Skip to content
2000
image of Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems

Abstract

Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen-specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343081241030054303
2024-12-17
2025-01-17
Loading full text...

Full text loading...

References

  1. Bluestone J.A. Herold K. Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010 464 7293 1293 1300 10.1038/nature08933 20432533
    [Google Scholar]
  2. Maahs D.M. Rewers M. Editorial: Mortality and renal disease in type 1 diabetes mellitus--progress made, more to be done. J. Clin. Endocrinol. Metab. 2006 91 10 3757 3759 10.1210/jc.2006‑1730 17028289
    [Google Scholar]
  3. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: The epidemiology of diabetes interventions and complications (EDIC) study. JAMA 2003 290 16 2159 2167 10.1001/jama.290.16.2159 14570951
    [Google Scholar]
  4. Harjutsalo V. Sjöberg L. Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: A cohort study. Lancet 2008 371 9626 1777 1782 10.1016/S0140‑6736(08)60765‑5 18502302
    [Google Scholar]
  5. Akil A.A.S. Yassin E. Maraghi A.A. Aliyev E. Malki A.K. Fakhro K.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J. Transl. Med. 2021 19 1 137 10.1186/s12967‑021‑02778‑6 33794915
    [Google Scholar]
  6. Robertson R.P. Islet transplantation as a treatment for diabetes - A work in progress. N. Engl. J. Med. 2004 350 7 694 705 10.1056/NEJMra032425 14960745
    [Google Scholar]
  7. Steck A.K. Rewers M.J. Genetics of type 1 diabetes. Clin. Chem. 2011 57 2 176 185 10.1373/clinchem.2010.148221 21205883
    [Google Scholar]
  8. Barrett J.C. Clayton D.G. Concannon P. Akolkar B. Cooper J.D. Erlich H.A. Julier C. Morahan G. Nerup J. Nierras C. Plagnol V. Pociot F. Schuilenburg H. Smyth D.J. Stevens H. Todd J.A. Walker N.M. Rich S.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 2009 41 6 703 707 10.1038/ng.381 19430480
    [Google Scholar]
  9. Nerup J. Lernmark A. Autoimmunity in insulin-dependent diabetes mellitus. Am. J. Med. 1981 70 1 135 141 10.1016/0002‑9343(81)90420‑4 7006386
    [Google Scholar]
  10. Jun H.S. Yoon J.W. A new look at viruses in type 1 diabetes. Diabetes Metab. Res. Rev. 2003 19 1 8 31 10.1002/dmrr.337 12592641
    [Google Scholar]
  11. Bottinger E.P. Foundations, promises and uncertainties of personalized medicine. Mt. Sinai J. Med. 2007 74 1 15 21 10.1002/msj.20005 17516562
    [Google Scholar]
  12. (2) Classification and diagnosis of diabetes. Diabetes Care 2015 38 S8 S16 10.2337/dc15‑S005 25537714
    [Google Scholar]
  13. Regnell S.E. Lernmark Å. Early prediction of autoimmune (type 1) diabetes. Diabetologia 2017 60 8 1370 1381 10.1007/s00125‑017‑4308‑1 28550517
    [Google Scholar]
  14. Haak T Gölz S Fritsche A Füchtenbusch M Siegmund T Schnellbächer E Therapy of type 1 diabetes. Exp Clin Endocrinol Diabetes. 2019 127 S01 S27 s38 10.1055/a‑0984‑5696
    [Google Scholar]
  15. Conrad B. Weidmann E. Trucco G. Rudert W.A. Behboo R. Ricordi C. Rilo R.H. Finegold D. Trucco M. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature 1994 371 6495 351 355 10.1038/371351a0 8090207
    [Google Scholar]
