Skip to content
2000
Volume 31, Issue 12
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Purpose

This study aimed to explore whether Galangin (Gal) could improve cerebral Ischemia- reperfusion (I/R) injury by regulating astrocytes, and clarify its potential molecular mechanism.

Methods

An I/R injury model of rats was established using the Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) method, followed by the administration of Gal (25, 50, 100 mg/kg) gavage for 14 consecutive days. Besides, astrocytes were isolated from the rats to construct an Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) cell model, with treatments of Gal or the Ras homolog gene family member A (RhoA)/Rho-associated Coiled-coil containing protein Kinase (ROCK) inhibitor Y-27632. Subsequently, the severity of nerve injury was assessed using the modified Neurological Severity Score (mNSS) test; behavioral disorders in I/R rats were observed through the open field and ladder-climbing tests. Pathological damages and neuron survival in the peri-infarct zone were examined by hematoxylin and eosin staining and NeuN staining, respectively. Additionally, immunofluorescence staining was employed to determine astrocyte polarization and TUNEL staining was carried out to measure the level of cell apoptosis; also, western blot was performed to detect the expression of proteins related to the RhoA/ROCK/LIM domain Kinase (LIMK) pathway.

Results

Gal significantly ameliorated the neurological and motor dysfunctions caused by I/R in rats, reduced pathological damage in the peri-infarct zone, and promoted neuronal survival. Additionally, Gal increased the number of A2 astrocytes, while it decreased the number of A1 astrocytes. experiments revealed that the effect of Gal was consistent with that of Y-27632. Additionally, Gal significantly enhanced the survival of OGD/R cells, increased the number of A2 astrocytes, and inhibited the expression of proteins associated with the RhoA/ROCK pathway.

Conclusion

Gal could reduce the level of apoptosis, promote the polarization of A2 astrocytes, and improve cerebral I/R injury, and its mechanism may be related to the inhibition of the RhoA/ROCK pathway.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322927241015120431
2024-10-31
2025-03-29
Loading full text...

Full text loading...

