Skip to content
2000
Volume 31, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Non-small cell lung cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.

Methods

We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched.

Results

Further analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data.

Conclusion

In summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330530240918073721
2024-12-02
2025-04-19
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. ChenP. LiuY. WenY. ZhouC. Non‐small cell lung cancer in China.Cancer Commun. (Lond.)2022421093797010.1002/cac2.12359 36075878
    [Google Scholar]
  3. WangJ. LiH. CircRNA circ_0067934 silencing inhibits the proliferation, migration and invasion of NSCLC cells and correlates with unfavorable prognosis in NSCLC.Eur. Rev. Med. Pharmacol. Sci.2018221030533060 29863250
    [Google Scholar]
  4. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers20241610183510.3390/cancers16101835 38791914
    [Google Scholar]
  5. ZengF. WangX. WangC. ZhangY. FuD. WangX. Analysis of screening outcomes and factors influencing compliance among community-based lung cancer high-risk population in Nanchang, China, 2018-2020.Front. Oncol.202414133903610.3389/fonc.2024.1339036 38406800
    [Google Scholar]
  6. RizzoA. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate.Br. J. Cancer202212781381138210.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  7. WuJ. LinZ. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance.Int. J. Mol. Sci.202223231505610.3390/ijms232315056 36499382
    [Google Scholar]
  8. ZhangX. ZhuL. ZhangH. ChenS. XiaoY. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges.Front. Immunol.20221392715310.3389/fimmu.2022.927153 35757715
    [Google Scholar]
  9. SternerR.C. SternerR.M. CAR-T cell therapy: Current limitations and potential strategies.Blood Cancer J.20211146910.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  10. XueT. ZhaoX. ZhaoK. LuY. YaoJ. JiX. Immunotherapy for lung cancer: Focusing on chimeric antigen receptor (CAR)-T cell therapy.Curr. Probl. Cancer202246110079110.1016/j.currproblcancer.2021.100791 34538649
    [Google Scholar]
  11. MaherJ. Chimeric antigen receptor (CAR) T-cell therapy for patients with lung cancer: Current perspectives.OncoTargets Ther.20231651553210.2147/OTT.S341179 37425981
    [Google Scholar]
  12. CatameroD. RichardsT. FaimanB. A focus on CAR T-cell therapy and bispecific antibodies in multiple myeloma.J. Adv. Pract. Oncol.202213Suppl. 4314310.6004/jadpro.2022.13.5.13 35937467
    [Google Scholar]
  13. KhoslaA.A. JatwaniK. SinghR. ReddyA. JaiyesimiI. DesaiA. Bispecific antibodies in lung cancer: A state-of-the-art review.Pharmaceuticals20231610146110.3390/ph16101461 37895932
    [Google Scholar]
  14. ArasanzH. ChocarroL. Fernández-RubioL. Current indications and future landscape of bispecific antibodies for the treatment of lung cancer.Int. J. Mol. Sci.20232412985510.3390/ijms24129855 37373003
    [Google Scholar]
  15. SongX. XiongA. WuF. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody.J. Immunother. Cancer2023112e00623410.1136/jitc‑2022‑006234 36854570
    [Google Scholar]
  16. GuvenD.C. SahinT.K. ErulE. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  17. ZhaoY. MaY. FanY. A multicenter, open-label phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific antibody) monotherapy in previously treated advanced non–small-cell lung cancer (AK104-202 study).Lung Cancer202318410735510.1016/j.lungcan.2023.107355 37677918
    [Google Scholar]
  18. PecherA.C. HensenL. KleinR. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome.JAMA2023329242154216210.1001/jama.2023.8753 37367976
    [Google Scholar]