  16. Herold K.C. Delong T. Perdigoto A.L. Biru N. Brusko T.M. Walker L.S.K. The immunology of type 1 diabetes. Nat. Rev. Immunol. 2024 24 6 435 451 10.1038/s41577‑023‑00985‑4 38308004
    [Google Scholar]
  17. Wong F.S. Janeway C.A. Jr The role of CD4 and CD8 T cells in type I diabetes in the NOD mouse. Res. Immunol. 1997 148 5 327 332 10.1016/S0923‑2494(97)87242‑2 9352597
    [Google Scholar]
  18. Yoon J.W. Jun H.S. Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity 1998 27 2 109 122 10.3109/08916939809008041 9583742
    [Google Scholar]
  19. Yoon J.W. Jun H.S. Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus. Ann. N. Y. Acad. Sci. 2001 928 1 200 211 10.1111/j.1749‑6632.2001.tb05650.x 11795511
    [Google Scholar]
  20. Kassem S.A. Ariel I. Thornton P.S. Scheimberg I. Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 2000 49 8 1325 1333 10.2337/diabetes.49.8.1325 10923633
    [Google Scholar]
  21. Turley S. Poirot L. Hattori M. Benoist C. Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med. 2003 198 10 1527 1537 10.1084/jem.20030966 14623908
    [Google Scholar]
  22. Calderon B. Unanue E.R. Antigen presentation events in autoimmune diabetes. Curr. Opin. Immunol. 2012 24 1 119 128 10.1016/j.coi.2011.11.005 22178549
    [Google Scholar]
  23. Marrack P. Kappler J.W. Do MHCII-presented neoantigens drive type 1 diabetes and other autoimmune diseases? Cold Spring Harb. Perspect. Med. 2012 2 9 a007765 10.1101/cshperspect.a007765 22951444
    [Google Scholar]
  24. Keymeulen B. Vandemeulebroucke E. Ziegler A.G. Mathieu C. Kaufman L. Hale G. Gorus F. Goldman M. Walter M. Candon S. Schandene L. Crenier L. Block D.C. Seigneurin J.M. Pauw D.P. Pierard D. Weets I. Rebello P. Bird P. Berrie E. Frewin M. Waldmann H. Bach J.F. Pipeleers D. Chatenoud L. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 2005 352 25 2598 2608 10.1056/NEJMoa043980 15972866
    [Google Scholar]
  25. Knight R.R. Kronenberg D. Zhao M. Huang G.C. Eichmann M. Bulek A. Wooldridge L. Cole D.K. Sewell A.K. Peakman M. Skowera A. Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity. Diabetes 2013 62 1 205 213 10.2337/db12‑0315 22936177
    [Google Scholar]
  26. Wong F.S. Karttunen J. Dumont C. Wen L. Visintin I. Pilip I.M. Shastri N. Pamer E.G. Janeway C.A. Jr Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med. 1999 5 9 1026 1031 10.1038/12465 10470079
    [Google Scholar]
  27. Katz J. Benoist C. Mathis D. Major histocompatibility complex class I molecules are required for the development of insulitis in non‐obese diabetic mice. Eur. J. Immunol. 1993 23 12 3358 3360 10.1002/eji.1830231244 8258349
    [Google Scholar]
  28. Williams H.E.E. Palmer S.E. Charlton B. Slattery R.M. Beta cell MHC class I is a late requirement for diabetes. Proc. Natl. Acad. Sci. 2003 100 11 6688 6693 10.1073/pnas.1131954100 12750472
    [Google Scholar]
  29. Kägi D. Odermatt B. Seiler P. Zinkernagel R.M. Mak T.W. Hengartner H. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J. Exp. Med. 1997 186 7 989 997 10.1084/jem.186.7.989 9314549
    [Google Scholar]
  30. Richardson N Wraith DC Advancement of antigen-specific immunotherapy: Knowledge transfer between allergy and autoimmunity. Immunotherapy Adv. 2021 1 1 ltab009 10.1093/immadv/ltab009
    [Google Scholar]
