Skip to content
2000
image of Predicting microRNAs and their Target Genes Involved in Sepsis Pathogenesis by using Bioinformatics Methods

Abstract

Introduction

Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression. Such miRNAs are registered in the miRNA databases, such as Gene Expression Omnibus (GEO), with a specific identifier and unique characteristics. There is also computational software, such as TargetScan, that are broadly employed for the analysis of miRNAs, including their identification, target prediction, and functional analysis.

Methods

The current study aimed to predict miRNAs involved in sepsis progression. To this end, the GEO database was employed to find the sepsis-related genome profile. Afterward, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased sepsis progression. The miRNAs complementary to the selected genes were then predicted using TargetScan software. Based on the current analysis, seven miRNAs, including hsa-miR-325-3p, hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-145-5p, and has-miR-181 family, were predicted to participate in sepsis pathogenesis. Among the predicted miRNAs, hsa-miR-325-3p has not been previously predicted or validated to be involved in septic conditions.

Results

Our prediction results showed that hsa-miR-325-3p may target genes implicating in both anti-(ETFB gene) and pro-inflammatory (TCEA1 and PTPN1 genes) responses, suggesting it is an immune hemostasis regulator during sepsis inflammation. Although the role of other predicted miRNAs has been already validated in the sepsis pathogenesis, the current study predicted new targets of these miRNAs, which have not been reported by previous or experimental studies on sepsis and other pathogenic conditions. Notably, other miRNAs, including hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, and hsa-miR-145-5p were predicted to target genes participating in inflammatory responses, including BLOC1S1, POLR2G, PTPN1, TCEA1, and CCT3.

Conclusion

In conclusion, the results of the present study can provide promising targets as therapeutic and diagnostic tools to treat and manage inflammation sepsis, such as neutropenic sepsis. However, these findings should be further evaluated in experimental studies to find their exact effects and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304401241031094647
2025-01-01
2025-01-16
Loading full text...

Full text loading...

References

  1. Faix J.D. Biomarkers of sepsis. Crit. Rev. Clin. Lab. Sci. 2013 50 1 23 36 10.3109/10408363.2013.764490 23480440
    [Google Scholar]
  2. León A.L. Hoyos N.A. Barrera L.I. De La Rosa G. Dennis R. Dueñas C. Granados M. Londoño D. Rodríguez F.A. Molina F.J. Ortiz G. Jaimes F.A. Clinical course of sepsis, severe sepsis, and septic shock in a cohort of infected patients from ten Colombian hospitals. BMC Infect. Dis. 2013 13 1 345 10.1186/1471‑2334‑13‑345 23883312
    [Google Scholar]
  3. Bone R.C. Balk R.A. Cerra F.B. Dellinger R.P. Fein A.M. Knaus W.A. Schein R.M.H. Sibbald W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992 101 6 1644 1655 10.1378/chest.101.6.1644 1303622
    [Google Scholar]
  4. Otto G.P. Sossdorf M. Claus R.A. Rödel J. Menge K. Reinhart K. Bauer M. Riedemann N.C. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care 2011 15 4 R183 10.1186/cc10332 21798063
    [Google Scholar]