  19. AdusumilliP.S. ZaudererM.G. RivièreI. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent Pembrolizumab.Cancer Discov.202111112748276310.1158/2159‑8290.CD‑21‑0407 34266984
    [Google Scholar]
  20. RizzoA. SantoniM. MollicaV. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  21. KrusinskaB. HawryszI. WadolowskaL. Associations of mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: A case-control study.Nutrients201810447010.3390/nu10040470 29641468
    [Google Scholar]
  22. RoddyM.K. FloresR.M. BurtB. BadrH. Lifestyle behaviors and intervention preferences of early-stage lung cancer survivors and their family caregivers.Support. Care Cancer20212931465147510.1007/s00520‑020‑05632‑5 32691229
    [Google Scholar]
  23. YangW.S. VaP. WongM.Y. ZhangH.L. XiangY.B. Soy intake is associated with lower lung cancer risk: Results from a meta-analysis of epidemiologic studies.Am. J. Clin. Nutr.20119461575158310.3945/ajcn.111.020966 22071712
    [Google Scholar]
  24. CheiC.L. SawadaN. KhankariN.K. Isoflavone and soy food intake and risk of lung cancer in never smokers: Report from prospective studies in Japan and China.Eur. J. Nutr.202362112513710.1007/s00394‑022‑02968‑y 35913505
    [Google Scholar]
  25. RawatS. PathakS. GuptaG. Recent updates on daidzein against oxidative stress and cancer.EXCLI J.201918950954 31762721
    [Google Scholar]
  26. MorozovaE. Abo QouraL. AnufrievaN. Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer.Biochimie202220117718310.1016/j.biochi.2022.05.007 35738490
    [Google Scholar]
  27. SalamaA.A.A. AllamR.M. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9.Eur. J. Pharmacol.202189217376310.1016/j.ejphar.2020.173763 33249075
    [Google Scholar]
  28. WangX. HaoA. SongG. Inhibitory effect of daidzein on the calcium-activated chloride channel TMEM16A and its anti-lung adenocarcinoma activity.Int. J. Biol. Macromol.2023253Pt 612726110.1016/j.ijbiomac.2023.127261 37802433
    [Google Scholar]
  29. AslamB. BasitM. NisarM.A. KhurshidM. RasoolM.H. Proteomics: Technologies and their applications.J. Chromatogr. Sci.201755218219610.1093/chromsci/bmw167 28087761
    [Google Scholar]
  30. BodénE. AndreassonJ. HirdmanG. MalmsjöM. LindstedtS. Quantitative proteomics indicate radical removal of non-small cell lung cancer and predict outcome.Biomedicines20221011273810.3390/biomedicines10112738 36359256
    [Google Scholar]
  31. ChenX. SunY. ZhangT. ShuL. RoepstorffP. YangF. Quantitative proteomics using isobaric labeling: A practical guide.Genomics Proteomics Bioinformatics202119568970610.1016/j.gpb.2021.08.012 35007772
    [Google Scholar]
  32. TerigarB.G. BalasubramanianS. BoldorD. XuZ. LimaM. SabliovC.M. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation.Bioresour. Technol.201010172466247110.1016/j.biortech.2009.11.039 20018507
    [Google Scholar]
  33. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. CantalapiedraC.P. Hernández-PlazaA. LetunicI. BorkP. Huerta-CepasJ. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale.Mol. Biol. Evol.202138125825582910.1093/molbev/msab293 34597405
    [Google Scholar]
  35. GyőrffyB. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors.Innovation20245310062510.1016/j.xinn.2024.100625 38706955
    [Google Scholar]
  36. ZhouY. YuS. ZhangW. NOD-like receptor signaling pathway in gastrointestinal inflammatory diseases and cancers.Int. J. Mol. Sci.202324191451110.3390/ijms241914511 37833958
    [Google Scholar]
  37. YuanR. ZhaoW. WangQ.Q. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis.Pharmacol. Res.202117010574810.1016/j.phrs.2021.105748 34217831
    [Google Scholar]
  38. von HaussenJ. KoczullaR. ShaykhievR. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells.Lung Cancer2008591122310.1016/j.lungcan.2007.07.014 17764778
    [Google Scholar]
