Skip to content
2000
image of Galangin Regulates Astrocyte Phenotypes to Ameliorate Cerebral Ischemia-reperfusion Injury by Inhibiting the RhoA/ROCK/LIMK Pathway

Abstract

Purpose

This study aimed to explore whether Galangin (Gal) could improve cerebral Ischemia-reperfusion (I/R) injury by regulating astrocytes, and clarify its potential molecular mechanism.

Methods

An I/R injury model of rats was established using the Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) method, followed by the administration of Gal (25, 50, 100 mg/kg) gavage for 14 consecutive days. Besides, astrocytes were isolated from the rats to construct an Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) cell model, with treatments of Gal or the Ras homolog gene family member A (RhoA)/Rho-associated Coiled-coil containing protein Kinase (ROCK) inhibitor Y-27632. Subsequently, the severity of nerve injury was assessed using the modified Neurological Severity Score (mNSS) test; behavioral disorders in I/R rats were observed through the open field and ladder-climbing tests. Pathological damages and neuron survival in the peri-infarct zone were examined by hematoxylin and eosin staining and NeuN staining, respectively. Additionally, immunofluorescence staining was employed to determine astrocyte polarization and TUNEL staining was carried out to measure the level of cell apoptosis; also, western blot was performed to detect the expression of proteins related to the RhoA/ROCK/LIM domain Kinase (LIMK) pathway.

Results

Gal significantly ameliorated the neurological and motor dysfunctions caused by I/R in rats, reduced pathological damage in the peri-infarct zone, and promoted neuronal survival. Additionally, Gal increased the number of A2 astrocytes, while it decreased the number of A1 astrocytes. experiments revealed that the effect of Gal was consistent with that of Y-27632. Additionally, Gal significantly enhanced the survival of OGD/R cells, increased the number of A2 astrocytes, and inhibited the expression of proteins associated with the RhoA/ROCK pathway.

Conclusion

Gal could reduce the level of apoptosis, promote the polarization of A2 astrocytes, and improve cerebral I/R injury, and its mechanism may be related to the inhibition of the RhoA/ROCK pathway.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322927241015120431
2024-10-31
2024-12-23
Loading full text...

Full text loading...