  31. Dobson F. Hinman R.S. Roos E.M. Abbott J.H. Stratford P. Davis A.M. Buchbinder R. Mackler S.L. Henrotin Y. Thumboo J. Hansen P. Bennell K.L. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarth. Cartil. 2013 21 8 1042 1052 10.1016/j.joca.2013.05.002 23680877
    [Google Scholar]
  32. Fuhlbrigge R. Yip L. Self-antigen expression in the peripheral immune system: Roles in self-tolerance and type 1 diabetes pathogenesis. Curr. Diab. Rep. 2014 14 9 525 10.1007/s11892‑014‑0525‑x 25030265
    [Google Scholar]
  33. Li F. Ouyang J. Chen Z. Zhou Z. Essola M.J. Ali B. Wu X. Zhu M. Guo W. Liang X.J. Nanomedicine for T‐Cell mediated immunotherapy. Adv. Mater. 2024 36 22 2301770 10.1002/adma.202301770 36964936
    [Google Scholar]
  34. Nemazee D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 2017 17 5 281 294 10.1038/nri.2017.19 28368006
    [Google Scholar]
  35. Cady C.T. Powell M.S. Harbeck R.J. Giclas P.C. Murphy J.R. Katial R.K. Weber R.W. Hogarth P.M. Johnson S. Bonvini E. Koenig S. Cambier J.C. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcγRIIA and FcγRIIB. Immunol. Lett. 2010 130 1-2 57 65 10.1016/j.imlet.2009.12.001 20004689
    [Google Scholar]
  36. Xing Y. Hogquist K.A. T-cell tolerance: Central and peripheral. Cold Spring Harb. Perspect. Biol. 2012 4 6 a006957 10.1101/cshperspect.a006957 22661634
    [Google Scholar]
  37. Jeker L.T. Jordan B.H. Bluestone J.A. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb. Perspect. Med. 2012 2 3 a007807 10.1101/cshperspect.a007807 22393537
    [Google Scholar]
  38. Zhang X Dong Y Liu D Yang L Xu J Wang Q Antigen-specific immunotherapies in type 1 diabetes. J Trace Elem Med Biol 2022 73 127040 10.1016/j.jtemb.2022.127040
    [Google Scholar]
  39. Newton S. Altmann D. Heat shock protein 60 and type I diabetes. Stress Proteins. Springer 1999 347 361
    [Google Scholar]
  40. Narendran P. Mannering S.I. Harrison L.C. Proinsulin—A pathogenic autoantigen in type 1 diabetes. Autoimmun. Rev. 2003 2 4 204 210 10.1016/S1568‑9972(03)00009‑0 12848947
    [Google Scholar]
  41. Wendt A. Birnir B. Buschard K. Gromada J. Salehi A. Sewing S. Rorsman P. Braun M. Glucose inhibition of glucagon secretion from rat α-cells is mediated by GABA released from neighboring β-cells. Diabetes 2004 53 4 1038 1045 10.2337/diabetes.53.4.1038 15047619
    [Google Scholar]
  42. Arvan P. Pietropaolo M. Ostrov D. Rhodes C.J. Islet autoantigens: Structure, function, localization, and regulation. Cold Spring Harb. Perspect. Med. 2012 2 8 a007658 10.1101/cshperspect.a007658 22908193
    [Google Scholar]
  43. Kan L. Animal models of bone diseases-A. Animal models for the study of human disease. Elsevier 2013 353 390 10.1016/B978‑0‑12‑415894‑8.00016‑6
    [Google Scholar]
  44. Jin N. Wang Y. Crawford F. White J. Marrack P. Dai S. Kappler J.W. N-terminal additions to the WE14 peptide of chromogranin a create strong autoantigen agonists in type 1 diabetes. Proc. Natl. Acad. Sci. 2015 112 43 13318 13323 10.1073/pnas.1517862112 26453556
    [Google Scholar]
  45. Morran M.P. Vonberg A. Khadra A. Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol. Aspects Med. 2015 42 42 60 10.1016/j.mam.2014.12.004 25579746
    [Google Scholar]
