Skip to content
2000
Volume 31, Issue 12
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen-specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343081241030054303
2024-12-17
2025-04-22
Loading full text...

Full text loading...

References

  1. BluestoneJ.A. HeroldK. EisenbarthG. Genetics, pathogenesis and clinical interventions in type 1 diabetes.Nature201046472931293130010.1038/nature0893320432533
    [Google Scholar]
  2. MaahsD.M. RewersM. Editorial: Mortality and renal disease in type 1 diabetes mellitus-progress made, more to be done.J. Clin. Endocrinol. Metab.200691103757375910.1210/jc.2006‑173017028289
    [Google Scholar]
  3. Sleffes MW, Chavers BM, Molitch ME, et al. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: The Epidemiology of Diabetes Interventions and Complications (EDIC) study.JAMA2003290162159216710.1001/jama.290.16.215914570951
    [Google Scholar]
  4. HarjutsaloV. SjöbergL. TuomilehtoJ. Time trends in the incidence of type 1 diabetes in Finnish children: A cohort study.Lancet200837196261777178210.1016/S0140‑6736(08)60765‑518502302
    [Google Scholar]
  5. AkilA.A.S. YassinE. MaraghiA.A. AliyevE. MalkiA.K. FakhroK.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era.J. Transl. Med.202119113710.1186/s12967‑021‑02778‑633794915
    [Google Scholar]
  6. RobertsonR.P. Islet transplantation as a treatment for diabetes - A work in progress.N. Engl. J. Med.2004350769470510.1056/NEJMra03242514960745
    [Google Scholar]
  7. SteckA.K. RewersM.J. Genetics of type 1 diabetes.Clin. Chem.201157217618510.1373/clinchem.2010.14822121205883
    [Google Scholar]
  8. BarrettJ.C. ClaytonD.G. ConcannonP. AkolkarB. CooperJ.D. ErlichH.A. JulierC. MorahanG. NerupJ. NierrasC. PlagnolV. PociotF. SchuilenburgH. SmythD.J. StevensH. ToddJ.A. WalkerN.M. RichS.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes.Nat. Genet.200941670370710.1038/ng.38119430480
    [Google Scholar]
  9. NerupJ. LernmarkA. Autoimmunity in insulin-dependent diabetes mellitus.Am. J. Med.198170113514110.1016/0002‑9343(81)90420‑47006386
    [Google Scholar]
  10. JunH.S. YoonJ.W. A new look at viruses in type 1 diabetes.Diabetes Metab. Res. Rev.200319183110.1002/dmrr.33712592641
    [Google Scholar]
  11. BottingerE.P. Foundations, promises and uncertainties of personalized medicine.Mt. Sinai J. Med.2007741152110.1002/msj.2000517516562
    [Google Scholar]
  12. American Diabetes Association. 2. Classification and diagnosis of diabetes.Diabetes Care201538S8S1610.2337/dc15‑S00525537714
    [Google Scholar]
  13. RegnellS.E. LernmarkÅ. Early prediction of autoimmune (type 1) diabetes.Diabetologia20176081370138110.1007/s00125‑017‑4308‑128550517
    [Google Scholar]
  14. HaakT GölzS FritscheA Therapy of type 1 diabetes.Exp Clin Endocrinol Diabetes.2019127S01S27s3810.1055/a‑0984‑5696
    [Google Scholar]
  15. ConradB. WeidmannE. TruccoG. RudertW.A. BehbooR. RicordiC. RiloR.H. FinegoldD. TruccoM. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology.Nature1994371649535135510.1038/371351a08090207
    [Google Scholar]
  16. HeroldK.C. DelongT. PerdigotoA.L. BiruN. BruskoT.M. WalkerL.S.K. The immunology of type 1 diabetes.Nat. Rev. Immunol.202424643545110.1038/s41577‑023‑00985‑438308004
    [Google Scholar]
  17. WongF.S. JanewayC.A.Jr The role of CD4 and CD8 T cells in type I diabetes in the NOD mouse.Res. Immunol.1997148532733210.1016/S0923‑2494(97)87242‑29352597
    [Google Scholar]
  18. YoonJ.W. JunH.S. SantamariaP. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells.Autoimmunity199827210912210.3109/089169398090080419583742
