Skip to content
2000
Volume 31, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression. Such miRNAs are registered in the miRNA databases, such as Gene Expression Omnibus (GEO), with a specific identifier and unique characteristics. There is also computational software, such as TargetScan, that are broadly employed for the analysis of miRNAs, including their identification, target prediction, and functional analysis.

Methods

The current study aimed to predict miRNAs involved in sepsis progression. To this end, the GEO database was employed to find the sepsis-related genome profile. Afterward, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased sepsis progression. The miRNAs complementary to the selected genes were then predicted using TargetScan software. Based on the current analysis, seven miRNAs, including hsa-miR-325-3p, hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-145-5p, and has-miR-181 family, were predicted to participate in sepsis pathogenesis. Among the predicted miRNAs, hsa-miR-325-3p has not been previously predicted or validated to be involved in septic conditions.

Results

Our prediction results showed that hsa-miR-325-3p may target genes implicating in both anti-(ETFB gene) and pro-inflammatory (TCEA1 and PTPN1 genes) responses, suggesting it is an immune hemostasis regulator during sepsis inflammation. Although the role of other predicted miRNAs has been already validated in the sepsis pathogenesis, the current study predicted new targets of these miRNAs, which have not been reported by previous or experimental studies on sepsis and other pathogenic conditions. Notably, other miRNAs, including hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, and hsa-miR-145-5p were predicted to target genes participating in inflammatory responses, including BLOC1S1, POLR2G, PTPN1, TCEA1, and CCT3.

Conclusion

In conclusion, the results of the present study can provide promising targets as therapeutic and diagnostic tools to treat and manage inflammation sepsis, such as neutropenic sepsis. However, these findings should be further evaluated in experimental studies to find their exact effects and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304401241031094647
2025-01-01
2025-04-21
Loading full text...

Full text loading...

References

  1. FaixJ.D. Biomarkers of sepsis.Crit. Rev. Clin. Lab. Sci.2013501233610.3109/10408363.2013.76449023480440
    [Google Scholar]
  2. LeónA.L. HoyosN.A. BarreraL.I. De La RosaG. DennisR. DueñasC. GranadosM. LondoñoD. RodríguezF.A. MolinaF.J. OrtizG. JaimesF.A. Clinical course of sepsis, severe sepsis, and septic shock in a cohort of infected patients from ten Colombian hospitals.BMC Infect. Dis.201313134510.1186/1471‑2334‑13‑34523883312
    [Google Scholar]
  3. BoneR.C. BalkR.A. CerraF.B. DellingerR.P. FeinA.M. KnausW.A. ScheinR.M.H. SibbaldW.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.Chest199210161644165510.1378/chest.101.6.16441303622
    [Google Scholar]
  4. OttoG.P. SossdorfM. ClausR.A. RödelJ. MengeK. ReinhartK. BauerM. RiedemannN.C. The late phase of sepsis is characterized by an increased microbiological burden and death rate.Crit. Care2011154R18310.1186/cc1033221798063
    [Google Scholar]