References

  1. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  2. ZongX. GuJ. ZhouS. DingD. HuY. TuckerL. HuangZ. GengD. GaoD. Continuous theta-burst stimulation enhances and sustains neurogenesis following ischemic stroke.Theranostics202212135710572610.7150/thno.7183235966576
    [Google Scholar]
  3. HuS. WangX. YangX. OuyangS. PanX. FuY. WuS. Long-term iTBS improves neural functional recovery by reducing the inflammatory response and inhibiting neuronal apoptosis via miR-34c-5p/p53/Bax signaling pathway in cerebral ischemic rats.Neuroscience2023527375110.1016/j.neuroscience.2023.07.01437468029
    [Google Scholar]
  4. ZhangK. LiuQ. LuoL. FengX. HuQ. FanX. MaoS. Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia-reperfusion stroke via ameliorating glial activation and autophagy.Neuroscience202147313014110.1016/j.neuroscience.2021.08.00634416342
    [Google Scholar]
  5. YueY. ZhaoH. YueY. ZhangY. WeiW. Downregulation of microrna-421 relieves cerebral ischemia/reperfusion injuries: Involvement of anti-apoptotic and antioxidant activities.Neuromolecular Med.202022341141910.1007/s12017‑020‑08600‑832385800
    [Google Scholar]
  6. GirotraT. LekoubouA. BishuK.G. OvbiageleB. A contemporary and comprehensive analysis of the costs of stroke in the United States.J. Neurol. Sci.202041011664310.1016/j.jns.2019.11664331927342
    [Google Scholar]
  7. CaiD. FraunfelderM. FujiseK. ChenS.Y. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis.Redox Biol.20236710290310.1016/j.redox.2023.10290337801857
    [Google Scholar]
  8. LiddelowS.A. BarresB.A. Reactive astrocytes: production, function, and therapeutic potential.Immunity201746695796710.1016/j.immuni.2017.06.00628636962
    [Google Scholar]
  9. XuH. WangE. ChenF. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications.Oxid. Med. Cell Longev.202120216687368
    [Google Scholar]
  10. LuW. ChenZ. WenJ. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation.Biomed. Pharmacother.202316511514110.1016/j.biopha.2023.11514137437375
    [Google Scholar]
  11. ZhangY. LiK. WangX. DingY. RenZ. FangJ. SunT. GuoY. ChenZ. WenJ. CSE-derived H2S inhibits reactive astrocytes proliferation and promotes neural functional recovery after cerebral ischemia/reperfusion injury in mice via inhibition of RhoA/ROCK2 pathway.ACS Chem. Neurosci.202112142580259010.1021/acschemneuro.0c0067434252278
    [Google Scholar]
  12. SlikaH. MansourH. WehbeN. NasserS.A. IratniR. NasrallahG. ShaitoA. GhaddarT. KobeissyF. EidA.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms.Biomed. Pharmacother.202214611244210.1016/j.biopha.2021.11244235062053
    [Google Scholar]
  13. KongY. FengZ. ChenA. QiQ. HanM. WangS. ZhangY. ZhangX. YangN. WangJ. HuangB. ZhangQ. XiangG. LiW. ZhangD. WangJ. LiX. The Natural Flavonoid Galangin Elicits Apoptosis, Pyroptosis, and Autophagy in Glioblastoma.Front. Oncol.2019994210.3389/fonc.2019.0094231612107
    [Google Scholar]
  14. LeeJ.J. NgS.C. HsuJ.Y. LiuH. ChenC.J. HuangC.Y. KuoW.W. Galangin reverses H2O2-induced dermal fibroblast senescence via SIRT1-PGC-1α/Nrf2 signaling.Int. J. Mol. Sci.2022233138710.3390/ijms2303138735163314
    [Google Scholar]
  15. LiS. WuC. ZhuL. GaoJ. FangJ. LiD. FuM. LiangR. WangL. ChengM. YangH. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.Molecules20121711134031342310.3390/molecules17111340323143152
    [Google Scholar]
  16. WuC. ChenJ. ChenC. WangW. WenL. GaoK. ChenX. XiongS. ZhaoH. LiS. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia.Sci. Rep.2015511615110.1038/srep1615126537366
    [Google Scholar]
  17. YangR. ChenK. ZhaoY. TianP. DuanF. SunW. LiuY. YanZ. LiS. Analysis of potential amino acid biomarkers in brain tissue and the effect of galangin on cerebral ischemia.Molecules201621443810.3390/molecules2104043827058522
    [Google Scholar]
  18. YangC.C. HsiaoL.D. YangC.M. Galangin inhibits LPS-induced MMP-9 expression via suppressing protein kinase-dependent AP-1 and FoxO1 activation in rat brain astrocytes.J. Inflamm. Res.20201394596010.2147/JIR.S27692533244253
    [Google Scholar]
  19. XiaX. NiuH. MaY. QuB. HeM. YuK. WangE. ZhangL. GuJ. LiuG. LncRNA CCAT1 protects astrocytes against OGD/R-induced damage by targeting the miR-218/NFAT5-signaling axis.Cell. Mol. Neurobiol.20204081383139310.1007/s10571‑020‑00824‑332239388
    [Google Scholar]
  20. YinX. LiuB. DingY. LiX. ShengJ. GuoY. ChenZ. WenJ. Total flavones of Rhododendron induce the transformation of A1/A2 astrocytes via promoting the release of CBS-produced H2S.Phytomedicine202311115466610.1016/j.phymed.2023.15466636701996
    [Google Scholar]
  21. ZhuY. HowardG.A. PittmanK. BoykinC. HerringL.E. WilkersonE.M. VerbanacK. LuQ. Therapeutic effect of Y-27632 on tumorigenesis and cisplatin-induced peripheral sensory loss through RhoA-NF-κB.Mol. Cancer Res.20191791910191910.1158/1541‑7786.MCR‑19‑002431189689
    [Google Scholar]
  22. CalisZ. MogulkocR. BaltaciA.K. The roles of flavonols/ flavonoids in neurodegeneration and neuroinflammation.Mini Rev. Med. Chem.202020151475148810.2174/138955751966619061715005131288717
    [Google Scholar]