    [Google Scholar]
  19. YoonJ.W. JunH.S. Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus.Ann. N. Y. Acad. Sci.2001928120021110.1111/j.1749‑6632.2001.tb05650.x11795511
    [Google Scholar]
  20. KassemS.A. ArielI. ThorntonP.S. ScheimbergI. GlaserB. Beta- cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy.Diabetes20004981325133310.2337/diabetes.49.8.132510923633
    [Google Scholar]
  21. TurleyS. PoirotL. HattoriM. BenoistC. MathisD. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model.J. Exp. Med.2003198101527153710.1084/jem.2003096614623908
    [Google Scholar]
  22. CalderonB. UnanueE.R. Antigen presentation events in autoimmune diabetes.Curr. Opin. Immunol.201224111912810.1016/j.coi.2011.11.00522178549
    [Google Scholar]
  23. MarrackP. KapplerJ.W. Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases?Cold Spring Harb. Perspect. Med.201229a00776510.1101/cshperspect.a00776522951444
    [Google Scholar]
  24. KeymeulenB. VandemeulebrouckeE. ZieglerA.G. MathieuC. KaufmanL. HaleG. GorusF. GoldmanM. WalterM. CandonS. SchandeneL. CrenierL. BlockD.C. SeigneurinJ.M. PauwD.P. PierardD. WeetsI. RebelloP. BirdP. BerrieE. FrewinM. WaldmannH. BachJ.F. PipeleersD. ChatenoudL. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.N. Engl. J. Med.2005352252598260810.1056/NEJMoa04398015972866
    [Google Scholar]
  25. KnightR.R. KronenbergD. ZhaoM. HuangG.C. EichmannM. BulekA. WooldridgeL. ColeD.K. SewellA.K. PeakmanM. SkoweraA. Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity.Diabetes201362120521310.2337/db12‑031522936177
    [Google Scholar]
  26. WongF.S. KarttunenJ. DumontC. WenL. VisintinI. PilipI.M. ShastriN. PamerE.G. JanewayC.A.Jr Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library.Nat. Med.1999591026103110.1038/1246510470079
    [Google Scholar]
  27. KatzJ. BenoistC. MathisD. Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice.Eur. J. Immunol.199323123358336010.1002/eji.18302312448258349
    [Google Scholar]
  28. WilliamsH.E.E. PalmerS.E. CharltonB. SlatteryR.M. Beta cell MHC class I is a late requirement for diabetes.Proc. Natl. Acad. Sci.2003100116688669310.1073/pnas.113195410012750472
    [Google Scholar]
  29. KägiD. OdermattB. SeilerP. ZinkernagelR.M. MakT.W. HengartnerH. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice.J. Exp. Med.1997186798999710.1084/jem.186.7.9899314549
    [Google Scholar]
  30. RichardsonN WraithDC Advancement of antigen-specific immunotherapy: Knowledge transfer between allergy and autoimmunity.Immunotherapy Adv.202111ltab00910.1093/immadv/ltab009
    [Google Scholar]
  31. DobsonF. HinmanR.S. RoosE.M. AbbottJ.H. StratfordP. DavisA.M. BuchbinderR. MacklerS.L. HenrotinY. ThumbooJ. HansenP. BennellK.L. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis.Osteoarth. Cartil.20132181042105210.1016/j.joca.2013.05.00223680877
    [Google Scholar]
  32. FuhlbriggeR. YipL. Self-antigen expression in the peripheral immune system: Roles in self-tolerance and type 1 diabetes pathogenesis.Curr. Diab. Rep.201414952510.1007/s11892‑014‑0525‑x25030265
    [Google Scholar]
  33. LiF. OuyangJ. ChenZ. ZhouZ. EssolaM.J. AliB. WuX. ZhuM. GuoW. LiangX.J. Nanomedicine for T-Cell mediated immunotherapy.Adv. Mater.20243622230177010.1002/adma.20230177036964936
    [Google Scholar]
  34. NemazeeD. Mechanisms of central tolerance for B cells.Nat. Rev. Immunol.201717528129410.1038/nri.2017.1928368006
    [Google Scholar]
  35. CadyC.T. PowellM.S. HarbeckR.J. GiclasP.C. MurphyJ.R. KatialR.K. WeberR.W. HogarthP.M. JohnsonS. BonviniE. KoenigS. CambierJ.C. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcγRIIA and FcγRIIB.Immunol. Lett.20101301-2576510.1016/j.imlet.2009.12.00120004689