  5. Hernández-QuilesR. Merino-LucasE. BoixV. Fernández-GilA. Rodríguez-DíazJ.C. GimenoA. ValeroB. Sánchez-MartínezR. Ramos-RincónJ.M. Bacteraemia and quick Sepsis Related Organ Failure Assessment (qSOFA) are independent risk factors for long-term mortality in very elderly patients with suspected infection: Retrospective cohort study.BMC Infect. Dis.202222124810.1186/s12879‑022‑07242‑435279079
    [Google Scholar]
  6. Sultan Et ALQM Effect of three plant oils on Aeromonas hydrophila infection, immune-related renal gene expression, and serum biochemical parameters in the common carp.Egypt J Aquat Biol Fish202226698199010.21608/ejabf.2022.276954
    [Google Scholar]
  7. Al-RashediN.A.M. AlburkatH. MunahiM.G. JasimA.H. SalmanB.K. OdaB.S. MossaA.A.A. AbbasA.A. VapalahtiO. SironenT. SmuraT. Genome sequence of an early imported case of SARS-CoV-2 delta variant (B.1.617.2 AY.122) in Iraq in April 2021.Microbiol. Resour. Announc.20221111e00977-2210.1128/mra.00977‑2236250864
    [Google Scholar]
  8. SoniM. HandaM. SinghK.K. ShuklaR. Recent nanoengineered diagnostic and therapeutic advancements in management of sepsis.J. Control. Release202235293194510.1016/j.jconrel.2022.10.02936273527
    [Google Scholar]
  9. MajholR.H. Al-RashediN.A.M. Al-OebadyM.A.H. Bacterial activity on hyphal formation of Candida albicans.J. Pharm. Negat. Results202213552555
    [Google Scholar]
  10. AyatiS.H. FazeliB. Momtazi-borojeniA.A. CiceroA.F.G. PirroM. SahebkarA. Regulatory effects of berberine on microRNome in Cancer and other conditions.Crit. Rev. Oncol. Hematol.201711614715810.1016/j.critrevonc.2017.05.00828693796
    [Google Scholar]
  11. MoghaddamA.S. AfshariJ.T. EsmaeiliS.A. SaburiE. JoneidiZ. Momtazi-BorojeniA.A. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease.Atherosclerosis20192851910.1016/j.atherosclerosis.2019.03.01630939341
    [Google Scholar]
  12. MoghimanT. BarghchiB. EsmaeiliS.A. ShabestariM.M. TabaeeS.S. Momtazi-BorojeniA.A. Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia.Heart Fail. Rev.202126120521310.1007/s10741‑020‑10001‑932632768
    [Google Scholar]
  13. MomtaziA.A. BanachM. PirroM. SteinE.A. SahebkarA. MicroRNAs: New therapeutic targets for familial hypercholesterolemia?Clin. Rev. Allergy Immunol.201854222423310.1007/s12016‑017‑8611‑x28534160
    [Google Scholar]
  14. Parsa-kondelajiM. MusaviM. BarzegarF. AbbasianN. RostamiM. R SeyedtaghiaM. S HashemiS. ModiM. NikfarB. A Momtazi-BorojeniA. Dysregulation of miRNA expression in patients with chronic myelogenous leukemia at diagnosis: A systematic review.Biomarkers Med.202317241021102910.2217/bmm‑2023‑0575
    [Google Scholar]
  15. TavasolianF. AbdollahiE. RezaeiR. Momtazi-borojeniA.A. HenrotinY. SahebkarA. Altered expression of microRNAs in rheumatoid arthritis.J. Cell. Biochem.2018119147848710.1002/jcb.2620528598026
    [Google Scholar]
  16. ZhouR. WangL. ZhaoG. ChenD. SongX. Momtazi-BorojeniA.A. YuanH. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle.IUBMB Life202072122546256210.1002/iub.239633053610
    [Google Scholar]
  17. BolandiZ. HashemiS.M. AbasiM. MusaviM. AghamiriS. MiyanmahalehN. GhanbarianH. In vitro naive CD4+ T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells.Mol. Biol. Rep.202350119037904610.1007/s11033‑023‑08767‑w37725284
    [Google Scholar]
