Skip to content
2000
image of Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review

Abstract

Polymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to co-delivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio-photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in co- drugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335001241020162217
2024-11-08
2025-01-09
Loading full text...

Full text loading...

References

  1. Tian G. Zhang X. Gu Z. Zhao Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater. 2015 27 47 7692 7712 10.1002/adma.201503280 26505885
    [Google Scholar]
  2. Dias L.D. Blanco K.C. Mfouo-Tynga I.S. Inada N.M. Bagnato V.S. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. J. Photochem. Photobiol. Photochem. Rev. 2020 45 100384 10.1016/j.jphotochemrev.2020.100384
    [Google Scholar]
  3. Wang G.D. Nguyen H.T. Chen H. Cox P.B. Wang L. Nagata K. Hao Z. Wang A. Li Z. Xie J. X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics 2016 6 13 2295 2305 10.7150/thno.16141 27877235
    [Google Scholar]
  4. Zhang M. Qin X. Xu W. Wang Y. Song Y. Garg S. Luan Y. Engineering of a dual-modal phototherapeutic nanoplatform for single NIR laser-triggered tumor therapy. J. Colloid Interface Sci. 2021 594 493 501 10.1016/j.jcis.2021.03.050 33774405
    [Google Scholar]
  5. Zhang J. Wang N. Li Q. Zhou Y. Luan Y. A two-pronged photodynamic nanodrug to prevent metastasis of basal-like breast cancer. Chem. Commun. (Camb.) 2021 57 18 2305 2308 10.1039/D0CC08162K 33533351
    [Google Scholar]
  6. Jankun J. A thousand words about the challenges of photodynamic therapy. Journal of Medical Science 2019 88 3 195 199 10.20883/medical.391
    [Google Scholar]
  7. Gunaydin G. Gedik M.E. Ayan S. Photodynamic therapy-current limitations and novel approaches. Front Chem. 2021 9 691697 10.3389/fchem.2021.691697 34178948
    [Google Scholar]
  8. Wang K. Tepper J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin. 2021 71 5 437 454 10.3322/caac.21689 34255347
    [Google Scholar]
  9. Rosenblatt E. Acuña O. Abdel-Wahab M. The challenge of global radiation therapy: An IAEA perspective. Int. J. Radiat. Oncol. Biol. Phys. 2015 91 4 687 689 10.1016/j.ijrobp.2014.12.008 25752377
    [Google Scholar]
  10. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  11. Moloudi K. Abrahamse H. George B.P. Nanotechnology-mediated photodynamic therapy: Focus on overcoming tumor hypoxia. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 2023 1937 38072393
    [Google Scholar]
  12. Fan W. Yung B. Huang P. Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017 117 22 13566 13638 10.1021/acs.chemrev.7b00258 29048884
    [Google Scholar]
  13. Alvi M. Yaqoob A. Rehman K. Shoaib S.M. Akash M.S.H. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open 2022 8 1 12 10.1186/s41120‑022‑00060‑7
    [Google Scholar]
  14. Escudero A. Carrillo-Carrión C. Castillejos M.C. Romero-Ben E. Rosales-Barrios C. Khiar N. Photodynamic therapy: Photosensitizers and nanostructures. Mater. Chem. Front. 2021 5 10 3788 3812 10.1039/D0QM00922A
    [Google Scholar]
  15. Qi S.S. Lin X. Zhang M.M. Yan S.Z. Yu S.Q. Chen S.L. Preparation and evaluation of hypocrellin A loaded poly(lactic-co-glycolic acid) nanoparticles for photodynamic therapy. RSC Advances 2014 4 75 40085 40094 10.1039/C4RA05796A
    [Google Scholar]
  16. Kim K.T. Lee J.Y. Kim D.D. Yoon I.S. Cho H.J. Recent progress in the development of poly (lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics 2019 11 6 280 10.3390/pharmaceutics11060280 31197096