  39. CordesC. BartlingB. SimmA. Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival.Lung Cancer2009641798510.1016/j.lungcan.2008.07.005 18760860
    [Google Scholar]
  40. YuanM. ZhuH. XuJ. ZhengY. CaoX. LiuQ. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils.J. Immunol. Res.2016201611110.1155/2016/6530410 27446967
    [Google Scholar]
  41. LvM. XuY. TangR. miR141-CXCL1-CXCR2 signaling-induced Treg recruitment regulates metastases and survival of non-small cell lung cancer.Mol. Cancer Ther.201413123152316210.1158/1535‑7163.MCT‑14‑0448 25349304
    [Google Scholar]
  42. LuJ. XuW. QianJ. Transcriptome profiling analysis reveals that CXCL2 is involved in anlotinib resistance in human lung cancer cells.BMC Med. Genomics201912S2Suppl. 23810.1186/s12920‑019‑0482‑y 30871526
    [Google Scholar]
  43. FanM. WuJ. LiX. CX3 CL1 promotes tumour cell by inducing tyrosine phosphorylation of cortactin in lung cancer.J. Cell. Mol. Med.202125113214610.1111/jcmm.15887 33191645
    [Google Scholar]
  44. TanakaS. HattoriN. IshikawaN. Interferon (alpha, beta and omega) receptor 2 is a prognostic biomarker for lung cancer.Pathobiology2012791243310.1159/000331230 22236545
    [Google Scholar]
  45. XiangF. WuR. NiZ. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells.Oncol. Rep.20143251837184410.3892/or.2014.3433 25175786
    [Google Scholar]
  46. LiY. GaoY. JiangX. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma.J. Transl. Med.202220162810.1186/s12967‑022‑03844‑3 36578072
    [Google Scholar]
  47. TangZ. WangL. BajinkaO. WuG. TanY. Abnormal gene expression regulation mechanism of myeloid cell nuclear differentiation antigen in lung Adenocarcinoma.Biology2022117104710.3390/biology11071047 36101427
    [Google Scholar]
  48. JiaS. LiL. XieL. ZhangW. ZhuT. QianB. Transcriptome based estrogen related genes biomarkers for diagnosis and prognosis in non-small cell lung cancer.Front. Genet.20211266639610.3389/fgene.2021.666396 33936178
    [Google Scholar]
  49. HaoS. LiS. WangJ. C-phycocyanin suppresses the in vitro proliferation and migration of non-small-cell lung cancer cells through reduction of RIPK1/NF-κB activity.Mar. Drugs201917636210.3390/md17060362 31216707
    [Google Scholar]
  50. ParkJ.E. LeeJ.H. LeeS.Y. Expression of key regulatory genes in necroptosis and its effect on the prognosis in non-small cell lung cancer.J. Cancer202011185503551010.7150/jca.46172 32742497
    [Google Scholar]
  51. KimJ. ChungJ.Y. ParkY.S. Prognostic significance of CHIP and RIPK3 in non-small cell lung cancer.Cancers2020126149610.3390/cancers12061496 32521727
    [Google Scholar]
  52. LimJ.H. OhS. KimL. Low-level expression of necroptosis factors indicates a poor prognosis of the squamous cell carcinoma subtype of non-small-cell lung cancer.Transl. Lung Cancer Res.20211031221123010.21037/tlcr‑20‑1027 33889504
    [Google Scholar]
  53. ZhangM. JinC. YangY. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway.J. Cell. Physiol.201923411201612017310.1002/jcp.28617 30953357
    [Google Scholar]
  54. ZhengJ.Q. LinC.H. LeeH.H. AIM2 upregulation promotes metastatic progression and PD‐L1 expression in lung adenocarcinoma.Cancer Sci.2023114130632010.1111/cas.15584 36104978
    [Google Scholar]
  55. LeeS.Y. KangH.G. YooS.S. Polymorphisms in DNA repair and apoptosis-related genes and clinical outcomes of patients with non-small cell lung cancer treated with first-line paclitaxel-cisplatin chemotherapy.Lung Cancer201382233033910.1016/j.lungcan.2013.07.024 23973201
    [Google Scholar]
  56. LiuD. XuW. DingX. Caspase 8 polymorphisms contribute to the prognosis of advanced lung adenocarcinoma patients after platinum-based chemotherapy.Cancer Biol. Ther.2017181294895710.1080/15384047.2016.1276128 28278082
    [Google Scholar]