  18. Abdulmalek JaafarJ. Al-RashediN.A.M. Evaluation of the association of transferrin receptor type 2 gene mutation (Y250X) with iron overload in major β-thalassemia.Arch. Razi Inst.20217651551155435355750
    [Google Scholar]
  19. Al-RashediN.A.M. MunahiM.G. AH ALObaidiL. Prediction of potential inhibitors against SARS-CoV-2 endoribonuclease: RNA immunity sensing.J. Biomol. Struct. Dyn.202240114879489210.1080/07391102.2020.186326533357040
    [Google Scholar]
  20. TinT.T. WeiC.J. MinO.T. FengB.Z. XianT.C. Real estate price forecasting utilizing recurrent neural networks incorporating genetic algorithms.Int J Innovative Res Sci Stud2024731216122610.53894/ijirss.v7i3.3220
    [Google Scholar]
  21. KassemA.L.A. Snake Optimization with deep learning enabled disease detection model for colorectal cancer.J Smart Internet Things20232022178195
    [Google Scholar]
  22. ChaloS. Berkan AYDİLEKİ. A new preprocessing method for diabetes and biomedical data classification.Qubahan Acad J20232461810.48161/qaj.v2n4a135
    [Google Scholar]
  23. LingH. Non-coding RNAs: Therapeutic strategies and delivery systems.Adv. Exp. Med. Biol.201693722923710.1007/978‑3‑319‑42059‑2_1227573903
    [Google Scholar]
  24. GuS. JinL. ZhangF. SarnowP. KayM.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs.Nat. Struct. Mol. Biol.200916214415010.1038/nsmb.155219182800
    [Google Scholar]
  25. MeisterG. TuschlT. Mechanisms of gene silencing by double- stranded RNA.Nature2004431700634334910.1038/nature0287315372041
    [Google Scholar]
  26. TijstermanM. PlasterkR.H.A. Dicers at RISC.Cell200411711310.1016/S0092‑8674(04)00293‑415066275
    [Google Scholar]
  27. PritchardC.C. ChengH.H. TewariM. MicroRNA profiling: Approaches and considerations.Nat. Rev. Genet.201213535836910.1038/nrg319822510765
    [Google Scholar]
  28. SalehiM. DarroudiM. MusaviM. Momtazi-BorojeniA.A. Prediction of age-related microRNA signature in mesenchymal stem cells by using computational methods.Curr. Stem Cell Res. Ther.20241910.2174/011574888X29114724050707210738747225
    [Google Scholar]
  29. Griffiths-JonesS. GrocockR.J. van DongenS. BatemanA. EnrightA.J. miRBase: microRNA sequences, targets and gene nomenclature.Nucleic Acids Res.20063490001D140D14410.1093/nar/gkj11216381832
    [Google Scholar]
  30. TangB.M.P. McLeanA.S. DawesI.W. HuangS.J. LinR.C.Y. The use of gene-expression profiling to identify candidate genes in human sepsis.Am. J. Respir. Crit. Care Med.2007176767668410.1164/rccm.200612‑1819OC17575094
    [Google Scholar]
  31. MiaoY. WangM. CaiX. ZhuQ. MaoL. Leucine rich alpha-2-glycoprotein 1 (Lrg1) silencing protects against sepsis-mediated brain injury by inhibiting transforming growth factor beta1 (TGFβ1)/SMAD signaling pathway.Bioengineered20221337316732710.1080/21655979.2022.204877535264055
    [Google Scholar]
  32. BindaynaK. MicroRNA as sepsis biomarkers: A comprehensive review.Int. J. Mol. Sci.20242512647610.3390/ijms2512647638928179
    [Google Scholar]
  33. TestaU. PelosiE. CastelliG. LabbayeC. miR-146 and miR-155: Two key modulators of immune response and tumor development.Noncoding RNA2017332210.3390/ncrna303002229657293
    [Google Scholar]
  34. AntonakosN. GilbertC. ThéroudeC. SchrijverI.T. RogerT. Modes of action and diagnostic value of miRNAs in sepsis.Front. Immunol.20221395179810.3389/fimmu.2022.95179835990654
    [Google Scholar]