    [Google Scholar]
  36. XingY. HogquistK.A. T-cell tolerance: Central and peripheral.Cold Spring Harb. Perspect. Biol.201246a00695710.1101/cshperspect.a00695722661634
    [Google Scholar]
  37. JekerL.T. JordanB.H. BluestoneJ.A. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans.Cold Spring Harb. Perspect. Med.201223a00780710.1101/cshperspect.a00780722393537
    [Google Scholar]
  38. ZhangX DongY LiuD YangL XuJ WangQ Antigen-specific immunotherapies in type 1 diabetes.J Trace Elem Med Biol20227312704010.1016/j.jtemb.2022.127040
    [Google Scholar]
  39. NewtonS. AltmannD. Heat shock protein 60 and type I diabetes. Stress Proteins.Springer1999347361
    [Google Scholar]
  40. NarendranP. ManneringS.I. HarrisonL.C. Proinsulin-A pathogenic autoantigen in type 1 diabetes.Autoimmun. Rev.20032420421010.1016/S1568‑9972(03)00009‑012848947
    [Google Scholar]
  41. WendtA. BirnirB. BuschardK. GromadaJ. SalehiA. SewingS. RorsmanP. BraunM. Glucose inhibition of glucagon secretion from rat α-cells is mediated by GABA released from neighboring β-cells.Diabetes20045341038104510.2337/diabetes.53.4.103815047619
    [Google Scholar]
  42. ArvanP. PietropaoloM. OstrovD. RhodesC.J. Islet autoantigens: Structure, function, localization, and regulation.Cold Spring Harb. Perspect. Med.201228a00765810.1101/cshperspect.a00765822908193
    [Google Scholar]
  43. KanL. Animal models of bone diseases-A. Animal models for the study of human disease.Elsevier201335339010.1016/B978‑0‑12‑415894‑8.00016‑6
    [Google Scholar]
  44. JinN. WangY. CrawfordF. WhiteJ. MarrackP. DaiS. KapplerJ.W. N-terminal additions to the WE14 peptide of chromogranin a create strong autoantigen agonists in type 1 diabetes.Proc. Natl. Acad. Sci.201511243133181332310.1073/pnas.151786211226453556
    [Google Scholar]
  45. MorranM.P. VonbergA. KhadraA. PietropaoloM. Immunogenetics of type 1 diabetes mellitus.Mol. Aspects Med.201542426010.1016/j.mam.2014.12.00425579746
    [Google Scholar]
  46. BurrackA.L. MartinovT. FifeB.T. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes.Front. Endocrinol.2017834310.3389/fendo.2017.0034329259578
    [Google Scholar]
  47. DanielsMJ JagielnickiM YeagerM Structure/Function analysis of human ZnT8 (SLC30A8): A diabetes risk factor and zinc transporter.Curr Res Struct Biol2020214455
    [Google Scholar]
  48. AssfalgR. KnoopJ. HoffmanK.L. PfirrmannM. GonzaloZ.J.M. HofelichA. EugsterA. WeigeltM. MatzkeC. ReinhardtJ. FuchsY. BunkM. WeissA. HippichM. HalfterK. HauckS.M. HasfordJ. PetrosinoJ.F. AchenbachP. BonifacioE. ZieglerA.G. Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial.Diabetologia20216451079109210.1007/s00125‑020‑05376‑133515070
    [Google Scholar]
  49. WeigmannB. FrankeR.K. DanielC. Immunotherapy in autoimmune type 1 diabetes.Rev. Diabet. Stud.201292-3688110.1900/RDS.2012.9.6823403703
    [Google Scholar]
  50. AljabaliAAA ObeidMA GammohO Nanomaterial-driven precision immunomodulation: A new paradigm in therapeutic interventions.Cancers20241611203010.3390/cancers16112030
    [Google Scholar]
  51. LiM. SongL.J. QinX.Y. Advances in the cellular immunological pathogenesis of type 1 diabetes.J. Cell. Mol. Med.201418574975810.1111/jcmm.1227024629100
    [Google Scholar]
  52. LinG. WangJ. YangY.G. ZhangY. SunT. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance.Front. Bioeng. Biotechnol.202311124212610.3389/fbioe.2023.124212637877041
    [Google Scholar]