  46. Burrack A.L. Martinov T. Fife B.T. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. 2017 8 343 10.3389/fendo.2017.00343 29259578
    [Google Scholar]
  47. Daniels MJ Jagielnicki M Yeager M Structure/Function analysis of human ZnT8 (SLC30A8): A diabetes risk factor and zinc transporter. Curr Res Struct Biol 2020 2 144 55
    [Google Scholar]
  48. Assfalg R. Knoop J. Hoffman K.L. Pfirrmann M. Gonzalo Z.J.M. Hofelich A. Eugster A. Weigelt M. Matzke C. Reinhardt J. Fuchs Y. Bunk M. Weiss A. Hippich M. Halfter K. Hauck S.M. Hasford J. Petrosino J.F. Achenbach P. Bonifacio E. Ziegler A.G. Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial. Diabetologia 2021 64 5 1079 1092 10.1007/s00125‑020‑05376‑1 33515070
    [Google Scholar]
  49. Weigmann B. Franke R.K. Daniel C. Immunotherapy in autoimmune type 1 diabetes. Rev. Diabet. Stud. 2012 9 2-3 68 81 10.1900/RDS.2012.9.68 23403703
    [Google Scholar]
  50. Aljabali AAA Obeid MA Gammoh O Nanomaterial-driven precision immunomodulation: A new paradigm in therapeutic interventions. Cancers 2024 16 11 2030 10.3390/cancers16112030
    [Google Scholar]
  51. Li M. Song L.J. Qin X.Y. Advances in the cellular immunological pathogenesis of type 1 diabetes. J. Cell. Mol. Med. 2014 18 5 749 758 10.1111/jcmm.12270 24629100
    [Google Scholar]
  52. Lin G. Wang J. Yang Y.G. Zhang Y. Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front. Bioeng. Biotechnol. 2023 11 1242126 10.3389/fbioe.2023.1242126 37877041
    [Google Scholar]
  53. Autonell P.I. Prat S.A. Sarabia C.M. Ampudia R.M. Fernandez R.S. Sanchez A. Izquierdo C. Stratmann T. Domingo P.M. Maspoch D. Verdaguer J. Pi V.M. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS One 2015 10 6 e0127057 10.1371/journal.pone.0127057 26039878
    [Google Scholar]
  54. Bergot AS Buckle I Regulatory t cells induced by single-peptide liposome immunotherapy suppress islet-specific t cell responses to multiple antigens and protect from autoimmune diabetes. J Immunol 2020 204 7 1787 97 10.4049/jimmunol.1901128
    [Google Scholar]
  55. Villalba A. Fernandez R.S. Barrull P.D. Ampudia R.M. Muñoz G.L. Autonell P.I. Aguilera E. Coma M. Sarabia C.M. Vázquez F. Verdaguer J. Pi V.M. Repurposed analog of GLP-1 ameliorates hyperglycemia in type 1 diabetic mice through pancreatic cell reprogramming. Front. Endocrinol. 2020 11 258 10.3389/fendo.2020.00258 32477262
    [Google Scholar]
  56. Chen N. Kroger C.J. Tisch R.M. Bachelder E.M. Ainslie K.M. Prevention of type 1 diabetes with acetalated dextran microparticles containing rapamycin and pancreatic peptide P31. Adv. Healthc. Mater. 2018 7 18 1800341 10.1002/adhm.201800341 30051618
    [Google Scholar]
  57. Yeste A. Takenaka M.C. Mascanfroni I.D. Nadeau M. Kenison J.E. Patel B. Tukpah A.M. Babon J.A.B. DeNicola M. Kent S.C. Pozo D. Quintana F.J. Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2. Sci. Signal. 2016 9 433 ra61 10.1126/scisignal.aad0612 27330188
    [Google Scholar]
  58. Park J. Wu Y. Li Q. Choi J. Ju H. Cai Y. Lee J. Oh Y.K. Nanomaterials for antigen-specific immune tolerance therapy. Drug Deliv. Transl. Res. 2023 13 7 1859 1881 10.1007/s13346‑022‑01233‑3 36094655
    [Google Scholar]