    [Google Scholar]
  17. Sahin A. Esendagli G. Yerlikaya F. Caban-Toktas S. Yoyen-Ermis D. Horzum U. Aktas Y. Khan M. Couvreur P. Capan Y. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artif. Cells Nanomed. Biotechnol. 2017 45 8 1657 1664 10.1080/21691401.2016.1276924 28084837
    [Google Scholar]
  18. Moloudi K. Abrahamse H. George B.P. Photodynamic therapy induced cell cycle arrest and cancer cell synchronization: Review. Front. Oncol. 2023 13 1225694 10.3389/fonc.2023.1225694 37503319
    [Google Scholar]
  19. Chota A. George B.P. Abrahamse H. In vitro cell death mechanisms induced by dicoma anomala root extract in combination with ZnPcS4 mediated-photodynamic therapy in A549 lung cancer cells. Cells 2022 11 20 3288 10.3390/cells11203288 36291155
    [Google Scholar]
  20. Awan M.A. Tarin S.A. Review of photodynamic therapy. Surgeon 2006 4 4 231 236 10.1016/S1479‑666X(06)80065‑X 16892841
    [Google Scholar]
  21. Plaetzer K. Krammer B. Berlanda J. Berr F. Kiesslich T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 2009 24 2 259 268 10.1007/s10103‑008‑0539‑1 18247081
    [Google Scholar]
  22. Gianotti E. Martins Estevão B. Cucinotta F. Hioka N. Rizzi M. Renò F. Marchese L. An efficient rose bengal based nanoplatform for photodynamic therapy. Chemistry 2014 20 35 10921 10925 10.1002/chem.201404296 25116185
    [Google Scholar]
  23. Lim D.J. Methylene Blue-Based Nano and Microparticles: Fabrication and applications in photodynamic therapy. Polymers (Basel) 2021 13 22 3955 10.3390/polym13223955 34833254
    [Google Scholar]
  24. Rybkin A.Y. Kurmaz S.V. Urakova E.A. Filatova N.V. Sizov L.R. Kozlov A.V. Koifman M.O. Goryachev N.S. Nanoparticles of N-vinylpyrrolidone amphiphilic copolymers and pheophorbide a as promising photosensitizers for photodynamic therapy: Design, properties and in vitro phototoxic activity. Pharmaceutics 2023 15 1 273 10.3390/pharmaceutics15010273 36678902
    [Google Scholar]
  25. Abrahamse H. Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016 473 4 347 364 10.1042/BJ20150942 26862179
    [Google Scholar]
  26. Comincini S. Manai F. Sorrenti M. Perteghella S. D’Amato C. Miele D. Catenacci L. Bonferoni M.C. Development of berberine-loaded nanoparticles for astrocytoma cells administration and photodynamic therapy stimulation. Pharmaceutics 2023 15 4 1078 10.3390/pharmaceutics15041078 37111564
    [Google Scholar]
  27. Kielmann M. Senge M.O. Molecular engineering of free-base porphyrins as ligands-the N−H X binding motif in tetrapyrroles. Angew. Chem. Int. Ed. 2019 58 2 418 441 10.1002/anie.201806281 30067890
    [Google Scholar]
  28. Zhang X.J. Liu M.H. Luo Y.S. Han G.Y. Ma Z.Q. Huang F. Wang Y. Miao Z.Y. Zhang W.N. Sheng C.Q. Yao J.Z. Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. Eur. J. Med. Chem. 2021 217 113363 10.1016/j.ejmech.2021.113363 33744687
    [Google Scholar]
  29. Li W.S. Aida T. Dendrimer porphyrins and phthalocyanines. Chem. Rev. 2009 109 11 6047 6076 10.1021/cr900186c 19769361
    [Google Scholar]
  30. Farrelly J. McEntee M.C. Principles and applications of radiation therapy. Clin. Tech. Small Anim. Pract. 2003 18 2 82 87 10.1053/svms.2003.36620 12831066
    [Google Scholar]
  31. Xu J. Gao J. Wei Q. Combination of photodynamic therapy with radiotherapy for cancer treatment. J. Nanomater. 2016 2016 1 7 10.1155/2016/8507924
    [Google Scholar]