References

  1. Feigin V.L. Stark B.A. Johnson C.O. Roth G.A. Bisignano C. Abady G.G. Abbasifard M. Abbasi-Kangevari M. Abd-Allah F. Abedi V. Abualhasan A. Abu-Rmeileh N.M.E. Abushouk A.I. Adebayo O.M. Agarwal G. Agasthi P. Ahinkorah B.O. Ahmad S. Ahmadi S. Ahmed Salih Y. Aji B. Akbarpour S. Akinyemi R.O. Al Hamad H. Alahdab F. Alif S.M. Alipour V. Aljunid S.M. Almustanyir S. Al-Raddadi R.M. Al-Shahi Salman R. Alvis-Guzman N. Ancuceanu R. Anderlini D. Anderson J.A. Ansar A. Antonazzo I.C. Arabloo J. Ärnlöv J. Artanti K.D. Aryan Z. Asgari S. Ashraf T. Athar M. Atreya A. Ausloos M. Baig A.A. Baltatu O.C. Banach M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barone M.T.U. Basu S. Bazmandegan G. Beghi E. Beheshti M. Béjot Y. Bell A.W. Bennett D.A. Bensenor I.M. Bezabhe W.M. Bezabih Y.M. Bhagavathula A.S. Bhardwaj P. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Bonny A. Brauer M. Brenner H. Bryazka D. Butt Z.A. Caetano dos Santos F.L. Campos-Nonato I.R. Cantu-Brito C. Carrero J.J. Castañeda-Orjuela C.A. Catapano A.L. Chakraborty P.A. Charan J. Choudhari S.G. Chowdhury E.K. Chu D-T. Chung S-C. Colozza D. Costa V.M. Costanzo S. Criqui M.H. Dadras O. Dagnew B. Dai X. Dalal K. Damasceno A.A.M. D’Amico E. Dandona L. Dandona R. Darega Gela J. Davletov K. De la Cruz-Góngora V. Desai R. Dhamnetiya D. Dharmaratne S.D. Dhimal M.L. Dhimal M. Diaz D. Dichgans M. Dokova K. Doshi R. Douiri A. Duncan B.B. Eftekharzadeh S. Ekholuenetale M. El Nahas N. Elgendy I.Y. Elhadi M. El-Jaafary S.I. Endres M. Endries A.Y. Erku D.A. Faraon E.J.A. Farooque U. Farzadfar F. Feroze A.H. Filip I. Fischer F. Flood D. Gad M.M. Gaidhane S. Ghanei Gheshlagh R. Ghashghaee A. Ghith N. Ghozali G. Ghozy S. Gialluisi A. Giampaoli S. Gilani S.A. Gill P.S. Gnedovskaya E.V. Golechha M. Goulart A.C. Guo Y. Gupta R. Gupta V.B. Gupta V.K. Gyanwali P. Hafezi-Nejad N. Hamidi S. Hanif A. Hankey G.J. Hargono A. Hashi A. Hassan T.S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Hegazy M.I. Herteliu C. Holla R. Hostiuc S. Househ M. Huang J. Humayun A. Hwang B-F. Iacoviello L. Iavicoli I. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Ismail N.E. Iso H. Isola G. Iwagami M. Jacob L. Jain V. Jang S-I. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Johnson W.D. Jonas J.B. Joseph N. Jozwiak J.J. Jürisson M. Kalani R. Kalhor R. Kalkonde Y. Kamath A. Kamiab Z. Kanchan T. Kandel H. Karch A. Katoto P.D.M.C. Kayode G.A. Keshavarz P. Khader Y.S. Khan E.A. Khan I.A. Khan M. Khan M.A.B. Khatib M.N. Khubchandani J. Kim G.R. Kim M.S. Kim Y.J. Kisa A. Kisa S. Kivimäki M. Kolte D. Koolivand A. Koulmane Laxminarayana S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Krishnamurthi R.V. Kumar G.A. Kusuma D. La Vecchia C. Lacey B. Lak H.M. Lallukka T. Lasrado S. Lavados P.M. Leonardi M. Li B. Li S. Lin H. Lin R-T. Liu X. Lo W.D. Lorkowski S. Lucchetti G. Lutzky Saute R. Magdy Abd El Razek H. Magnani F.G. Mahajan P.B. Majeed A. Makki A. Malekzadeh R. Malik A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mazzaglia G. Mehndiratta M.M. Menezes R.G. Meretoja A. Mersha A.G. Miao Jonasson J. Miazgowski B. Miazgowski T. Michalek I.M. Mirrakhimov E.M. Mohammad Y. Mohammadian-Hafshejani A. Mohammed S. Mokdad A.H. Mokhayeri Y. Molokhia M. Moni M.A. Montasir A.A. Moradzadeh R. Morawska L. Morze J. Muruet W. Musa K.I. Nagarajan A.J. Naghavi M. Narasimha Swamy S. Nascimento B.R. Negoi R.I. Neupane Kandel S. Nguyen T.H. Norrving B. Noubiap J.J. Nwatah V.E. Oancea B. Odukoya O.O. Olagunju A.T. Orru H. Owolabi M.O. Padubidri J.R. Pana A. Parekh T. Park E-C. Pashazadeh Kan F. Pathak M. Peres M.F.P. Perianayagam A. Pham T-M. Piradov M.A. Podder V. Polinder S. Postma M.J. Pourshams A. Radfar A. Rafiei A. Raggi A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.A. Rahmani A.M. Rajai N. Ranasinghe P. Rao C.R. Rao S.J. Rathi P. Rawaf D.L. Rawaf S. Reitsma M.B. Renjith V. Renzaho A.M.N. Rezapour A. Rodriguez J.A.B. Roever L. Romoli M. Rynkiewicz