  59. Kishimoto T.K. Maldonado R.A. Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 2018 9 230 10.3389/fimmu.2018.00230 29515571
    [Google Scholar]
  60. Nigam S Bishop JO Nanotechnology in immunotherapy for type 1 diabetes: Promising innovations and future advances. Pharmaceutics 2022 14 3 644
    [Google Scholar]
  61. Pescovitz M.D. Greenbaum C.J. Steinrauf K.H. Becker D.J. Gitelman S.E. Goland R. Gottlieb P.A. Marks J.B. McGee P.F. Moran A.M. Raskin P. Rodriguez H. Schatz D.A. Wherrett D. Wilson D.M. Lachin J.M. Skyler J.S. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 2009 361 22 2143 2152 10.1056/NEJMoa0904452 19940299
    [Google Scholar]
  62. Pescovitz M.D. Greenbaum C.J. Bundy B. Becker D.J. Gitelman S.E. Goland R. Gottlieb P.A. Marks J.B. Moran A. Raskin P. Rodriguez H. Schatz D.A. Wherrett D.K. Wilson D.M. Krischer J.P. Skyler J.S. B-lymphocyte depletion with rituximab and β-cell function: Two-year results. Diabetes Care 2014 37 2 453 459 10.2337/dc13‑0626 24026563
    [Google Scholar]
  63. Moran A. Bundy B. Becker D.J. DiMeglio L.A. Gitelman S.E. Goland R. Greenbaum C.J. Herold K.C. Marks J.B. Raskin P. Sanda S. Schatz D. Wherrett D.K. Wilson D.M. Krischer J.P. Skyler J.S. Pickersgill L. Koning D.E. Ziegler A.G. Böehm B. Badenhoop K. Schloot N. Bak J.F. Pozzilli P. Mauricio D. Donath M.Y. Castaño L. Wägner A. Lervang H.H. Perrild H. Poulsen M.T. Interleukin-1 antagonism in type 1 diabetes of recent onset: Two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 2013 381 9881 1905 1915 10.1016/S0140‑6736(13)60023‑9 23562090
    [Google Scholar]
  64. Norman J.J. Brown M.R. Raviele N.A. Prausnitz M.R. Felner E.I. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr. Diabetes 2013 14 6 459 465 10.1111/pedi.12031 23517449
    [Google Scholar]
  65. Mauras N. Xing D. Fox L.A. Englert K. Darmaun D. Effects of glutamine on glycemic control during and after exercise in adolescents with type 1 diabetes: A pilot study. Diabetes Care 2010 33 9 1951 1953 10.2337/dc10‑0275 20585005
    [Google Scholar]
  66. Santiago T.L. Mauras N. Hossain J. Weltman A.L. Darmaun D. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes? Nutrition 2017 34 1 6 10.1016/j.nut.2016.09.003 28063503
    [Google Scholar]
  67. Freese J. Rawi A.R. Choat H. Martin A. Lunsford A. Tse H. Mick G. McCormick K. Proinsulin to C-Peptide ratio in the first year after diagnosis of type 1 diabetes. J. Clin. Endocrinol. Metab. 2021 106 11 e4318 e4326 10.1210/clinem/dgab463 34228132
    [Google Scholar]
  68. Martin A. Mick G.J. Choat H.M. Lunsford A.A. Tse H.M. McGwin G.G. Jr McCormick K.L. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat. Commun. 2022 13 1 7928 10.1038/s41467‑022‑35544‑3 36566274
    [Google Scholar]
  69. Heath K.E. Feduska J.M. Taylor J.P. Houp J.A. Botta D. Lund F.E. Mick G.J. McGwin G. Jr McCormick K.L. Tse H.M. Gaba and combined gaba with GAD65-ALUM treatment alters TH1 cytokine responses of pbmcs from children with recent-onset type 1 diabetes. Biomedicines 2023 11 7 1948 10.3390/biomedicines11071948 37509587
    [Google Scholar]