  32. Moloudi K. Neshasteriz A. Hosseini A. Eyvazzadeh N. Shomali M. Eynali S. Mirzaei E. Azarnezhad A. Synergistic effects of arsenic trioxide and radiation: Triggering the intrinsic pathway of apoptosis. Iran. Biomed. J. 2017 21 5 330 337 10.18869/acadpub.ibj.21.5.330 28459147
    [Google Scholar]
  33. Sia J. Szmyd R. Hau E. Gee H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol. 2020 8 41 10.3389/fcell.2020.00041 32117972
    [Google Scholar]
  34. Liu Y.P. Zheng C.C. Huang Y.N. He M.L. Xu W.W. Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021 2 3 315 340 10.1002/mco2.55 34766149
    [Google Scholar]
  35. Boateng F. Ngwa W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int. J. Mol. Sci. 2019 21 1 273 10.3390/ijms21010273 31906108
    [Google Scholar]
  36. Shenoy M.A. Singh B.B. Chemical radiosensitizers in cancer therapy. Cancer Invest. 1992 10 6 533 551 10.3109/07357909209024816 1422891
    [Google Scholar]
  37. Horsman MR Brown JM van der Kogel AJ Wouters BG Overgaard J The oxygen effect and therapeutic approaches to tumour hypoxia. Basic Clinical Radiobiology Boca Raton, Florida CRC Press 2018 10.1201/9780429490606‑17
    [Google Scholar]
  38. de Almeida L.C. Calil F.A. Machado-Neto J.A. Costa-Lotufo L.V. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet. 2021 252-253 6 24 10.1016/j.cancergen.2020.12.002 33340831
    [Google Scholar]
  39. Montano R. Thompson R. Chung I. Hou H. Khan N. Eastman A. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: Cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 2013 13 1 604 10.1186/1471‑2407‑13‑604 24359526
    [Google Scholar]
  40. Komorowska D. Radzik T. Kalenik S. Rodacka A. Natural radiosensitizers in radiotherapy: Cancer treatment by combining ionizing radiation with resveratrol. Int. J. Mol. Sci. 2022 23 18 10627 10.3390/ijms231810627 36142554
    [Google Scholar]
  41. Sak K. Radiosensitizing potential of curcumin in different cancer models. Nutr. Cancer 2020 72 8 1276 1289 10.1080/01635581.2019.1681480 31648572
    [Google Scholar]
  42. El-Benhawy S.A. Morsi M.I. Fahmy E.I. Soula M.A. Khalil F.A. Arab A. Role of resveratrol as radiosensitizer by targeting cancer stem cells in radioresistant prostate cancer cells (PC-3). Asian Pac. J. Cancer Prev. 2021 22 12 3823 3837 10.31557/APJCP.2021.22.12.3823 34967561
    [Google Scholar]
  43. Schroeder A.C. Xiao H. Zhu Z. Li Q. Bai Q. Wakefield M.R. Mann J.D. Fang Y. A potential role for green tea as a radiation sensitizer for prostate cancer. Pathol. Oncol. Res. 2019 25 1 263 268 10.1007/s12253‑017‑0358‑4 29101735
    [Google Scholar]
  44. Luo Y. Chen X. Luo L. Zhang Q. Gao C. Zhuang X. Yuan S. Qiao T. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction. Oncol. Rep. 2018 39 5 2252 2260 10.3892/or.2018.6292 29512739
    [Google Scholar]
  45. Alban L. Monteiro W.F. Diz F.M. Miranda G.M. Scheid C.M. Zotti E.R. Morrone F.B. Ligabue R. New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. Mater. Sci. Eng. C 2020 110 110662 10.1016/j.msec.2020.110662 32204090
    [Google Scholar]
  46. Akter R. Najda A. Rahman M. Shah M. Wesołowska S. Hassan S. Mubin S. Bibi P. Saeeda S. Potential role of natural products to combat radiotherapy and their future perspectives. Molecules 2021 26 19 5997 10.3390/molecules26195997 34641542
    [Google Scholar]
  47. Ahmad F. Wang X. Jiang Z. Yu X. Liu X. Mao R. Chen X. Li W. Codoping enhanced radioluminescence of nanoscintillators for X-ray-activated synergistic cancer therapy and prognosis using metabolomics. ACS Nano 2019 13 9 10419 10433 10.1021/acsnano.9b04213 31430127
    [Google Scholar]