A. Sacco S. Sadeghi M. Saeedi Moghaddam S. Sahebkar A. Saif-Ur-Rahman K.M. Salah R. Samaei M. Samy A.M. Santos I.S. Santric-Milicevic M.M. Sarrafzadegan N. Sathian B. Sattin D. Schiavolin S. Schlaich M.P. Schmidt M.I. Schutte A.E. Sepanlou S.G. Seylani A. Sha F. Shahabi S. Shaikh M.A. Shannawaz M. Shawon M.S.R. Sheikh A. Sheikhbahaei S. Shibuya K. Siabani S. Silva D.A.S. Singh J.A. Singh J.K. Skryabin V.Y. Skryabina A.A. Sobaih B.H. Stortecky S. Stranges S. Tadesse E.G. Tarigan I.U. Temsah M-H. Teuschl Y. Thrift A.G. Tonelli M. Tovani-Palone M.R. Tran B.X. Tripathi M. Tsegaye G.W. Ullah A. Unim B. Unnikrishnan B. Vakilian A. Valadan Tahbaz S. Vasankari T.J. Venketasubramanian N. Vervoort D. Vo B. Volovici V. Vosoughi K. Vu G.T. Vu L.G. Wafa H.A. Waheed Y. Wang Y. Wijeratne T. Winkler A.S. Wolfe C.D.A. Woodward M. Wu J.H. Wulf Hanson S. Xu X. Yadav L. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamagishi K. Yatsuya H. Yonemoto N. Yu C. Yunusa I. Zaman M.S. Zaman S.B. Zamanian M. Zand R. Zandifar A. Zastrozhin M.S. Zastrozhina A. Zhang Y. Zhang Z-J. Zhong C. Zuniga Y.M.H. Murray C.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 20 10 795 820 10.1016/S1474‑4422(21)00252‑0 34487721
    [Google Scholar]
  2. Zong X. Gu J. Zhou S. Ding D. Hu Y. Tucker L. Huang Z. Geng D. Gao D. Continuous theta-burst stimulation enhances and sustains neurogenesis following ischemic stroke. Theranostics 2022 12 13 5710 5726 10.7150/thno.71832 35966576
    [Google Scholar]
  3. Hu S. Wang X. Yang X. Ouyang S. Pan X. Fu Y. Wu S. Long-term iTBS Improves Neural Functional Recovery by Reducing the Inflammatory Response and Inhibiting Neuronal Apoptosis Via miR-34c-5p/p53/Bax Signaling Pathway in Cerebral Ischemic Rats. Neuroscience 2023 527 37 51 10.1016/j.neuroscience.2023.07.014 37468029
    [Google Scholar]
  4. Zhang K. Liu Q. Luo L. Feng X. Hu Q. Fan X. Mao S. Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia–reperfusion stroke via ameliorating glial activation and autophagy. Neuroscience 2021 473 130 141 10.1016/j.neuroscience.2021.08.006 34416342
    [Google Scholar]
  5. Yue Y. Zhao H. Yue Y. Zhang Y. Wei W. Downregulation of microrna-421 relieves cerebral ischemia/reperfusion injuries: Involvement of anti-apoptotic and antioxidant activities. Neuromolecular Med. 2020 22 3 411 419 10.1007/s12017‑020‑08600‑8 32385800
    [Google Scholar]
  6. Girotra T. Lekoubou A. Bishu K.G. Ovbiagele B. A contemporary and comprehensive analysis of the costs of stroke in the United States. J. Neurol. Sci. 2020 410 116643 10.1016/j.jns.2019.116643 31927342
    [Google Scholar]
  7. Cai D. Fraunfelder M. Fujise K. Chen S.Y. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis. Redox Biol. 2023 67 102903 10.1016/j.redox.2023.102903 37801857
    [Google Scholar]
  8. Liddelow S.A. Barres B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017 46 6 957 967 10.1016/j.immuni.2017.06.006 28636962
    [Google Scholar]
  9. Xu H. Wang E. Chen F. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications. Oxid. Med. Cell Longev. 2021 2021 668 7368
    [Google Scholar]
  10. Lu W. Chen Z. Wen J. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation. Biomed. Pharmacother. 2023 165 115141 10.1016/j.biopha.2023.115141 37437375
    [Google Scholar]
  11. Zhang Y. Li K. Wang X. Ding Y. Ren Z. Fang J. Sun T. Guo Y. Chen Z. Wen J. CSE-Derived H 2 S Inhibits Reactive Astrocytes Proliferation and Promotes Neural Functional Recovery after Cerebral Ischemia/Reperfusion Injury in Mice Via Inhibition of RhoA/ROCK 2 Pathway. ACS Chem. Neurosci. 2021 12 14 2580 2590 10.1021/acschemneuro.0c00674 34252278
    [Google Scholar]
  12. Slika H. Mansour H. Wehbe N. Nasser S.A. Iratni R. Nasrallah G. Shaito A. Ghaddar T. Kobeissy F. Eid A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 2022 146 112442 10.1016/j.biopha.2021.112442 35062053
    [Google Scholar]