  35. MaY. VilanovaD. AtalarK. DelfourO. EdgeworthJ. OstermannM. Hernandez-FuentesM. RazafimahatratraS. MichotB. PersingD.H. ZieglerI. TörösB. MöllingP. OlcénP. BealeR. LordG.M. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis.PLoS One2013810e7591810.1371/journal.pone.007591824146790
    [Google Scholar]
  36. ZhangY. NingB. Signaling pathways and intervention therapies in sepsis.Signal Transduct. Target. Ther.20216140710.1038/s41392‑021‑00816‑934824200
    [Google Scholar]
  37. BohmwaldK. AndradeC.A. MoraV.P. MuñozJ.T. RamírezR. RojasM.F. KalergisA.M. Neurotrophin signaling impairment by viral infections in the central nervous system.Int. J. Mol. Sci.20222310581710.3390/ijms2310581735628626
    [Google Scholar]
  38. TsaiH.L. DengW.P. LaiW.F.T. ChiuW.T. YangC.B. TsaiY.H. HwangS.M. RenshawP.F. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways.PLoS One201498e10493710.1371/journal.pone.010493725170755
    [Google Scholar]
  39. SunJ.D. ZengY.H. ZhangY. YangX.X. ZengW.J. ZhaoL.S. LiangC.G. MiR-325-3p promotes locomotor function recovery in rats with spinal cord injury via inhibiting the expression of neutrophil elastase.Eur. Rev. Med. Pharmacol. Sci.20192324106311063731858529
    [Google Scholar]
  40. de Azambuja RodriguesP.M. ValenteR.H. BrunoroG.V.F. NakayaH.T.I. Araújo-PereiraM. BozzaP.T. BozzaF.A. TrugilhoM.R.O. Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock.Sci. Rep.20211111514910.1038/s41598‑021‑94474‑0
    [Google Scholar]
  41. MiaoH. ChenS. DingR. Evaluation of the molecular mechanisms of sepsis using proteomics.Front. Immunol.20211273353710.3389/fimmu.2021.73353734745104
    [Google Scholar]
  42. LeeI. HüttemannM. Energy crisis: The role of oxidative phosphorylation in acute inflammation and sepsis.Biochim. Biophys. Acta Mol. Basis Dis.2014184291579158610.1016/j.bbadis.2014.05.03124905734
    [Google Scholar]
  43. KohG.C.K.W. SchreiberM.F. BautistaR. MaudeR.R. DunachieS. LimmathurotsakulD. DayN.P.J. DouganG. PeacockS.J. Host responses to melioidosis and tuberculosis are both dominated by interferon-mediated signaling.PLoS One201381e5496110.1371/journal.pone.005496123383015
    [Google Scholar]
  44. YuJ. XueJ. LiuC. ZhangA. QinL. LiuJ. YangY. MiR-146a-5p accelerates sepsis through dendritic cell activation and glycolysis via targeting ATG7.J. Biochem. Mol. Toxicol.20223610e2315110.1002/jbt.2315135781746
    [Google Scholar]
  45. WangS. YangY. SuenA. ZhuJ. WilliamsB. HuJ. ChenF. KozarR. ShenS. LiZ. JeyaramA. JayS.M. ZouL. ChaoW. Role of extracellular microRNA-146a-5p in host innate immunity and bacterial sepsis.iScience2021241210344110.1016/j.isci.2021.10344134877498
    [Google Scholar]
  46. PanD. ZhuJ. CaoL. ZhuB. LinL. Ruscogenin attenuates lipopolysaccharide-induced septic vascular endothelial dysfunction by modulating the miR-146a-5p/NRP2/SSH1 axis.Drug Des. Devel. Ther.2022161099110610.2147/DDDT.S35645135440867
    [Google Scholar]
  47. LaiY. LinC. LinX. WuL. ZhaoY. ShaoT. LinF. Comprehensive analysis of molecular subtypes and hub genes of sepsis by gene expression profiles.Front. Genet.20221388476210.3389/fgene.2022.88476236035194
    [Google Scholar]
  48. SciclunaB.P. van ’t VeerC. NieuwdorpM. FelsmannK. WlotzkaB. StroesE.S.G. van der PollT. Role of tumor necrosis factor-α in the human systemic endotoxin-induced transcriptome.PLoS One2013811e7905110.1371/journal.pone.007905124236088