  48. Moloudi K. Khani A. Najafi M. Azmoonfar R. Azizi M. Nekounam H. Sobhani M. Laurent S. Samadian H. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 6 e1886 10.1002/wnan.1886 36987630
    [Google Scholar]
  49. Abraham SK Sarma L Kesavan P Role of chlorophyllin as an in vivo anticlastogen: Protection against gamma-radiation and chemical clastogens. Mutat. Res./Gen. Toxicol/ 1994 322 3 209 212 10.1016/0165‑1218(94)90008‑6
    [Google Scholar]
  50. Bratkič A. Klun K. Gao Y. Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. Sci. Total Environ. 2019 663 297 306 10.1016/j.scitotenv.2019.01.241 30711596
    [Google Scholar]
  51. Ainsbury E.A. Moquet J. Sun M. Barnard S. Ellender M. Lloyd D. The future of biological dosimetry in mass casualty radiation emergency response, personalized radiation risk estimation and space radiation protection. Int. J. Radiat. Biol. 2022 98 3 421 427 10.1080/09553002.2021.1980629 34515621
    [Google Scholar]
  52. Liu R. Zhang C. Wu X. Wang C. Zhao M. Ji C. Dong X. Wang R. Ma H. Wang X. Tan Y. Du J. Gu Z. Hafnium oxide nanoparticles coated ATR inhibitor to enhance the radiotherapy and potentiate antitumor immune response. Chem. Eng. J. 2023 461 142085 10.1016/j.cej.2023.142085
    [Google Scholar]
  53. Akbulut S. Elbe H. Eris C. Dogan Z. Toprak G. Otan E. Erdemli E. Turkoz Y. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J. Gastroenterol. 2014 20 29 10158 10165 10.3748/wjg.v20.i29.10158 25110444
    [Google Scholar]
  54. Fathy M.M. Biosynthesis of silver nanoparticles using thymoquinone and evaluation of their radio-sensitizing activity. Bionanoscience 2020 10 1 260 266 10.1007/s12668‑019‑00702‑3
    [Google Scholar]
  55. Talik Sisin N.N. Abdul Razak K. Zainal Abidin S. Che Mat N.F. Abdullah R. Ab Rashid R. Khairil Anuar M.A. Rahman W.N. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int. J. Nanomedicine 2020 15 7805 7823 10.2147/IJN.S269214 33116502
    [Google Scholar]
  56. Viswanath D. Won Y.Y. Combining Radiotherapy (RT) and Photodynamic Therapy (PDT): Clinical Studies on Conventional RT-PDT Approaches and Novel Nanoparticle-Based RT-PDT Approaches under Preclinical Evaluation. ACS Biomater. Sci. Eng. 2022 8 9 3644 3658 10.1021/acsbiomaterials.2c00287 36000986
    [Google Scholar]
  57. Tan I.B. Dolivet G. Ceruse P. Poorten V.V. Roest G. Rauschning W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck 2010 32 12 1597 1604 10.1002/hed.21368 20848401
    [Google Scholar]
  58. Nathan T.R. Whitelaw D.E. Chang S.C. Lees W.R. Ripley P.M. Payne H. Jones L. Parkinson M.C. Emberton M. Gillams A.R. Mundy A.R. Bown S.G. Photodynamic therapy for prostate cancer recurrence after radiotherapy: A phase I study. J. Urol. 2002 168 4 Part 1 1427 1432 10.1016/S0022‑5347(05)64466‑7 12352410
    [Google Scholar]
  59. Umegaki N. Moritsugu R. Katoh S. Harada K. Nakano H. Tamai K. Hanada K. Tanaka M. Photodynamic therapy may be useful in debulking cutaneous lymphoma prior to radiotherapy. Clin. Exp. Dermatol. 2004 29 1 42 45 10.1111/j.1365‑2230.2004.01448.x 14723720
    [Google Scholar]
  60. Zhou Y. Ren X. Hou Z. Wang N. Jiang Y. Luan Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz. 2021 6 2 120 131 10.1039/D0NH00480D 33206735
    [Google Scholar]
  61. Takahashi J. Misawa M. Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy. NanoBiotechnology 2007 3 2 116 126 10.1007/s12030‑008‑9009‑x
    [Google Scholar]
  62. Daneshvar F. Salehi F. Karimi M. Vais R.D. Mosleh-Shirazi M.A. Sattarahmady N. Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. J. Photochem. Photobiol. B 2020 203 111737 10.1016/j.jphotobiol.2019.111737 31862636