  13. Kong Y. Feng Z. Chen A. Qi Q. Han M. Wang S. Zhang Y. Zhang X. Yang N. Wang J. Huang B. Zhang Q. Xiang G. Li W. Zhang D. Wang J. Li X. The Natural Flavonoid Galangin Elicits Apoptosis, Pyroptosis, and Autophagy in Glioblastoma. Front. Oncol. 2019 9 942 10.3389/fonc.2019.00942 31612107
    [Google Scholar]
  14. Lee J.J. Ng S.C. Hsu J.Y. Liu H. Chen C.J. Huang C.Y. Kuo W.W. Galangin Reverses H2O2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1α/Nrf2 Signaling. Int. J. Mol. Sci. 2022 23 3 1387 10.3390/ijms23031387 35163314
    [Google Scholar]
  15. Li S. Wu C. Zhu L. Gao J. Fang J. Li D. Fu M. Liang R. Wang L. Cheng M. Yang H. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke. Molecules 2012 17 11 13403 13423 10.3390/molecules171113403 23143152
    [Google Scholar]
  16. Wu C. Chen J. Chen C. Wang W. Wen L. Gao K. Chen X. Xiong S. Zhao H. Li S. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia. Sci. Rep. 2015 5 1 16151 10.1038/srep16151 26537366
    [Google Scholar]
  17. Yang R. Chen K. Zhao Y. Tian P. Duan F. Sun W. Liu Y. Yan Z. Li S. Analysis of Potential Amino Acid Biomarkers in Brain Tissue and the Effect of Galangin on Cerebral Ischemia. Molecules 2016 21 4 438 10.3390/molecules21040438 27058522
    [Google Scholar]
  18. Yang C.C. Hsiao L.D. Yang C.M. Galangin Inhibits LPS-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent AP-1 and FoxO1 Activation in Rat Brain Astrocytes. J. Inflamm. Res. 2020 13 945 960 10.2147/JIR.S276925 33244253
    [Google Scholar]
  19. Xia X. Niu H. Ma Y. Qu B. He M. Yu K. Wang E. Zhang L. Gu J. Liu G. LncRNA CCAT1 Protects Astrocytes Against OGD/R-Induced Damage by Targeting the miR-218/NFAT5-Signaling Axis. Cell. Mol. Neurobiol. 2020 40 8 1383 1393 10.1007/s10571‑020‑00824‑3 32239388
    [Google Scholar]
  20. Yin X. Liu B. Ding Y. Li X. Sheng J. Guo Y. Chen Z. Wen J. Total flavones of Rhododendron induce the transformation of A1/A2 astrocytes via promoting the release of CBS-produced H2S. Phytomedicine 2023 111 154666 10.1016/j.phymed.2023.154666 36701996
    [Google Scholar]
  21. Zhu Y. Howard G.A. Pittman K. Boykin C. Herring L.E. Wilkerson E.M. Verbanac K. Lu Q. Therapeutic Effect of Y-27632 on Tumorigenesis and Cisplatin-Induced Peripheral Sensory Loss through RhoA–NF-κB. Mol. Cancer Res. 2019 17 9 1910 1919 10.1158/1541‑7786.MCR‑19‑0024 31189689
    [Google Scholar]
  22. Calis Z. Mogulkoc R. Baltaci A.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev. Med. Chem. 2020 20 15 1475 1488 10.2174/1389557519666190617150051 31288717
    [Google Scholar]
  23. Yang T. Liu H. Yang C. Mo H. Wang X. Song X. Jiang L. Deng P. Chen R. Wu P. Chen A. Yan J. Galangin Attenuates Myocardial Ischemic Reperfusion-Induced Ferroptosis by Targeting Nrf2/Gpx4 Signaling Pathway. Drug Des. Devel. Ther. 2023 17 2495 2511 10.2147/DDDT.S409232 37637264
    [Google Scholar]
  24. Chen K. Xue R. Geng Y. Zhang S. Galangin inhibited ferroptosis through activation of the PI3K / AKT pathway in vitro and in vivo. FASEB J. 2022 36 11 e22569 10.1096/fj.202200935R 36183339
    [Google Scholar]
  25. Guan X. Li Z. Zhu S. Cheng M. Ju Y. Ren L. Yang G. Min D. Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci. 2021 264 118660 10.1016/j.lfs.2020.118660 33127512
    [Google Scholar]
  26. Quiroga E.N. Sampietro D.A. Soberón J.R. Sgariglia M.A. Vattuone M.A. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 2006 101 1 103 110 10.1111/j.1365‑2672.2006.02904.x 16834596
    [Google Scholar]
  27. Lalo U. Koh W. Lee C.J. Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021 199 108758 10.1016/j.neuropharm.2021.108758 34433089
    [Google Scholar]
  28. Xie Y. Kuan A.T. Wang W. Herbert Z.T. Mosto O. Olukoya O. Adam M. Vu S. Kim M. Tran D. Gómez N. Charpentier C. Sorour I. Lacey T.E. Tolstorukov M.Y. Sabatini B.L. Lee W.C.A. Harwell C.C. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep. 2022 38 8 110416 10.1016/j.celrep.2022.110416 35196485
    [Google Scholar]