  53. AutonellP.I. PratS.A. SarabiaC.M. AmpudiaR.M. FernandezR.S. SanchezA. IzquierdoC. StratmannT. DomingoP.M. MaspochD. VerdaguerJ. PiV.M. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.PLoS One2015106e012705710.1371/journal.pone.012705726039878
    [Google Scholar]
  54. BergotAS BuckleI Regulatory t cells induced by single-peptide liposome immunotherapy suppress islet-specific t cell responses to multiple antigens and protect from autoimmune diabetes.J Immunol2020204717879710.4049/jimmunol.1901128
    [Google Scholar]
  55. VillalbaA. FernandezR.S. BarrullP.D. AmpudiaR.M. MuñozG.L. AutonellP.I. AguileraE. ComaM. SarabiaC.M. VázquezF. VerdaguerJ. PiV.M. Repurposed analog of GLP-1 ameliorates hyperglycemia in type 1 diabetic mice through pancreatic cell reprogramming.Front. Endocrinol.20201125810.3389/fendo.2020.0025832477262
    [Google Scholar]
  56. ChenN. KrogerC.J. TischR.M. BachelderE.M. AinslieK.M. Prevention of type 1 diabetes with acetalated dextran microparticles containing rapamycin and pancreatic peptide P31.Adv. Healthc. Mater.2018718180034110.1002/adhm.20180034130051618
    [Google Scholar]
  57. YesteA. TakenakaM.C. MascanfroniI.D. NadeauM. KenisonJ.E. PatelB. TukpahA.M. BabonJ.A.B. DeNicolaM. KentS.C. PozoD. QuintanaF.J. Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2.Sci. Signal.20169433ra6110.1126/scisignal.aad061227330188
    [Google Scholar]
  58. ParkJ. WuY. LiQ. ChoiJ. JuH. CaiY. LeeJ. OhY.K. Nanomaterials for antigen-specific immune tolerance therapy.Drug Deliv. Transl. Res.20231371859188110.1007/s13346‑022‑01233‑336094655
    [Google Scholar]
  59. KishimotoT.K. MaldonadoR.A. Nanoparticles for the induction of antigen-specific immunological tolerance.Front. Immunol.2018923010.3389/fimmu.2018.0023029515571
    [Google Scholar]
  60. NigamS BishopJO Nanotechnology in immunotherapy for type 1 diabetes: Promising innovations and future advances.Pharmaceutics2022143644
    [Google Scholar]
  61. PescovitzM.D. GreenbaumC.J. SteinraufK.H. BeckerD.J. GitelmanS.E. GolandR. GottliebP.A. MarksJ.B. McGeeP.F. MoranA.M. RaskinP. RodriguezH. SchatzD.A. WherrettD. WilsonD.M. LachinJ.M. SkylerJ.S. Rituximab, B- lymphocyte depletion, and preservation of beta-cell function.N. Engl. J. Med.2009361222143215210.1056/NEJMoa090445219940299
    [Google Scholar]
  62. PescovitzM.D. GreenbaumC.J. BundyB. BeckerD.J. GitelmanS.E. GolandR. GottliebP.A. MarksJ.B. MoranA. RaskinP. RodriguezH. SchatzD.A. WherrettD.K. WilsonD.M. KrischerJ.P. SkylerJ.S. B-lymphocyte depletion with rituximab and β-cell function: Two-year results.Diabetes Care201437245345910.2337/dc13‑062624026563
    [Google Scholar]
  63. MoranA. BundyB. BeckerD.J. DiMeglioL.A. GitelmanS.E. GolandR. GreenbaumC.J. HeroldK.C. MarksJ.B. RaskinP. SandaS. SchatzD. WherrettD.K. WilsonD.M. KrischerJ.P. SkylerJ.S. PickersgillL. KoningD.E. ZieglerA.G. BöehmB. BadenhoopK. SchlootN. BakJ.F. PozzilliP. MauricioD. DonathM.Y. CastañoL. WägnerA. LervangH.H. PerrildH. PoulsenM.T. Interleukin-1 antagonism in type 1 diabetes of recent onset: Two multicentre, randomised, double-blind, placebo-controlled trials.Lancet201338198811905191510.1016/S0140‑6736(13)60023‑923562090
    [Google Scholar]
  64. NormanJ.J. BrownM.R. RavieleN.A. PrausnitzM.R. FelnerE.I. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes.Pediatr. Diabetes201314645946510.1111/pedi.1203123517449
    [Google Scholar]
  65. MaurasN. XingD. FoxL.A. EnglertK. DarmaunD. Effects of glutamine on glycemic control during and after exercise in adolescents with type 1 diabetes: A pilot study.Diabetes Care20103391951195310.2337/dc10‑027520585005
    [Google Scholar]