    [Google Scholar]
  63. Chudal L. Pandey N.K. Phan J. Johnson O. Li X. Chen W. Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia. Mater. Sci. Eng. C 2019 104 109979 10.1016/j.msec.2019.109979 31500001
    [Google Scholar]
  64. Mayahi S. Neshasteh-Riz A. Pornour M. Eynali S. Montazerabadi A. Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. J. Biol. Inorg. Chem. 2020 25 1 39 48 10.1007/s00775‑019‑01730‑w 31650249
    [Google Scholar]
  65. Zhong X. Wang X. Zhan G. Tang Y. Yao Y. Dong Z. Hou L. Zhao H. Zeng S. Hu J. Cheng L. Yang X. NaCeF4: Gd, Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019 19 11 8234 8244 10.1021/acs.nanolett.9b03682 31576757
    [Google Scholar]
  66. Fan W. Shen B. Bu W. Chen F. He Q. Zhao K. Zhang S. Zhou L. Peng W. Xiao Q. Ni D. Liu J. Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 2014 35 32 8992 9002 10.1016/j.biomaterials.2014.07.024 25103233
    [Google Scholar]
  67. Viswanath D. Park J. Misra R. Pizzuti V.J. Shin S.H. Doh J. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 2023 1924 37632203
    [Google Scholar]
  68. Ghitman J. Biru E.I. Stan R. Iovu H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des. 2020 193 108805 10.1016/j.matdes.2020.108805
    [Google Scholar]
  69. Yu X. Tang X. He J. Yi X. Xu G. Tian L. Zhou R. Zhang C. Yang K. Polydopamine nanoparticle as a multifunctional nanocarrier for combined radiophotodynamic therapy of cancer. Part. Part. Syst. Charact. 2017 34 2 1600296 10.1002/ppsc.201600296
    [Google Scholar]
  70. Español L. Larrea A. Andreu V. Mendoza G. Arruebo M. Sebastian V. Aurora-Prado M.S. Kedor-Hackmann E.R.M. Santoro M.I.R.M. Santamaria J. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: Drug delivery and cytotoxicity assays. RSC Advances 2016 6 112 111060 111069 10.1039/C6RA23620K
    [Google Scholar]
  71. Shen X. Li T. Xie X. Feng Y. Chen Z. Yang H. Wu C. Deng S. Liu Y. PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front. Bioeng. Biotechnol. 2020 8 381 10.3389/fbioe.2020.00381 32432092
    [Google Scholar]
  72. Sharma S. Parmar A. Kori S. Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt. Chem. 2016 80 30 40 10.1016/j.trac.2015.06.014
    [Google Scholar]
  73. Makadia H.K. Siegel S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011 3 3 1377 1397 10.3390/polym3031377 22577513
    [Google Scholar]
  74. Mir M. Ahmed N. Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces 2017 159 217 231 10.1016/j.colsurfb.2017.07.038 28797972
    [Google Scholar]
  75. Kaplan M. Öztürk K. Öztürk S.C. Tavukçuoğlu E. Esendağlı G. Calis S. Effects of particle geometry for PLGA-based nanoparticles: Preparation and in vitro/in vivo evaluation. Pharmaceutics 2023 15 1 175 10.3390/pharmaceutics15010175 36678804
    [Google Scholar]
  76. Cao J. Choi J.S. Oshi M.A. Lee J. Hasan N. Kim J. Yoo J.W. Development of PLGA micro- and nanorods with high capacity of surface ligand conjugation for enhanced targeted delivery. Asian J. Pharm. Sci. 2019 14 1 86 94 10.1016/j.ajps.2018.08.008 32104441
    [Google Scholar]
  77. Wischke C. Schwendeman S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 2008 364 2 298 327 10.1016/j.ijpharm.2008.04.042 18621492
    [Google Scholar]
  78. Zhu H. Chen H. Zeng X. Wang Z. Zhang X. Wu Y. Gao Y. Zhang J. Liu K. Liu R. Cai L. Mei L. Feng S.S. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 2014 35 7 2391 2400 10.1016/j.biomaterials.2013.11.086 24360574