  5. Hernández-Quiles R. Merino-Lucas E. Boix V. Fernández-Gil A. Rodríguez-Díaz J.C. Gimeno A. Valero B. Sánchez-Martínez R. Ramos-Rincón J.M. Bacteraemia and quick Sepsis Related Organ Failure Assessment (qSOFA) are independent risk factors for long-term mortality in very elderly patients with suspected infection: Retrospective cohort study. BMC Infect. Dis. 2022 22 1 248 10.1186/s12879‑022‑07242‑4 35279079
    [Google Scholar]
  6. Sultan Et AL QM Effect of three plant oils on Aeromonas hydrophila infection, immune-related renal gene expression, and serum biochemical parameters in the common carp. Egypt J Aquat Biol Fish 2022 26 6 981 990 10.21608/ejabf.2022.276954
    [Google Scholar]
  7. Al-Rashedi N.A.M. Alburkat H. Munahi M.G. Jasim A.H. Salman B.K. Oda B.S. Mossa A.A.A. Abbas A.A. Vapalahti O. Sironen T. Smura T. Genome sequence of an early imported case of SARS-CoV-2 delta variant (B.1.617.2 AY.122) in Iraq in April 2021. Microbiol. Resour. Announc. 2022 11 11 e00977-22 10.1128/mra.00977‑22 36250864
    [Google Scholar]
  8. Soni M. Handa M. Singh K.K. Shukla R. Recent nanoengineered diagnostic and therapeutic advancements in management of sepsis. J. Control. Release 2022 352 931 945 10.1016/j.jconrel.2022.10.029 36273527
    [Google Scholar]
  9. Majhol R.H. Al-Rashedi N.A.M. Al-Oebady M.A.H. Bacterial activity on hyphal formation of Candida albicans. J. Pharm. Negat. Results 2022 13 552 555
    [Google Scholar]
  10. Ayati S.H. Fazeli B. Momtazi-borojeni A.A. Cicero A.F.G. Pirro M. Sahebkar A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol. 2017 116 147 158 10.1016/j.critrevonc.2017.05.008 28693796
    [Google Scholar]
  11. Moghaddam A.S. Afshari J.T. Esmaeili S.A. Saburi E. Joneidi Z. Momtazi-Borojeni A.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019 285 1 9 10.1016/j.atherosclerosis.2019.03.016 30939341
    [Google Scholar]
  12. Moghiman T. Barghchi B. Esmaeili S.A. Shabestari M.M. Tabaee S.S. Momtazi-Borojeni A.A. Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Fail. Rev. 2021 26 1 205 213 10.1007/s10741‑020‑10001‑9 32632768
    [Google Scholar]
  13. Momtazi A.A. Banach M. Pirro M. Stein E.A. Sahebkar A. MicroRNAs: New therapeutic targets for familial hypercholesterolemia? Clin. Rev. Allergy Immunol. 2018 54 2 224 233 10.1007/s12016‑017‑8611‑x 28534160
    [Google Scholar]
  14. Parsa-kondelaji M. Musavi M. Barzegar F. Abbasian N. Rostami M. R Seyedtaghia M. S Hashemi S. Modi M. Nikfar B. A Momtazi-Borojeni A. Dysregulation of miRNA expression in patients with chronic myelogenous leukemia at diagnosis: A systematic review. Biomarkers Med. 2023 17 24 1021 1029 10.2217/bmm‑2023‑0575
    [Google Scholar]
  15. Tavasolian F. Abdollahi E. Rezaei R. Momtazi-borojeni A.A. Henrotin Y. Sahebkar A. Altered expression of microRNAs in rheumatoid arthritis. J. Cell. Biochem. 2018 119 1 478 487 10.1002/jcb.26205 28598026
    [Google Scholar]
  16. Zhou R. Wang L. Zhao G. Chen D. Song X. Momtazi-Borojeni A.A. Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020 72 12 2546 2562 10.1002/iub.2396 33053610
    [Google Scholar]
  17. Bolandi Z. Hashemi S.M. Abasi M. Musavi M. Aghamiri S. Miyanmahaleh N. Ghanbarian H. In vitro naive CD4+ T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol. Biol. Rep. 2023 50 11 9037 9046 10.1007/s11033‑023‑08767‑w 37725284
    [Google Scholar]
  18. Abdulmalek Jaafar J. Al-Rashedi N.A.M. Evaluation of the association of transferrin receptor type 2 gene mutation (Y250X) with iron overload in major β-thalassemia. Arch. Razi Inst. 2021 76 5 1551 1554 35355750
