J. Mol. Liq. 2023 390 123037 10.1016/j.molliq.2023.123037
    [Google Scholar]
  147. Khan M.S. Gowda B.H.J. Nasir N. Wahab S. Pichika M.R. Sahebkar A. Kesharwani P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm. 2023 643 123276 10.1016/j.ijpharm.2023.123276 37516217
    [Google Scholar]
  148. Ahamed J. Jaswanth Gowda B.H. Almalki W.H. Gupta N. Sahebkar A. Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur. Polym. J. 2023 193 112111 10.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  149. Gowda B.H.J. Mohanto S. Singh A. Bhunia A. Abdelgawad M.A. Ghosh S. Ansari M.J. Pramanik S. Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art. Mater. Today Chem. 2023 27 101319 10.1016/j.mtchem.2022.101319
    [Google Scholar]
  150. Narayana S. Ahmed M.G. Gowda B.J. Shetty P.K. Nasrine A. Thriveni M. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future J. Pharm. Sci. 2021 7 1 21
    [Google Scholar]
  151. Gowda B.H.J. Ahmed M.G. Chinnam S. Paul K. Ashrafuzzaman M. Chavali M. Gahtori R. Pandit S. Kesari K.K. Gupta P.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol. 2022 71 103305 10.1016/j.jddst.2022.103305
    [Google Scholar]
  152. Hani U. Osmani R.A.M. Yasmin S. Gowda B.H.J. Ather H. Ansari M.Y. Siddiqua A. Ghazwani M. Fatease A.A. Alamri A.H. Rahamathulla M. Begum M.Y. Wahab S. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022 14 8 1576 10.3390/pharmaceutics14081576 36015202
    [Google Scholar]
  153. Hani U. Gowda B.H.J. Haider N. Ramesh K.V.R.N.S. Paul K. Ashique S. Ahmed M.G. Narayana S. Mohanto S. Kesharwani P. Nanoparticle-based approaches for treatment of hematological malignancies: a comprehensive review. AAPS PharmSciTech 2023 24 8 233 10.1208/s12249‑023‑02670‑0 37973643
    [Google Scholar]
  154. Nag S. Mitra O. P S. Bhattacharjee A. Mohanto S. Gowda B.H.J. Kar S. Ramaiah S. Anbarasu A. Ahmed M.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater. Today Chem. 2024 35 101894 10.1016/j.mtchem.2023.101894
    [Google Scholar]
  155. Zeng L. Gowda B.H.J. Ahmed M.G. Abourehab M.A.S. Chen Z.S. Zhang C. Li J. Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023 22 1 10 10.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  156. Nag S. Mitra O. Tripathi G. Adur I. Mohanto S. Nama M. Samanta S. Gowda B.H.J. Subramaniyan V. Sundararajan V. Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn. Photodyn. Ther. 2024 45 103959 10.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  157. Gowda B.H.J. Ahmed M.G. Alshehri S.A. Wahab S. Vora L.K. Singh Thakur R.R. Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res. 2023 237 Pt 1 116894 10.1016/j.envres.2023.116894 37586450
    [Google Scholar]
  158. Banazadeh M. Behnam B. Ganjooei N.A. Gowda B.H.J. Kesharwani P. Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J. Drug Deliv. Sci. Technol. 2023 89 105040 10.1016/j.jddst.2023.105040
    [Google Scholar]
  159. Gowda B.H.J. Ahmed M.G. Almoyad M.A.A. Wahab S. Almalki W.H. Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv. Funct. Mater. 2024 34 7 2307074 10.1002/adfm.202307074
    [Google Scholar]
  160. Hsu C.Y. Ajaj Y. Mahmoud Z.H. Kamil Ghadir G. Khalid Alani Z. Hussein M.M. Abed Hussein S. Morad Karim M. Al-khalidi A. Abbas J.K. Hussein Kareem A. kianfar E. Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results Chem. 2024 7 101332 10.1016/j.rechem.2024.101332
    [Google Scholar]
  161. Elhami N. Pazhang M. Beygi-khosrowshahi Y. Dehghani A. Development of nanocomposites based on chitosan/reduced graphene oxide for wound healing application. Int. J. Biol. Macromol. 2024 258 Pt 1 128832 10.1016/j.ijbiomac.2023.128832 38128799
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333493241014134711
Loading
/content/journals/cpd/10.2174/0113816128333493241014134711
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: wound healing ; wound dressings ; Chitosan ; graphene ; biomedical applications
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test