    [Google Scholar]
  49. BuL. WangZ. HuS. ZhaoW. GengX. ZhouT. ZhuoL. ChenX. SunY. WangY. LiX. Identification of Key mRNAs and lncRNAs in neonatal sepsis by gene expression profiling.Comput. Math. Methods Med.2020202011310.1155/2020/874173932908583
    [Google Scholar]
  50. ReimerE. StempelM. ChanB. BleyH. BrinkmannM.M. Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection.J. Cell Sci.20211345jcs24642110.1242/jcs.24642132265274
    [Google Scholar]
  51. DelileE. NevièreR. ThiébautP.A. MaupointJ. MulderP. CoquerelD. RenetS. RieussetJ. RichardV. TamionF. Reduced insulin resistance contributes to the beneficial effect of protein tyrosine phosphatase-1B deletion in a mouse model of sepsis. Shock: Injury, Inflammation, and Sepsis.Shock201748335536310.1097/SHK.000000000000085328272165
    [Google Scholar]
  52. DongX. XuM. RenZ. GuJ. LuM. LuQ. ZhongN. Regulation of CBL and ESR1 expression by microRNA-22-3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma.Int. J. Mol. Med.201638244645610.3892/ijmm.2016.263427277384
    [Google Scholar]
  53. ProençaM.A. BiselliJ.M. SucciM. SeverinoF.E. BerardinelliG.N. CaetanoA. ReisR.M. HughesD.J. SilvaA.E. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis.World J. Gastroenterol.201824475351536510.3748/wjg.v24.i47.535130598580
    [Google Scholar]
  54. GeQ.M. HuangC.M. ZhuX.Y. BianF. PanS.M. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways.PLoS One2017123e017329210.1371/journal.pone.017329228296904
    [Google Scholar]
  55. FengY. LiuJ. WuR. YangP. YeZ. SongF. NEAT1 aggravates sepsis-induced acute kidney injury by sponging miR-22-3p.Open Med. (Wars.)202015133334210.1515/med‑2020‑040133335994
    [Google Scholar]
  56. ZhangP. GuoE. XuL. ShenZ. JiangN. LiuX. Knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.BMC Nephrol.20242517910.1186/s12882‑024‑03513‑138443846
    [Google Scholar]
  57. WangX. WangY. KongM. YangJ. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN.Biosci. Rep.2020406BSR2020052710.1042/BSR2020052732412059
    [Google Scholar]
  58. YangS. WangY. GaoH. WangB. MicroRNA-30a-3p overexpression improves sepsis-induced cell apoptosis in vitro and in vivo via the PTEN/PI3K/Akt signaling pathway.Exp. Ther. Med.20181522081208729434809
    [Google Scholar]
  59. YaoY. SunF. LeiM. miR-25 inhibits sepsis-induced cardiomyocyte apoptosis by targetting PTEN.Biosci. Rep.2018382BSR2017151110.1042/BSR2017151129440462
    [Google Scholar]
  60. ZhangJ. LiL. PengY. ChenY. LvX. LiS. QinX. YangH. WuC. LiuY. Surface chemistry induces mitochondria-mediated apoptosis of breast cancer cells via PTEN/PI3K/Akt signaling pathway.Biochim. Biophys. Acta Mol. Cell Res.20181865117218510.1016/j.bbamcr.2017.10.00729054429
    [Google Scholar]
  61. KimJ.H. LeeG. ChoY.L. KimC.K. HanS. LeeH. ChoiJ.S. ChoeJ. WonM.H. KwonY.G. HaK.S. KimY.M. Desmethylanhydroicaritin inhibits NF-κB-regulated inflammatory gene expression by modulating the redox-sensitive PI3K/PTEN/Akt pathway.Eur. J. Pharmacol.20096022-342243110.1016/j.ejphar.2008.10.06219027002
    [Google Scholar]
  62. ZhuD. WuX. Resveratrol inhibits circ_0074371-related pathway to alleviate sepsis-induced acute kidney injury.Biochem. Genet.20246231779179410.1007/s10528‑023‑10517‑337730967
    [Google Scholar]