    [Google Scholar]
  19. Al-Rashedi N.A.M. Munahi M.G. AH ALObaidi L. Prediction of potential inhibitors against SARS-CoV-2 endoribonuclease: RNA immunity sensing. J. Biomol. Struct. Dyn. 2022 40 11 4879 4892 10.1080/07391102.2020.1863265 33357040
    [Google Scholar]
  20. Tin T.T. Wei C.J. Min O.T. Feng B.Z. Xian T.C. Real estate price forecasting utilizing recurrent neural networks incorporating genetic algorithms. Int J Innovative Res Sci Stud 2024 7 3 1216 1226 10.53894/ijirss.v7i3.3220
    [Google Scholar]
  21. Kassem A.L.A. Snake Optimization with deep learning enabled disease detection model for colorectal cancer. J Smart Internet Things 2023 2022 178 195
    [Google Scholar]
  22. Chalo S. Berkan AYDİLEK İ. A new preprocessing method for diabetes and biomedical data classification. Qubahan Acad J 2023 2 4 6 18 10.48161/qaj.v2n4a135
    [Google Scholar]
  23. Ling H. Non-coding RNAs: Therapeutic strategies and delivery systems. Adv. Exp. Med. Biol. 2016 937 229 237 10.1007/978‑3‑319‑42059‑2_12 27573903
    [Google Scholar]
  24. Gu S. Jin L. Zhang F. Sarnow P. Kay M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol. 2009 16 2 144 150 10.1038/nsmb.1552 19182800
    [Google Scholar]
  25. Meister G. Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004 431 7006 343 349 10.1038/nature02873 15372041
    [Google Scholar]
  26. Tijsterman M. Plasterk R.H.A. Dicers at RISC. Cell 2004 117 1 1 3 10.1016/S0092‑8674(04)00293‑4 15066275
    [Google Scholar]
  27. Pritchard C.C. Cheng H.H. Tewari M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012 13 5 358 369 10.1038/nrg3198 22510765
    [Google Scholar]
  28. SalehiM. DarroudiM. MusaviM. Momtazi-BorojeniA.A. Prediction of age-related microRNA signature in mesenchymal stem cells by using computational methods. Curr. Stem Cell Res. Ther. 2024 19 10.2174/011574888X29114724050707210738747225
    [Google Scholar]
  29. Griffiths-Jones S. Grocock R.J. van Dongen S. Bateman A. Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006 34 90001 D140 D144 10.1093/nar/gkj112 16381832
    [Google Scholar]
  30. Tang B.M.P. McLean A.S. Dawes I.W. Huang S.J. Lin R.C.Y. The use of gene-expression profiling to identify candidate genes in human sepsis. Am. J. Respir. Crit. Care Med. 2007 176 7 676 684 10.1164/rccm.200612‑1819OC 17575094
    [Google Scholar]
  31. Miao Y. Wang M. Cai X. Zhu Q. Mao L. Leucine rich alpha-2-glycoprotein 1 (Lrg1) silencing protects against sepsis-mediated brain injury by inhibiting transforming growth factor beta1 (TGFβ1)/SMAD signaling pathway. Bioengineered 2022 13 3 7316 7327 10.1080/21655979.2022.2048775 35264055
    [Google Scholar]
  32. Bindayna K. MicroRNA as sepsis biomarkers: A comprehensive review. Int. J. Mol. Sci. 2024 25 12 6476 10.3390/ijms25126476 38928179
    [Google Scholar]
  33. Testa U. Pelosi E. Castelli G. Labbaye C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA 2017 3 3 22 10.3390/ncrna3030022 29657293
    [Google Scholar]
  34. Antonakos N. Gilbert C. Théroude C. Schrijver I.T. Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front. Immunol. 2022 13 951798 10.3389/fimmu.2022.951798 35990654
    [Google Scholar]