  29. Li T. Chen X. Zhang C. Zhang Y. Yao W. An update on reactive astrocytes in chronic pain. J. Neuroinflammation 2019 16 1 140 10.1186/s12974‑019‑1524‑2 31288837
    [Google Scholar]
  30. Zhou M. Zhang T. Zhang X. Zhang M. Gao S. Zhang T. Li S. Cai X. Li J. Lin Y. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS Appl. Mater. Interfaces 2022 14 33 37478 37492 10.1021/acsami.2c10364 35951372
    [Google Scholar]
  31. Chang J. Qian Z. Wang B. Cao J. Zhang S. Jiang F. Kong R. Yu X. Cao X. Yang L. Chen H. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun. Signal. 2023 21 1 37 10.1186/s12964‑022‑01036‑6 36797790
    [Google Scholar]
  32. Patel M.R. Weaver A.M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 2021 34 10 108829 10.1016/j.celrep.2021.108829 33691102
    [Google Scholar]
  33. Liu L. Liu J. Bao J. Bai Q. Wang G. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020 11 1024 10.3389/fimmu.2020.01024 32733433
    [Google Scholar]
  34. Shin J.H. Cyanidin-3-o-glucoside regulates the m1/m2 polarization of microglia via ppargamma and abeta42 phagocytosis through TREM2 in an Alzheimer's Disease Model. Mol. Neurobiol. 2022 59 8 5135 5148
    [Google Scholar]
  35. Xin M. Guo S. Zhang W. Geng Z. Liang J. Du S. Deng Z. Wang Y. Chemical Constituents of Supercritical Extracts from Alpinia officinarum and the Feeding Deterrent Activity against Tribolium castaneum. Molecules 2017 22 4 647 10.3390/molecules22040647 28420198
    [Google Scholar]
  36. Wang C. Li L. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J. Neuroinflammation 2023 20 1 44 10.1186/s12974‑023‑02742‑9 36823628
    [Google Scholar]
  37. Zhou X. Xu S.N. Yuan S.T. Lei X. Sun X. Xing L. Li H.J. He C.X. Qin W. Zhao D. Li P.Q. Moharomd E. Xu X. Cao H.L. Multiple functions of autophagy in vascular calcification. Cell Biosci. 2021 11 1 159 10.1186/s13578‑021‑00639‑9 34399835
    [Google Scholar]
  38. Stern S. Hilton B.J. Burnside E.R. Dupraz S. Handley E.E. Gonyer J.M. Brakebusch C. Bradke F. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 2021 109 21 3436 3455.e9 10.1016/j.neuron.2021.08.014 34508667
    [Google Scholar]
  39. Schmidt S.I. Blaabjerg M. Freude K. Meyer M. RhoA Signaling in Neurodegenerative Diseases. Cells 2022 11 9 1520 10.3390/cells11091520 35563826
    [Google Scholar]
  40. Fan J. Zhao X.H. Li T.J. Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells. J. Nutr. Biochem. 2021 87 108517 10.1016/j.jnutbio.2020.108517 33011286
    [Google Scholar]
  41. Yoon H.J. Jung W.P. Min Y.S. Jin F. Bang J.S. Sohn U.D. Je H.D. The Effect of Galangin on the Regulation of Vascular Contractility via the Holoenzyme Reactivation Suppressing ROCK/CPI-17 rather than PKC/CPI-17. Biomol. Ther. (Seoul) 2022 30 2 145 150 10.4062/biomolther.2021.087 34231489
    [Google Scholar]
  42. Wang X. Chen S. Xiang H. Wang X. Xiao J. Zhao S. Shu Z. Ouyang J. Liang Z. Deng M. Chen X. Zhang J. Liu H. Quan Q. Gao P. Fan J. Chen A.F. Lu H. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem. Pharmacol. 2022 201 115077 10.1016/j.bcp.2022.115077 35537530
    [Google Scholar]
  43. Li X. Shi H. Zhang D. Jing B. Chen Z. Zheng Y. Chang S. Gao L. Zhao G. Paeonol alleviates neuropathic pain by modulating microglial M1 and M2 polarization via the RhoA / p38MAPK signaling pathway. CNS Neurosci. Ther. 2023 29 9 2666 2679 10.1111/cns.14211 37032648
    [Google Scholar]
  44. Wei Y.H. Liao S.L. Wang S.H. Wang C.C. Yang C.H. Simvastatin and ROCK inhibitor y-27632 inhibit myofibroblast differentiation of graves’ ophthalmopathy-derived orbital fibroblasts via rhoa-mediated erk and p38 signaling pathways. Front. Endocrinol. (Lausanne) 2021 11 607968 10.3389/fendo.2020.607968 33597925
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322927241015120431
Loading
/content/journals/cpd/10.2174/0113816128322927241015120431
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Galangin ; astrocytes ; cerebral ischemia-reperfusion ; RhoA/ROCK pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test