    [Google Scholar]
  79. Lattuada M. Hatton T.A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011 6 3 286 308 10.1016/j.nantod.2011.04.008
    [Google Scholar]
  80. Urban M. Freisinger B. Ghazy O. Staff R. Landfester K. Crespy D. Musyanovych A. Polymer Janus nanoparticles with two spatially segregated functionalizations. Macromolecules 2014 47 20 7194 7199 10.1021/ma5013545
    [Google Scholar]
  81. Hu J. Zhou S. Sun Y. Fang X. Wu L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012 41 11 4356 4378 10.1039/c2cs35032g 22531991
    [Google Scholar]
  82. Ghosh Chaudhuri R. Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012 112 4 2373 2433 10.1021/cr100449n 22204603
    [Google Scholar]
  83. Liu M. Xu N. Liu W. Xie Z. Polypyrrole coated PLGA core-shell nanoparticles for drug delivery and photothermal therapy. RSC Advances 2016 6 87 84269 84275 10.1039/C6RA18261E
    [Google Scholar]
  84. Chen Y. Yang Z. Liu C. Wang C. Zhao S. Yang J. Sun H. Zhang Z. Kong D. Song C. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic- co-glycolic acid). Int. J. Nanomedicine 2013 8 4315 4326 24235829
    [Google Scholar]
  85. Atanasov G. Kolev I.N. Petrov O. Apostolova M.D. Synthesis of PLGA-PEG-PLGA polymer Nano-micelles-carriers of Combretastatin-like antitumor agent 16Z. Nanoscience and nanotechnology in security and protection against CBRN threats. Cham Springer 2020
    [Google Scholar]
  86. Yadav S. Sharma A.K. Kumar P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol. 2020 8 127 10.3389/fbioe.2020.00127 32158749
    [Google Scholar]
  87. Tabatabaei Mirakabad F.S. Nejati-Koshki K. Akbarzadeh A. Yamchi M.R. Milani M. Zarghami N. Zeighamian V. Rahimzadeh A. Alimohammadi S. Hanifehpour Y. Joo S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev. 2014 15 2 517 535 10.7314/APJCP.2014.15.2.517 24568455
    [Google Scholar]
  88. Tian J. Min Y. Rodgers Z. Au K.M. Hagan C.T. IV Zhang M. Roche K. Yang F. Wagner K. Wang A.Z. Co-delivery of paclitaxel and cisplatin with biocompatible PLGA-PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. J. Mater. Chem. B Mater. Biol. Med. 2017 5 30 6049 6057 10.1039/C7TB01370A 28868145
    [Google Scholar]
  89. Rani S. Gothwal A. Pandey P.K. Chauhan D.S. Pachouri P.K. Gupta U.D. Gupta U. HPMA-PLGA based nanoparticles for effective in vitro delivery of rifampicin. Pharm. Res. 2019 36 1 19 10.1007/s11095‑018‑2543‑x 30511238
    [Google Scholar]
  90. Perinelli D.R. Cespi M. Bonacucina G. Palmieri G.F. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J. Pharm. Investig. 2019 49 4 443 458 10.1007/s40005‑019‑00442‑2
    [Google Scholar]
  91. Iqbal M. Zafar N. Fessi H. Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015 496 2 173 190 10.1016/j.ijpharm.2015.10.057 26522982
    [Google Scholar]
  92. Misra C. Paul R.K. Thotakura N. Raza K. Biodegradable self-assembled nanocarriers as the drug delivery vehicles. Nanoparticle Therapeutics. Amsterdam Elsevier 2022 293 325
    [Google Scholar]
  93. Feng S. Zhang Z. Almotairy A. Repka M.A. Development and evaluation of polymeric mixed micelles prepared using Hot-melt extrusion for extended delivery of poorly water-soluble drugs. J. Pharm. Sci. 2023 112 11 2869 2878 10.1016/j.xphs.2023.06.007 37327994
    [Google Scholar]
  94. Xiang B Cao D-Y Preparation of drug liposomes by thin-film hydration and homogenization. Liposome-Based Drug Delivery Systems Cham Springer 2021 10.1007/978‑3‑662‑49320‑5_2
    [Google Scholar]