  35. Ma Y. Vilanova D. Atalar K. Delfour O. Edgeworth J. Ostermann M. Hernandez-Fuentes M. Razafimahatratra S. Michot B. Persing D.H. Ziegler I. Törös B. Mölling P. Olcén P. Beale R. Lord G.M. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLoS One 2013 8 10 e75918 10.1371/journal.pone.0075918 24146790
    [Google Scholar]
  36. Zhang Y. Ning B. Signaling pathways and intervention therapies in sepsis. Signal Transduct. Target. Ther. 2021 6 1 407 10.1038/s41392‑021‑00816‑9 34824200
    [Google Scholar]
  37. Bohmwald K. Andrade C.A. Mora V.P. Muñoz J.T. Ramírez R. Rojas M.F. Kalergis A.M. Neurotrophin signaling impairment by viral infections in the central nervous system. Int. J. Mol. Sci. 2022 23 10 5817 10.3390/ijms23105817 35628626
    [Google Scholar]
  38. Tsai H.L. Deng W.P. Lai W.F.T. Chiu W.T. Yang C.B. Tsai Y.H. Hwang S.M. Renshaw P.F. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS One 2014 9 8 e104937 10.1371/journal.pone.0104937 25170755
    [Google Scholar]
  39. Sun J.D. Zeng Y.H. Zhang Y. Yang X.X. Zeng W.J. Zhao L.S. Liang C.G. MiR-325-3p promotes locomotor function recovery in rats with spinal cord injury via inhibiting the expression of neutrophil elastase. Eur. Rev. Med. Pharmacol. Sci. 2019 23 24 10631 10637 31858529
    [Google Scholar]
  40. de Azambuja Rodrigues P.M. Valente R.H. Brunoro G.V.F. Nakaya H.T.I. Araújo-Pereira M. Bozza P.T. Bozza F.A. Trugilho M.R.O. Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock. Sci. Rep. 2021 11 1 15149 10.1038/s41598‑021‑94474‑0
    [Google Scholar]
  41. Miao H. Chen S. Ding R. Evaluation of the molecular mechanisms of sepsis using proteomics. Front. Immunol. 2021 12 733537 10.3389/fimmu.2021.733537 34745104
    [Google Scholar]
  42. Lee I. Hüttemann M. Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 9 1579 1586 10.1016/j.bbadis.2014.05.031 24905734
    [Google Scholar]
  43. Koh G.C.K.W. Schreiber M.F. Bautista R. Maude R.R. Dunachie S. Limmathurotsakul D. Day N.P.J. Dougan G. Peacock S.J. Host responses to melioidosis and tuberculosis are both dominated by interferon-mediated signaling. PLoS One 2013 8 1 e54961 10.1371/journal.pone.0054961 23383015
    [Google Scholar]
  44. Yu J. Xue J. Liu C. Zhang A. Qin L. Liu J. Yang Y. MiR-146a-5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7. J. Biochem. Mol. Toxicol. 2022 36 10 e23151 10.1002/jbt.23151 35781746
    [Google Scholar]
  45. Wang S. Yang Y. Suen A. Zhu J. Williams B. Hu J. Chen F. Kozar R. Shen S. Li Z. Jeyaram A. Jay S.M. Zou L. Chao W. Role of extracellular microRNA-146a-5p in host innate immunity and bacterial sepsis. iScience 2021 24 12 103441 10.1016/j.isci.2021.103441 34877498
    [Google Scholar]
  46. Pan D. Zhu J. Cao L. Zhu B. Lin L. Ruscogenin attenuates lipopolysaccharide-induced septic vascular endothelial dysfunction by modulating the miR-146a-5p/NRP2/SSH1 axis. Drug Des. Devel. Ther. 2022 16 1099 1106 10.2147/DDDT.S356451 35440867
    [Google Scholar]
  47. Lai Y. Lin C. Lin X. Wu L. Zhao Y. Shao T. Lin F. Comprehensive analysis of molecular subtypes and hub genes of sepsis by gene expression profiles. Front. Genet. 2022 13 884762 10.3389/fgene.2022.884762 36035194
    [Google Scholar]
  48. Scicluna B.P. van ’t Veer C. Nieuwdorp M. Felsmann K. Wlotzka B. Stroes E.S.G. van der Poll T. Role of tumor necrosis factor-α in the human systemic endotoxin-induced transcriptome. PLoS One 2013 8 11 e79051 10.1371/journal.pone.0079051 24236088
    [Google Scholar]