  63. PanY. WangJ. XueY. ZhaoJ. LiD. ZhangS. LiK. HouY. FanH. GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a.Front. Immunol.20189227210.3389/fimmu.2018.0227230337925
    [Google Scholar]
  64. MaF. LiZ. CaoJ. KongX. GongG. A TGFBR2/SMAD2/DNMT1/miR-145 negative regulatory loop is responsible for LPS-induced sepsis.Biomed. Pharmacother.201911210862610.1016/j.biopha.2019.10862630784922
    [Google Scholar]
  65. LiuJ. LiL. HeS. ZhengX. ZhuD. KongG. LiP. Exploring the prognostic necroptosis-related genes and underlying mechanism in sepsis using bioinformatics.Shock202462336337410.1097/SHK.000000000000241438920136
    [Google Scholar]
  66. XuJ. FengY. JeyaramA. JayS.M. ZouL. ChaoW. Circulating plasma extracellular vesicles from septic mice induce inflammation via microRNA- and TLR7-dependent mechanisms.J. Immunol.2018201113392340010.4049/jimmunol.180100830355788
    [Google Scholar]
  67. LinR. HuH. LiL. ChenG. LuoL. RaoP. The potential of microRNA-126 in predicting disease risk, mortality of sepsis, and its correlation with inflammation and sepsis severity.J. Clin. Lab. Anal.2020349e2340810.1002/jcla.2340832484987
    [Google Scholar]
  68. ZouQ. ZhaoS. WuQ. WangH. HeX. LiuC. Correlation analysis of microRNA-126 expression in peripheral blood lymphocytes with apoptosis and prognosis in patients with sepsis.Zhonghua Wei Zhong Bing Ji Jiu Yi Xue202032893894232912406
    [Google Scholar]
  69. MaoX. WuY. XuW. miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function.Clin. Respir. J.202317762963710.1111/crj.1364637248197
    [Google Scholar]
  70. LiP. WuY. GoodwinA.J. WolfB. HalushkaP.V. WangH. ZingarelliB. FanH. Circulating extracellular vesicles are associated with the clinical outcomes of sepsis.Front. Immunol.202314115056410.3389/fimmu.2023.115056437180111
    [Google Scholar]
  71. ZhouY. LiP. GoodwinA.J. CookJ.A. HalushkaP.V. ChangE. FanH. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis.Mol. Ther.20182651375138410.1016/j.ymthe.2018.02.02029599080
    [Google Scholar]
  72. JeongJ.H. KimJ. KimJ. HeoH.R. JeongJ.S. RyuY.J. HongY. HanS.S. HongS.H. LeeS.J. KimW.J. ACN9 regulates the inflammatory responses in human bronchial epithelial cells.Tuberc. Respir. Dis. (Seoul)201780324725410.4046/trd.2017.80.3.24728747957
    [Google Scholar]
  73. DongL. LiH. ZhangS. YangG. miR-148 family members are putative biomarkers for sepsis.Mol. Med. Rep.20191965133514110.3892/mmr.2019.1017431059023
    [Google Scholar]
  74. McClureC. BrudeckiL. FergusonD.A. YaoZ.Q. MoormanJ.P. McCallC.E. El GazzarM. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis.Infect. Immun.20148293816382510.1128/IAI.01495‑1424980967
    [Google Scholar]
  75. LaurenC.T. GarzonM.C. Clinical syndromes and cardinal features of infectious diseases: Approach to diagnosis and initial management, Principles and Practice of Pediatric Infectious Diseases.4th edEdinburghElsevier Saunders201298505
    [Google Scholar]
  76. DanC. JinjunB. Zi-ChunH. LinM. WeiC. XuZ. RiZ. ShunC. Wen-ZhuS. Qing-CaiJ. WuY. Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis.EMBO Mol. Med.20157214015710.15252/emmm.20140479725535255
    [Google Scholar]
  77. AliM.A. Khamis HusseinS. Ali MohamedE. EzzatM.A. abdelmoktaderA. HabibM.A. KamalM. AhmedF.A. AliD.Y. Diagnostic and prognostic values of miR181b-5p and miR21-5p for neonatal sepsis risk and their link to SNAP II score and disease mortality.Noncoding RNA Res.20238111512510.1016/j.ncrna.2022.11.00136474749