  95. Amin S.G. Formulation and evaluation of liposomes of fenofibrate prepared by thin film hydration technique. Int. J. Pharmaceut. Sci. Res. 2017 9 9 3621 3637
    [Google Scholar]
  96. Thabet Y. Elsabahy M. Eissa N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022 199 9 15 10.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  97. Hashemi Dehaghi M. Haeri A. Keshvari H. Abbasian Z. Dadashzadeh S. Dorzolamide loaded niosomal vesicles: Comparison of passive and remote loading methods. Iran. J. Pharm. Res. 2017 16 2 413 422 28979296
    [Google Scholar]
  98. Wang W.X. Feng S.S. Zheng C.H. A comparison between conventional liposome and drug-cyclodextrin complex in liposome system. Int. J. Pharm. 2016 513 1-2 387 392 10.1016/j.ijpharm.2016.09.043 27640244
    [Google Scholar]
  99. Dua J. Rana A. Bhandari A. Liposome: Methods of preparation and applications. Int J Pharm Stud Res. 2012 3 14 20
    [Google Scholar]
  100. Torchilin V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol. 2010 197 197 3 53 10.1007/978‑3‑642‑00477‑3_1 20217525
    [Google Scholar]
  101. Powers D. Nosoudi N. Liposomes; from synthesis to targeting macrophages. Biomed. Res. 2019 30 288 295
    [Google Scholar]
  102. Choudhary A. Dong D. Tsianou M. Alexandridis P. Bedrov D. Adsorption mechanism of perfluorooctanoate on cyclodextrin-based polymers: Probing the synergy of electrostatic and hydrophobic interactions with molecular dynamics simulations. ACS Mater. Lett. 2022 4 5 853 859 10.1021/acsmaterialslett.2c00168
    [Google Scholar]
  103. Pande S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023 51 1 428 440 10.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  104. Zhou Y. Wei Y. Liu H. Zhang G. Wu X. Preparation and in vitro evaluation of ethosomal total alkaloids of Sophora alopecuroides loaded by a transmembrane pH-gradient method. AAPS PharmSciTech 2010 11 3 1350 1358 10.1208/s12249‑010‑9509‑6 20740333
    [Google Scholar]
  105. Liu J.J. Hong R.L. Cheng W.F. Hong K. Chang F.H. Tseng Y.L. Simple and efficient liposomal encapsulation of topotecan by ammonium sulfate gradient: Stability, pharmacokinetic and therapeutic evaluation. Anticancer Drugs 2002 13 7 709 717 10.1097/00001813‑200208000‑00005 12187327
    [Google Scholar]
  106. Watanabe K. Kaneko M. Maitani Y. Functional coating of liposomes using a folate- polymer conjugate to target folate receptors. Int. J. Nanomedicine 2012 7 3679 3688 22888227
    [Google Scholar]
  107. Sahoo S.K. Formulation and characterization of liposomes. Liposomal Encapsulation in Food Science and Technology. Amsterdam Elsevier 2023 39 63 10.1016/B978‑0‑12‑823935‑3.00010‑2
    [Google Scholar]
  108. Khan AA Allemailem KS Almatroodi SA Almatroudi A Rahmani AH Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech. 2020 10 1 15
    [Google Scholar]
  109. Osman N. Devnarain N. Omolo C.A. Fasiku V. Jaglal Y. Govender T. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 1 e1758 10.1002/wnan.1758 34643067
    [Google Scholar]
  110. Zhang X. Zhao L. Zhai G. Ji J. Liu A. Multifunctional polyethylene glycol (PEG)-poly (lactic-co-glycolic acid)(PLGA)-based nanoparticles loading doxorubicin and tetrahydrocurcumin for combined chemoradiotherapy of glioma. Med. Sci. Monit. 2019 25 9737 9751 10.12659/MSM.918899 31856143
    [Google Scholar]
  111. Liu Q. Zhang J. Sun W. Xie Q.R. Xia W. Gu H. Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Int. J. Nanomedicine 2012 7 999 1013 22403484
    [Google Scholar]