  66. SantiagoT.L. MaurasN. HossainJ. WeltmanA.L. DarmaunD. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes?Nutrition2017341610.1016/j.nut.2016.09.00328063503
    [Google Scholar]
  67. FreeseJ. RawiA.R. ChoatH. MartinA. LunsfordA. TseH. MickG. McCormickK. Proinsulin to C-Peptide ratio in the first year after diagnosis of type 1 diabetes.J. Clin. Endocrinol. Metab.202110611e4318e432610.1210/clinem/dgab46334228132
    [Google Scholar]
  68. MartinA. MickG.J. ChoatH.M. LunsfordA.A. TseH.M. McGwinG.G.Jr McCormickK.L. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes.Nat. Commun.2022131792810.1038/s41467‑022‑35544‑336566274
    [Google Scholar]
  69. HeathK.E. FeduskaJ.M. TaylorJ.P. HoupJ.A. BottaD. LundF.E. MickG.J. McGwinG.Jr McCormickK.L. TseH.M. Gaba and combined gaba with GAD65-ALUM treatment alters TH1 cytokine responses of pbmcs from children with recent-onset type 1 diabetes.Biomedicines2023117194810.3390/biomedicines1107194837509587
    [Google Scholar]
  70. GitelmanS.E. BundyB.N. FerranniniE. LimN. BlanchfieldJ.L. DiMeglioL.A. FelnerE.I. GagliaJ.L. GottliebP.A. LongS.A. MariA. MirmiraR.G. RaskinP. SandaS. TsalikianE. WentworthJ.M. WilliS.M. KrischerJ.P. BluestoneJ.A. BarrM. BlanchfieldJ.L. BluestoneJ.A. BuchananJ. BundyB.N. CabbageJ. ColemanP. VegaD.L.M. DiMeglioL.A. MolinaE.C. FelnerE.I. FerranniniE. FerraraC. GagliaJ.L. GitelmanS.E. GottliebP.A. HealyF. HigginsL. HildingerM. JenkinsM. BryantK.N. KindermanA. KoshyN. KostB. KrischerJ.P. KrishfieldS. KucherukO. LimN. LindsleyK. LongS.A. MantravadiM. MariA. MesfinS. MichelsA. MigreM.E. MinnockP. MirmiraR.G. NurM.E. NelsonJ. NursingA. O’DonnellR. OlivosD. ParkerM. RaskinP. RedlL. ReedN. ResnickB. SandaS. SayreP. SertiE. SimsE. SmithK. SoppeC. StuartF. SzubowiczS. TanseyM. TerrellJ. TerseyS. TorokC. TsalikianE. WatsonK. WentworthJ.M. WeschR. WilliS. WoernerS. Imatinib therapy for patients with recent-onset type 1 diabetes: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Diabetes Endocrinol.20219850251410.1016/S2213‑8587(21)00139‑X34214479
    [Google Scholar]
  71. RobertsonM.A. PadgettL.R. FineJ.A. ChopraG. MastracciT.L. Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish.Islets20201259910710.1080/19382014.2020.179153032715853
    [Google Scholar]
  72. TatovicD McAteerMA BarryJ Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in type 1 diabetes.Immunother Adv.202221ltac00210.1093/immadv/ltac002
    [Google Scholar]
  73. HeroldK.C. GitelmanS.E. WilliS.M. GottliebP.A. LynchW.F. DevineL. SherrJ. RosenthalS.M. AdiS. JalaludinM.Y. MichelsA.W. DziuraJ. BluestoneJ.A. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: A randomised controlled trial.Diabetologia201356239140010.1007/s00125‑012‑2753‑423086558
    [Google Scholar]
  74. HeroldK.C. HagopianW. AugerJ.A. RuizP.E. TaylorL. DonaldsonD. GitelmanS.E. HarlanD.M. XuD. ZivinR.A. BluestoneJ.A. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.N. Engl. J. Med.2002346221692169810.1056/NEJMoa01286412037148
    [Google Scholar]
  75. GuW. HuJ. WangW. LiL. TangW. SunS. CuiW. YeL. ZhangY. HongJ. ZhuD. NingG. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes.Diabetes Care20123571413141910.2337/dc11‑216122723579
    [Google Scholar]
  76. MastrandreaL. YuJ. BehrensT. BuchlisJ. AlbiniC. FourtnerS. QuattrinT. Etanercept treatment in children with new-onset type 1 diabetes: Pilot randomized, placebo- controlled, double-blind study.Diabetes Care20093271244124910.2337/dc09‑005419366957
    [Google Scholar]