  23. YangT. LiuH. YangC. MoH. WangX. SongX. JiangL. DengP. ChenR. WuP. ChenA. YanJ. Galangin attenuates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway.Drug Des. Devel. Ther.2023172495251110.2147/DDDT.S40923237637264
    [Google Scholar]
  24. ChenK. XueR. GengY. ZhangS. Galangin inhibited ferroptosis through activation of the PI3K/AKT pathway in vitro and in vivo.FASEB J.20223611e2256910.1096/fj.202200935R36183339
    [Google Scholar]
  25. GuanX. LiZ. ZhuS. ChengM. JuY. RenL. YangG. MinD. Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils.Life Sci.202126411866010.1016/j.lfs.2020.11866033127512
    [Google Scholar]
  26. QuirogaE.N. SampietroD.A. SoberónJ.R. SgarigliaM.A. VattuoneM.A. Propolis from the northwest of Argentina as a source of antifungal principles.J. Appl. Microbiol.2006101110311010.1111/j.1365‑2672.2006.02904.x16834596
    [Google Scholar]
  27. LaloU. KohW. LeeC.J. PankratovY. The tripartite glutamatergic synapse.Neuropharmacology202119910875810.1016/j.neuropharm.2021.10875834433089
    [Google Scholar]
  28. XieY. KuanA.T. WangW. HerbertZ.T. MostoO. OlukoyaO. AdamM. VuS. KimM. TranD. GómezN. CharpentierC. SorourI. LaceyT.E. TolstorukovM.Y. SabatiniB.L. LeeW.C.A. HarwellC.C. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development.Cell Rep.202238811041610.1016/j.celrep.2022.11041635196485
    [Google Scholar]
  29. LiT. ChenX. ZhangC. ZhangY. YaoW. An update on reactive astrocytes in chronic pain.J. Neuroinflammation201916114010.1186/s12974‑019‑1524‑231288837
    [Google Scholar]
  30. ZhouM. ZhangT. ZhangX. ZhangM. GaoS. ZhangT. LiS. CaiX. LiJ. LinY. Effect of tetrahedral framework nucleic acids on neurological recovery via ameliorating apoptosis and regulating the activation and polarization of astrocytes in ischemic stroke.ACS Appl. Mater. Interfaces20221433374783749210.1021/acsami.2c1036435951372
    [Google Scholar]
  31. ChangJ. QianZ. WangB. CaoJ. ZhangS. JiangF. KongR. YuX. CaoX. YangL. ChenH. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury.Cell Commun. Signal.20232113710.1186/s12964‑022‑01036‑636797790
    [Google Scholar]
  32. PatelM.R. WeaverA.M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling.Cell Rep.2021341010882910.1016/j.celrep.2021.10882933691102
    [Google Scholar]
  33. LiuL. LiuJ. BaoJ. BaiQ. WangG. Interaction of microglia and astrocytes in the neurovascular unit.Front. Immunol.202011102410.3389/fimmu.2020.0102432733433
    [Google Scholar]
  34. ShinJ.H. Cyanidin-3-o-glucoside regulates the M1/M2 polarization of microglia via ppargamma and abeta42 phagocytosis through TREM2 in an Alzheimer's disease model.Mol. Neurobiol.202259851355148
    [Google Scholar]
  35. XinM. GuoS. ZhangW. GengZ. LiangJ. DuS. DengZ. WangY. Chemical constituents of supercritical extracts from Alpinia officinarum and the feeding deterrent activity against Tribolium castaneum.Molecules201722464710.3390/molecules2204064728420198
    [Google Scholar]
  36. WangC. LiL. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke.J. Neuroinflammation20232014410.1186/s12974‑023‑02742‑936823628
    [Google Scholar]
  37. ZhouX. XuS.N. YuanS.T. LeiX. SunX. XingL. LiH.J. HeC.X. QinW. ZhaoD. LiP.Q. MoharomdE. XuX. CaoH.L. Multiple functions of autophagy in vascular calcification.Cell Biosci.202111115910.1186/s13578‑021‑00639‑934399835
    [Google Scholar]
  38. SternS. HiltonB.J. BurnsideE.R. DuprazS. HandleyE.E. GonyerJ.M. BrakebuschC. BradkeF. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury.Neuron20211092134363455.e910.1016/j.neuron.2021.08.01434508667
    [Google Scholar]
  39. SchmidtS.I. BlaabjergM. FreudeK. MeyerM. RhoA signaling in neurodegenerative diseases.Cells2022119152010.3390/cells1109152035563826
    [Google Scholar]
  40. FanJ. ZhaoX.H. LiT.J. Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells.J. Nutr. Biochem.20218710851710.1016/j.jnutbio.2020.10851733011286
    [Google Scholar]
  41. YoonH.J. JungW.P. MinY.S. JinF. BangJ.S. SohnU.D. JeH.D. The effect of galangin on the regulation of vascular contractility via the holoenzyme reactivation suppressing ROCK/CPI-17 rather than PKC/CPI-17.Biomol. Ther. (Seoul)202230214515010.4062/biomolther.2021.08734231489
    [Google Scholar]
  42. WangX. ChenS. XiangH. WangX. XiaoJ. ZhaoS. ShuZ. OuyangJ. LiangZ. DengM. ChenX. ZhangJ. LiuH. QuanQ. GaoP. FanJ. ChenA.F. LuH. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization.Biochem. Pharmacol.202220111507710.1016/j.bcp.2022.11507735537530
    [Google Scholar]
  43. LiX. ShiH. ZhangD. JingB. ChenZ. ZhengY. ChangS. GaoL. ZhaoG. Paeonol alleviates neuropathic pain by modulating microglial M1 and M2 polarization via the RhoA/p38MAPK signaling pathway.CNS Neurosci. Ther.20232992666267910.1111/cns.1421137032648
    [Google Scholar]
  44. WeiY.H. LiaoS.L. WangS.H. WangC.C. YangC.H. Simvastatin and ROCK inhibitor y-27632 inhibit myofibroblast differentiation of graves’ ophthalmopathy-derived orbital fibroblasts via rhoa-mediated erk and p38 signaling pathways.Front. Endocrinol. (Lausanne)20211160796810.3389/fendo.2020.60796833597925
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322927241015120431
Loading
/content/journals/cpd/10.2174/0113816128322927241015120431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test