    [Google Scholar]
  78. SuiX. LiuW. LiuZ. Exosomal lncRNA-p21 derived from mesenchymal stem cells protects epithelial cells during LPS-induced acute lung injury by sponging miR-181.Acta Biochim. Biophys. Sin. (Shanghai)202153674875710.1093/abbs/gmab04333891698
    [Google Scholar]
  79. HusseinS. MichaelP. BrabantD. OmriA. NarainR. PassiK. RamanaC.V. ParrilloJ.E. KumarA. ParissentiA. KumarA. Characterization of human septic sera induced gene expression modulation in human myocytes.Int. J. Clin. Exp. Med.20092213114819684886
    [Google Scholar]
  80. LifangZ. Exploration of values of miR-7110-5p and miR-223-3p in predicting sepsis.Cell. Mol. Biol.2022688697310.14715/cmb/2022.68.8.1236800833
    [Google Scholar]
  81. YuanS. WuQ. WangZ. CheY. ZhengS. ChenY. ZhongX. ShiF. miR-223: An immune regulator in infectious disorders.Front. Immunol.20211278181510.3389/fimmu.2021.78181534956210
    [Google Scholar]
  82. ZhangW. JiaJ. LiuZ. SiD. MaL. ZhangG. Circulating microRNAs as biomarkers for sepsis secondary to pneumonia diagnosed via Sepsis 3.0.BMC Pulm. Med.20191919310.1186/s12890‑019‑0836‑4
    [Google Scholar]
  83. DangC.P. LeelahavanichkulA. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis.PLoS One2020157e023603810.1371/journal.pone.023603832658933
    [Google Scholar]
  84. LiuD. WangZ. WangH. RenF. LiY. ZouS. XuJ. XieL. The protective role of miR-223 in sepsis-induced mortality.Sci. Rep.20201011769110.1038/s41598‑020‑74965‑233077816
    [Google Scholar]
  85. WanP. TanX. ShengM. XiangY. WangP. YuM. Platelet exosome-derived miR-223-3p regulates pyroptosis in the cell model of sepsis-induced acute renal injury by targeting mediates NLRP3.Crit. Rev. Immunol.2024443536510.1615/CritRevImmunol.202305165138421705
    [Google Scholar]
  86. ZhangR. DangX. LiuJ. FengH. SunJ. PengZ. CIRCTDRD9 contributes to sepsis-induced acute lung injury by enhancing the expression of rab10 via directly binding to mIR-223-3P.Shock202360220621310.1097/SHK.000000000000216937548713
    [Google Scholar]
  87. WangX. HuangW. YangY. WangY. PengT. ChangJ. CaldwellC.C. ZingarelliB. FanG.C. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis.Biochim. Biophys. Acta Mol. Basis Dis.20141842570171110.1016/j.bbadis.2014.01.01224486439
    [Google Scholar]
  88. SzilágyiB. FejesZ. RusznyákÁ. FenyvesiF. PócsiM. HalmiS. GrigerZ. KunapuliS.P. KappelmayerJ. NagyB.Jr Platelet microparticles enriched in miR-223 reduce ICAM-1-dependent vascular inflammation in septic conditions.Front. Physiol.20211265852410.3389/fphys.2021.65852434135769
    [Google Scholar]
  89. HongJ. MoS. GongF. LinZ. CaiH. ShaoZ. YangX. SunR. ZhangQ. LiuJ. lncRNA-SNHG14 plays a role in acute lung injury induced by lipopolysaccharide through regulating autophagy via miR-223-3p/Foxo3a.Mediators Inflamm.2021202111510.1155/2021/789028834539244
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304401241031094647
Loading
/content/journals/cpd/10.2174/0113816128304401241031094647
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bacterial infection; bioinformatics; gene expression omnibus; microRNAs; Sepsis; TargetScan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test