  70. Gitelman S.E. Bundy B.N. Ferrannini E. Lim N. Blanchfield J.L. DiMeglio L.A. Felner E.I. Gaglia J.L. Gottlieb P.A. Long S.A. Mari A. Mirmira R.G. Raskin P. Sanda S. Tsalikian E. Wentworth J.M. Willi S.M. Krischer J.P. Bluestone J.A. Barr M. Blanchfield J.L. Bluestone J.A. Buchanan J. Bundy B.N. Cabbage J. Coleman P. Vega D.L.M. DiMeglio L.A. Molina E.C. Felner E.I. Ferrannini E. Ferrara C. Gaglia J.L. Gitelman S.E. Gottlieb P.A. Healy F. Higgins L. Hildinger M. Jenkins M. Bryant K.N. Kinderman A. Koshy N. Kost B. Krischer J.P. Krishfield S. Kucheruk O. Lim N. Lindsley K. Long S.A. Mantravadi M. Mari A. Mesfin S. Michels A. Migre M.E. Minnock P. Mirmira R.G. Nur M.E. Nelson J. Nursing A. O’Donnell R. Olivos D. Parker M. Raskin P. Redl L. Reed N. Resnick B. Sanda S. Sayre P. Serti E. Sims E. Smith K. Soppe C. Stuart F. Szubowicz S. Tansey M. Terrell J. Tersey S. Torok C. Tsalikian E. Watson K. Wentworth J.M. Wesch R. Willi S. Woerner S. Imatinib therapy for patients with recent-onset type 1 diabetes: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2021 9 8 502 514 10.1016/S2213‑8587(21)00139‑X 34214479
    [Google Scholar]
  71. Robertson M.A. Padgett L.R. Fine J.A. Chopra G. Mastracci T.L. Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish. Islets 2020 12 5 99 107 10.1080/19382014.2020.1791530 32715853
    [Google Scholar]
  72. Tatovic D McAteer MA Barry J Barrientos A Terradillos R.K Perera I Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in type 1 diabetes. Immunother Adv. 2022 2 1 ltac002 10.1093/immadv/ltac002
    [Google Scholar]
  73. Herold K.C. Gitelman S.E. Willi S.M. Gottlieb P.A. Lynch W.F. Devine L. Sherr J. Rosenthal S.M. Adi S. Jalaludin M.Y. Michels A.W. Dziura J. Bluestone J.A. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: A randomised controlled trial. Diabetologia 2013 56 2 391 400 10.1007/s00125‑012‑2753‑4 23086558
    [Google Scholar]
  74. Herold K.C. Hagopian W. Auger J.A. Ruiz P.E. Taylor L. Donaldson D. Gitelman S.E. Harlan D.M. Xu D. Zivin R.A. Bluestone J.A. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 2002 346 22 1692 1698 10.1056/NEJMoa012864 12037148
    [Google Scholar]
  75. Gu W. Hu J. Wang W. Li L. Tang W. Sun S. Cui W. Ye L. Zhang Y. Hong J. Zhu D. Ning G. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 2012 35 7 1413 1419 10.2337/dc11‑2161 22723579
    [Google Scholar]
  76. Mastrandrea L. Yu J. Behrens T. Buchlis J. Albini C. Fourtner S. Quattrin T. Etanercept treatment in children with new-onset type 1 diabetes: Pilot randomized, placebo-controlled, double-blind study. Diabetes Care 2009 32 7 1244 1249 10.2337/dc09‑0054 19366957
    [Google Scholar]
  77. Sumpter K.M. Adhikari S. Grishman E.K. White P.C. Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr. Diabetes 2011 12 7 656 667 10.1111/j.1399‑5448.2011.00761.x 21518168
    [Google Scholar]
  78. Ludvigsson J. Faresjö M. Hjorth M. Axelsson S. Chéramy M. Pihl M. Vaarala O. Forsander G. Ivarsson S. Johansson C. Lindh A. Nilsson N.Ö. Åman J. Örtqvist E. Zerhouni P. Casas R. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 2008 359 18 1909 1920 10.1056/NEJMoa0804328 18843118
    [Google Scholar]