  49. Bu L. Wang Z. Hu S. Zhao W. Geng X. Zhou T. Zhuo L. Chen X. Sun Y. Wang Y. Li X. Identification of Key mRNAs and lncRNAs in neonatal sepsis by gene expression profiling. Comput. Math. Methods Med. 2020 2020 1 13 10.1155/2020/8741739 32908583
    [Google Scholar]
  50. Reimer E. Stempel M. Chan B. Bley H. Brinkmann M.M. Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection. J. Cell Sci. 2021 134 5 jcs246421 10.1242/jcs.246421 32265274
    [Google Scholar]
  51. Delile E. Nevière R. Thiébaut P.A. Maupoint J. Mulder P. Coquerel D. Renet S. Rieusset J. Richard V. Tamion F. Reduced insulin resistance contributes to the beneficial effect of protein tyrosine phosphatase-1B deletion in a mouse model of sepsis. Shock: Injury, Inflammation, and Sepsis. Shock 2017 48 3 355 363 10.1097/SHK.0000000000000853 28272165
    [Google Scholar]
  52. Dong X. Xu M. Ren Z. Gu J. Lu M. Lu Q. Zhong N. Regulation of CBL and ESR1 expression by microRNA-22-3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma. Int. J. Mol. Med. 2016 38 2 446 456 10.3892/ijmm.2016.2634 27277384
    [Google Scholar]
  53. Proença M.A. Biselli J.M. Succi M. Severino F.E. Berardinelli G.N. Caetano A. Reis R.M. Hughes D.J. Silva A.E. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J. Gastroenterol. 2018 24 47 5351 5365 10.3748/wjg.v24.i47.5351 30598580
    [Google Scholar]
  54. Ge Q.M. Huang C.M. Zhu X.Y. Bian F. Pan S.M. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One 2017 12 3 e0173292 10.1371/journal.pone.0173292 28296904
    [Google Scholar]
  55. Feng Y. Liu J. Wu R. Yang P. Ye Z. Song F. NEAT1 aggravates sepsis-induced acute kidney injury by sponging miR-22-3p. Open Med. (Wars.) 2020 15 1 333 342 10.1515/med‑2020‑0401 33335994
    [Google Scholar]
  56. Zhang P. Guo E. Xu L. Shen Z. Jiang N. Liu X. Knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney. BMC Nephrol. 2024 25 1 79 10.1186/s12882‑024‑03513‑1 38443846
    [Google Scholar]
  57. Wang X. Wang Y. Kong M. Yang J. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci. Rep. 2020 40 6 BSR20200527 10.1042/BSR20200527 32412059
    [Google Scholar]
  58. Yang S. Wang Y. Gao H. Wang B. MicroRNA-30a-3p overexpression improves sepsis-induced cell apoptosis in vitro and in vivo via the PTEN/PI3K/Akt signaling pathway. Exp. Ther. Med. 2018 15 2 2081 2087 29434809
    [Google Scholar]
  59. Yao Y. Sun F. Lei M. miR-25 inhibits sepsis-induced cardiomyocyte apoptosis by targetting PTEN. Biosci. Rep. 2018 38 2 BSR20171511 10.1042/BSR20171511 29440462
    [Google Scholar]
  60. Zhang J. Li L. Peng Y. Chen Y. Lv X. Li S. Qin X. Yang H. Wu C. Liu Y. Surface chemistry induces mitochondria-mediated apoptosis of breast cancer cells via PTEN/PI3K/Akt signaling pathway. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 1 172 185 10.1016/j.bbamcr.2017.10.007 29054429
    [Google Scholar]
  61. Kim J.H. Lee G. Cho Y.L. Kim C.K. Han S. Lee H. Choi J.S. Choe J. Won M.H. Kwon Y.G. Ha K.S. Kim Y.M. Desmethylanhydroicaritin inhibits NF-κB-regulated inflammatory gene expression by modulating the redox-sensitive PI3K/PTEN/Akt pathway. Eur. J. Pharmacol. 2009 602 2-3 422 431 10.1016/j.ejphar.2008.10.062 19027002
    [Google Scholar]
  62. Zhu D. Wu X. Resveratrol inhibits circ_0074371-related pathway to alleviate sepsis-induced acute kidney injury. Biochem. Genet. 2024 62 3 1779 1794 10.1007/s10528‑023‑10517‑3 37730967
    [Google Scholar]