  77. SumpterK.M. AdhikariS. GrishmanE.K. WhiteP.C. Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes.Pediatr. Diabetes201112765666710.1111/j.1399‑5448.2011.00761.x21518168
    [Google Scholar]
  78. LudvigssonJ. FaresjöM. HjorthM. AxelssonS. ChéramyM. PihlM. VaaralaO. ForsanderG. IvarssonS. JohanssonC. LindhA. NilssonN.Ö. ÅmanJ. ÖrtqvistE. ZerhouniP. CasasR. GAD treatment and insulin secretion in recent-onset type 1 diabetes.N. Engl. J. Med.2008359181909192010.1056/NEJMoa080432818843118
    [Google Scholar]
  79. LudvigssonJ. KriskyD. CasasR. BattelinoT. CastañoL. GreeningJ. KordonouriO. OtonkoskiT. PozzilliP. RobertJ.J. VeezeH.J. PalmerJ. SamuelssonU. LarssonE.H. ÅmanJ. KärdellG. HelsingborgN.J. LundströmG. AlbinssonE. CarlssonA. NordvallM. ForsH. ArvidssonC.G. EdvardsonS. HanåsR. LarssonK. RathsmanB. ForsgrenH. DesaixH. ForsanderG. NilssonN.Ö. ÅkessonC.G. KeskinenP. VeijolaR. TalvitieT. RaileK. KapellenT. BurgerW. NeuA. EngelsbergerI. HeidtmannB. BechtoldS. LeslieD. ChiarelliF. CicognaniA. ChiumelloG. CeruttiF. ZuccottiG.V. GilaG.A. RicaI. BarrioR. ClementeM. GarciaL.M.J. RodriguezM. GonzalezI. LopezJ.P. OyarzabalM. ReeserH.M. NuboerR. StouthartP. BratinaN. BratanicN. de KerdanetM. WeillJ. SerN. BaratP. BertrandA.M. CarelJ.C. ReynaudR. CoutantR. BaronS. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus.N. Engl. J. Med.2012366543344210.1056/NEJMoa110709622296077
    [Google Scholar]
  80. SkylerJ.S. KrischerJ.P. WolfsdorfJ. CowieC. PalmerJ.P. GreenbaumC. CuthbertsonD. MervisR.L.E. ChaseH.P. LeschekE. Effects of oral insulin in relatives of patients with type 1 diabetes: The diabetes prevention trial-type 1.Diabetes Care20052851068107610.2337/diacare.28.5.106815855569
    [Google Scholar]
  81. BuzzettiR. CerneaS. PetroneA. CapizziM. SpoletiniM. ZampettiS. GuglielmiC. VendittiC. PozzilliP. C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: An exploratory study.Diabetes201160113067307210.2337/db10‑056021896927
    [Google Scholar]
  82. LongS.A. RieckM. SandaS. BollykyJ.B. SamuelsP.L. GolandR. AhmannA. RabinovitchA. AggarwalS. PhippardD. TurkaL.A. EhlersM.R. BianchineP.J. BoyleK.D. AdahS.A. BluestoneJ.A. BucknerJ.H. GreenbaumC.J. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments tregs yet transiently impairs β-cell function.Diabetes20126192340234810.2337/db12‑004922721971
    [Google Scholar]
  83. HerrathV.M. PeakmanM. RoepB. Progress in immune-based therapies for type 1 diabetes.Clin. Exp. Immunol.2013172218620210.1111/cei.1208523574316
    [Google Scholar]
  84. WangY. BlackK.C.L. LuehmannH. LiW. ZhangY. CaiX. WanD. LiuS.Y. LiM. KimP. LiZ.Y. WangL.V. LiuY. XiaY. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment.ACS Nano2013732068207710.1021/nn304332s23383982
    [Google Scholar]
  85. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  86. AnselmoA.C. ZhangM. KumarS. VogusD.R. MenegattiS. HelgesonM.E. MitragotriS. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.ACS Nano2015933169317710.1021/acsnano.5b0014725715979
    [Google Scholar]
  87. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat377624150417
    [Google Scholar]
  88. LorenzoA.C. ConcheiroA. Smart drug delivery systems: From fundamentals to the clinic.Chem. Commun.201450587743776510.1039/C4CC01429D24805962
    [Google Scholar]
  89. KwonE.J. LoJ.H. BhatiaS.N. Smart nanosystems: Bio-inspired technologies that interact with the host environment.Proc. Natl. Acad. Sci.201511247144601446610.1073/pnas.150852211226598694
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343081241030054303
Loading
/content/journals/cpd/10.2174/0113816128343081241030054303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test