  79. Ludvigsson J. Krisky D. Casas R. Battelino T. Castaño L. Greening J. Kordonouri O. Otonkoski T. Pozzilli P. Robert J.J. Veeze H.J. Palmer J. Samuelsson U. Larsson E.H. Åman J. Kärdell G. Helsingborg N.J. Lundström G. Albinsson E. Carlsson A. Nordvall M. Fors H. Arvidsson C.G. Edvardson S. Hanås R. Larsson K. Rathsman B. Forsgren H. Desaix H. Forsander G. Nilsson N.Ö. Åkesson C.G. Keskinen P. Veijola R. Talvitie T. Raile K. Kapellen T. Burger W. Neu A. Engelsberger I. Heidtmann B. Bechtold S. Leslie D. Chiarelli F. Cicognani A. Chiumello G. Cerutti F. Zuccotti G.V. Gila G.A. Rica I. Barrio R. Clemente M. Garcia L.M.J. Rodriguez M. Gonzalez I. Lopez J.P. Oyarzabal M. Reeser H.M. Nuboer R. Stouthart P. Bratina N. Bratanic N. de Kerdanet M. Weill J. Ser N. Barat P. Bertrand A.M. Carel J.C. Reynaud R. Coutant R. Baron S. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 2012 366 5 433 442 10.1056/NEJMoa1107096 22296077
    [Google Scholar]
  80. Skyler J.S. Krischer J.P. Wolfsdorf J. Cowie C. Palmer J.P. Greenbaum C. Cuthbertson D. Mervis R.L.E. Chase H.P. Leschek E. Effects of oral insulin in relatives of patients with type 1 diabetes: The diabetes prevention trial--type 1. Diabetes Care 2005 28 5 1068 1076 10.2337/diacare.28.5.1068 15855569
    [Google Scholar]
  81. Buzzetti R. Cernea S. Petrone A. Capizzi M. Spoletini M. Zampetti S. Guglielmi C. Venditti C. Pozzilli P. C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: An exploratory study. Diabetes 2011 60 11 3067 3072 10.2337/db10‑0560 21896927
    [Google Scholar]
  82. Long S.A. Rieck M. Sanda S. Bollyky J.B. Samuels P.L. Goland R. Ahmann A. Rabinovitch A. Aggarwal S. Phippard D. Turka L.A. Ehlers M.R. Bianchine P.J. Boyle K.D. Adah S.A. Bluestone J.A. Buckner J.H. Greenbaum C.J. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments tregs yet transiently impairs β-cell function. Diabetes 2012 61 9 2340 2348 10.2337/db12‑0049 22721971
    [Google Scholar]
  83. Herrath V.M. Peakman M. Roep B. Progress in immune-based therapies for type 1 diabetes. Clin. Exp. Immunol. 2013 172 2 186 202 10.1111/cei.12085 23574316
    [Google Scholar]
  84. Wang Y. Black K.C.L. Luehmann H. Li W. Zhang Y. Cai X. Wan D. Liu S.Y. Li M. Kim P. Li Z.Y. Wang L.V. Liu Y. Xia Y. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013 7 3 2068 2077 10.1021/nn304332s 23383982
    [Google Scholar]
  85. Albanese A. Tang P.S. Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012 14 1 1 16 10.1146/annurev‑bioeng‑071811‑150124 22524388
    [Google Scholar]
  86. Anselmo A.C. Zhang M. Kumar S. Vogus D.R. Menegatti S. Helgeson M.E. Mitragotri S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015 9 3 3169 3177 10.1021/acsnano.5b00147 25715979
    [Google Scholar]
  87. Mura S. Nicolas J. Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013 12 11 991 1003 10.1038/nmat3776 24150417
    [Google Scholar]
  88. Lorenzo A.C. Concheiro A. Smart drug delivery systems: From fundamentals to the clinic. Chem. Commun. 2014 50 58 7743 7765 10.1039/C4CC01429D 24805962
    [Google Scholar]
  89. Kwon E.J. Lo J.H. Bhatia S.N. Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc. Natl. Acad. Sci. 2015 112 47 14460 14466 10.1073/pnas.1508522112 26598694
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343081241030054303
Loading
/content/journals/cpd/10.2174/0113816128343081241030054303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test