  63. Pan Y. Wang J. Xue Y. Zhao J. Li D. Zhang S. Li K. Hou Y. Fan H. GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a. Front. Immunol. 2018 9 2272 10.3389/fimmu.2018.02272 30337925
    [Google Scholar]
  64. Ma F. Li Z. Cao J. Kong X. Gong G. A TGFBR2/SMAD2/DNMT1/miR-145 negative regulatory loop is responsible for LPS-induced sepsis. Biomed. Pharmacother. 2019 112 108626 10.1016/j.biopha.2019.108626 30784922
    [Google Scholar]
  65. Liu J. Li L. He S. Zheng X. Zhu D. Kong G. Li P. Exploring the prognostic necroptosis-related genes and underlying mechanism in sepsis using bioinformatics. Shock 2024 62 3 363 374 10.1097/SHK.0000000000002414 38920136
    [Google Scholar]
  66. Xu J. Feng Y. Jeyaram A. Jay S.M. Zou L. Chao W. Circulating plasma extracellular vesicles from septic mice induce inflammation via microRNA- and TLR7-dependent mechanisms. J. Immunol. 2018 201 11 3392 3400 10.4049/jimmunol.1801008 30355788
    [Google Scholar]
  67. Lin R. Hu H. Li L. Chen G. Luo L. Rao P. The potential of microRNA-126 in predicting disease risk, mortality of sepsis, and its correlation with inflammation and sepsis severity. J. Clin. Lab. Anal. 2020 34 9 e23408 10.1002/jcla.23408 32484987
    [Google Scholar]
  68. Zou Q. Zhao S. Wu Q. Wang H. He X. Liu C. Correlation analysis of microRNA-126 expression in peripheral blood lymphocytes with apoptosis and prognosis in patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2020 32 8 938 942 32912406
    [Google Scholar]
  69. Mao X. Wu Y. Xu W. miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function. Clin. Respir. J. 2023 17 7 629 637 10.1111/crj.13646 37248197
    [Google Scholar]
  70. Li P. Wu Y. Goodwin A.J. Wolf B. Halushka P.V. Wang H. Zingarelli B. Fan H. Circulating extracellular vesicles are associated with the clinical outcomes of sepsis. Front. Immunol. 2023 14 1150564 10.3389/fimmu.2023.1150564 37180111
    [Google Scholar]
  71. Zhou Y. Li P. Goodwin A.J. Cook J.A. Halushka P.V. Chang E. Fan H. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther. 2018 26 5 1375 1384 10.1016/j.ymthe.2018.02.020 29599080
    [Google Scholar]
  72. Jeong J.H. Kim J. Kim J. Heo H.R. Jeong J.S. Ryu Y.J. Hong Y. Han S.S. Hong S.H. Lee S.J. Kim W.J. ACN9 regulates the inflammatory responses in human bronchial epithelial cells. Tuberc. Respir. Dis. (Seoul) 2017 80 3 247 254 10.4046/trd.2017.80.3.247 28747957
    [Google Scholar]
  73. Dong L. Li H. Zhang S. Yang G. miR-148 family members are putative biomarkers for sepsis. Mol. Med. Rep. 2019 19 6 5133 5141 10.3892/mmr.2019.10174 31059023
    [Google Scholar]
  74. McClure C. Brudecki L. Ferguson D.A. Yao Z.Q. Moorman J.P. McCall C.E. El Gazzar M. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect. Immun. 2014 82 9 3816 3825 10.1128/IAI.01495‑14 24980967
    [Google Scholar]
  75. Lauren C.T. Garzon M.C. Clinical syndromes and cardinal features of infectious diseases: Approach to diagnosis and initial management, Principles and Practice of Pediatric Infectious Diseases. 4th ed Edinburgh Elsevier Saunders 2012 98 505
    [Google Scholar]
  76. Dan C. Jinjun B. Zi-Chun H. Lin M. Wei C. Xu Z. Ri Z. Shun C. Wen-Zhu S. Qing-Cai J. Wu Y. Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol. Med. 2015 7 2 140 157 10.15252/emmm.201404797 25535255
    [Google Scholar]
  77. Ali M.A. Khamis Hussein S. Ali Mohamed E. Ezzat M.A. abdelmoktader A. Habib M.A. Kamal M. Ahmed F.A. Ali D.Y. Diagnostic and prognostic values of miR181b-5p and miR21-5p for neonatal sepsis risk and their link to SNAP II score and disease mortality. Noncoding RNA Res. 2023 8 1 115 125 10.1016/j.ncrna.2022.11.001 36474749