  112. Glodo J. Wang Y. Shawgo R. Brecher C. Hawrami R.H. Tower J. Shah K.S. New developments in scintillators for security applications. Phys. Procedia 2017 90 285 290 10.1016/j.phpro.2017.09.012
    [Google Scholar]
  113. Chen H. Sun X. Wang G.D. Nagata K. Hao Z. Wang A. Li Z. Xie J. Shen B. LiGa5O8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz. 2017 4 6 1092 1101 10.1039/C7MH00442G 31528350
    [Google Scholar]
  114. Clement S. Chen W. Anwer A.G. Goldys E.M. Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Mikrochim. Acta 2017 184 6 1765 1771 10.1007/s00604‑017‑2145‑z
    [Google Scholar]
  115. Deng W. McKelvey K.J. Guller A. Fayzullin A. Campbell J.M. Clement S. Habibalahi A. Wargocka Z. Liang L. Shen C. Howell V.M. Engel A.F. Goldys E.M. Application of mitochondrially targeted nanoconstructs to neoadjuvant x-ray-induced photodynamic therapy for rectal cancer. ACS Cent. Sci. 2020 6 5 715 726 10.1021/acscentsci.9b01121 32490188
    [Google Scholar]
  116. Kabiri F. Mirfakhraee S. Ardakani Y.H. Dinarvand R. Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: Mechanism of drug loading and release. J. Nanopart. Res. 2021 23 10 226 10.1007/s11051‑021‑05332‑z
    [Google Scholar]
  117. Cheng J. Teply B. Sherifi I. Sung J. Luther G. Gu F. Levynissenbaum E. Radovicmoreno A. Langer R. Farokhzad O. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007 28 5 869 876 10.1016/j.biomaterials.2006.09.047 17055572
    [Google Scholar]
  118. Chiu H.I. Samad N.A. Fang L. Lim V. Cytotoxicity of targeted PLGA nanoparticles: A systematic review. RSC Advances 2021 11 16 9433 9449 10.1039/D1RA00074H 35423427
    [Google Scholar]
  119. Fornaguera C. Feiner-Gracia N. Calderó G. García-Celma M.J. Solans C. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes. Colloids Surf. B Biointerfaces 2016 147 201 209 10.1016/j.colsurfb.2016.08.001 27513588
    [Google Scholar]
  120. Lei C. Davoodi P. Zhan W. Chow P.K.H. Wang C.H. Development of nanoparticles for drug delivery to brain tumor: The effect of surface materials on penetration into brain tissue. J. Pharm. Sci. 2019 108 5 1736 1745 10.1016/j.xphs.2018.12.002 30552956
    [Google Scholar]
  121. Janrao C. Khopade S. Bavaskar A. Gomte S.S. Agnihotri T.G. Jain A. Recent advances of polymer based nanosystems in cancer management. J. Biomater. Sci. Polym. Ed. 2023 34 9 1274 1335 10.1080/09205063.2022.2161780 36542375
    [Google Scholar]
  122. Fan W. Bu W. Shi J. On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016 28 21 3987 4011 10.1002/adma.201505678 27031300
    [Google Scholar]
  123. Rezvantalab S. Drude N.I. Moraveji M.K. Güvener N. Koons E.K. Shi Y. Lammers T. Kiessling F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018 9 1260 10.3389/fphar.2018.01260 30450050
    [Google Scholar]
  124. Zhi K. Raji B. Nookala A.R. Khan M.M. Nguyen X.H. Sakshi S. Pourmotabbed T. Yallapu M.M. Kochat H. Tadrous E. Pernell S. Kumar S. PLGA nanoparticle-based formulations to cross the blood-brain barrier for drug delivery: From R&D to cGMP. Pharmaceutics 2021 13 4 500 10.3390/pharmaceutics13040500 33917577
    [Google Scholar]
  125. Kahraman E. Güngör S. Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv. 2017 8 11 967 985 10.4155/tde‑2017‑0075 29061106
    [Google Scholar]
  126. Elmowafy E.M. Tiboni M. Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019 49 4 347 380 10.1007/s40005‑019‑00439‑x
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335001241020162217
Loading
/content/journals/cpd/10.2174/0113816128335001241020162217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test