    [Google Scholar]
  78. Sui X. Liu W. Liu Z. Exosomal lncRNA-p21 derived from mesenchymal stem cells protects epithelial cells during LPS-induced acute lung injury by sponging miR-181. Acta Biochim. Biophys. Sin. (Shanghai) 2021 53 6 748 757 10.1093/abbs/gmab043 33891698
    [Google Scholar]
  79. Hussein S. Michael P. Brabant D. Omri A. Narain R. Passi K. Ramana C.V. Parrillo J.E. Kumar A. Parissenti A. Kumar A. Characterization of human septic sera induced gene expression modulation in human myocytes. Int. J. Clin. Exp. Med. 2009 2 2 131 148 19684886
    [Google Scholar]
  80. Lifang Z. Exploration of values of miR-7110-5p and miR-223-3p in predicting sepsis. Cell. Mol. Biol. 2022 68 8 69 73 10.14715/cmb/2022.68.8.12 36800833
    [Google Scholar]
  81. Yuan S. Wu Q. Wang Z. Che Y. Zheng S. Chen Y. Zhong X. Shi F. miR-223: An immune regulator in infectious disorders. Front. Immunol. 2021 12 781815 10.3389/fimmu.2021.781815 34956210
    [Google Scholar]
  82. Zhang W. Jia J. Liu Z. Si D. Ma L. Zhang G. Circulating microRNAs as biomarkers for sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med. 2019 19 1 93 10.1186/s12890‑019‑0836‑4
    [Google Scholar]
  83. Dang C.P. Leelahavanichkul A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One 2020 15 7 e0236038 10.1371/journal.pone.0236038 32658933
    [Google Scholar]
  84. Liu D. Wang Z. Wang H. Ren F. Li Y. Zou S. Xu J. Xie L. The protective role of miR-223 in sepsis-induced mortality. Sci. Rep. 2020 10 1 17691 10.1038/s41598‑020‑74965‑2 33077816
    [Google Scholar]
  85. Wan P. Tan X. Sheng M. Xiang Y. Wang P. Yu M. Platelet exosome-derived miR-223-3p regulates pyroptosis in the cell model of sepsis-induced acute renal injury by targeting mediates NLRP3. Crit. Rev. Immunol. 2024 44 3 53 65 10.1615/CritRevImmunol.2023051651 38421705
    [Google Scholar]
  86. Zhang R. Dang X. Liu J. Feng H. Sun J. Peng Z. CIRCTDRD9 contributes to sepsis-induced acute lung injury by enhancing the expression of rab10 via directly binding to mIR-223-3P. Shock 2023 60 2 206 213 10.1097/SHK.0000000000002169 37548713
    [Google Scholar]
  87. Wang X. Huang W. Yang Y. Wang Y. Peng T. Chang J. Caldwell C.C. Zingarelli B. Fan G.C. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 5 701 711 10.1016/j.bbadis.2014.01.012 24486439
    [Google Scholar]
  88. Szilágyi B. Fejes Z. Rusznyák Á. Fenyvesi F. Pócsi M. Halmi S. Griger Z. Kunapuli S.P. Kappelmayer J. Nagy B. Jr Platelet microparticles enriched in miR-223 reduce ICAM-1-dependent vascular inflammation in septic conditions. Front. Physiol. 2021 12 658524 10.3389/fphys.2021.658524 34135769
    [Google Scholar]
  89. Hong J. Mo S. Gong F. Lin Z. Cai H. Shao Z. Yang X. Sun R. Zhang Q. Liu J. lncRNA-SNHG14 plays a role in acute lung injury induced by lipopolysaccharide through regulating autophagy via miR-223-3p/Foxo3a. Mediators Inflamm. 2021 2021 1 15 10.1155/2021/7890288 34539244
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304401241031094647
Loading
/content/journals/cpd/10.2174/0113816128304401241031094647
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: microRNAs ; gene expression omnibus ; TargetScan ; Sepsis ; bioinformatics ; bacterial infection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test