  57. SakaizawaT. MatsumuraT. FujiiC. Potential role of ASC, a proapoptotic protein, for determining the cisplatin susceptibility of lung cancer cells.Tohoku J. Exp. Med.2018244213314410.1620/tjem.244.133 29459573
    [Google Scholar]
  58. HuangT. ZhangP. LiW. G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells.Cell Death Dis.201784e272610.1038/cddis.2017.65 28383547
    [Google Scholar]
  59. GaoJ. QiuX. XiG. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non small cell lung cancer.Oncol. Rep.20184041971198410.3892/or.2018.6634 30106450
    [Google Scholar]
  60. XiG. GaoJ. WanB. GSDMD is required for effector CD8+ T cell responses to lung cancer cells.Int. Immunopharmacol.20197410571310.1016/j.intimp.2019.105713 31276977
    [Google Scholar]
  61. KimJ.W. KohY. KimD.W. Clinical implications of VEGF, TGF-β1, and IL-1β in patients with advanced non-small cell lung cancer.Cancer Res. Treat.201345432533310.4143/crt.2013.45.4.325 24454005
    [Google Scholar]
  62. AbolfathiH. SheikhpourM. ShahraeiniS.S. KhatamiS. NojoumiS.A. Studies in lung cancer cytokine proteomics: A review.Expert Rev. Proteomics2021181496410.1080/14789450.2021.1892491 33612047
    [Google Scholar]
  63. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  64. RossiA. Di MaioM. Platinum-based chemotherapy in advanced non-small-cell lung cancer: Optimal number of treatment cycles.Expert Rev. Anticancer Ther.201616665366010.1586/14737140.2016.1170596 27010977
    [Google Scholar]
  65. ChaftJ.E. RimnerA. WederW. AzzoliC.G. KrisM.G. CasconeT. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer.Nat. Rev. Clin. Oncol.202118954755710.1038/s41571‑021‑00501‑4 33911215
    [Google Scholar]
  66. PirkerR. Chemotherapy remains a cornerstone in the treatment of nonsmall cell lung cancer.Curr. Opin. Oncol.2020321636710.1097/CCO.0000000000000592 31599771
    [Google Scholar]
  67. Ruiz-CorderoR. DevineW.P. Targeted therapy and checkpoint immunotherapy in lung cancer.Surg. Pathol. Clin.2020131173310.1016/j.path.2019.11.002 32005431
    [Google Scholar]
  68. MillerM. HannaN. Advances in systemic therapy for non-small cell lung cancer.BMJ20213752363n236310.1136/bmj.n2363 34753715
    [Google Scholar]
  69. de ScordilliM. MichelottiA. BertoliE. De CarloE. Del ConteA. BearzA. Targeted therapy and immunotherapy in early-stage non-small cell lung cancer: Current evidence and ongoing trials.Int. J. Mol. Sci.20222313722210.3390/ijms23137222 35806230
    [Google Scholar]
  70. TanA.C. TanD.S.W. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations.J. Clin. Oncol.202240661162510.1200/JCO.21.01626 34985916
    [Google Scholar]
  71. Herrera-JuárezM. Serrano-GómezC. Bote-de-CaboH. Paz-AresL. Targeted therapy for lung cancer: Beyond EGFR and ALK.Cancer2023129121803182010.1002/cncr.34757 37073562
    [Google Scholar]
  72. LahiriA. MajiA. PotdarP.D. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  73. YuY. ZengD. OuQ. Association of survival and immune-related biomarkers with immunotherapy in patients with non–small cell lung cancer.JAMA Netw. Open201927e19687910.1001/jamanetworkopen.2019.6879 31290993
    [Google Scholar]
  74. SuiH. MaN. WangY. Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies.J. Immunol. Res.2018201811710.1155/2018/6984948 30159341
    [Google Scholar]
  75. XiaL. LiuY. WangY. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions.Oncologist201924S1Suppl. 1S31S4110.1634/theoncologist.2019‑IO‑S1‑s05 30819829
    [Google Scholar]
  76. BhattaraiA. ShahS. Abu SerhanH. SahR. SahS. Genomic profiling for non-small cell lung cancer: Clinical relevance in staging and prognosis.Medicine (Baltimore)202310247e3600310.1097/MD.0000000000036003 38013359
    [Google Scholar]
  77. ShiY. LeiY. LiuL. Integration of comprehensive genomic profiling, tumor mutational burden, and PD‐L1 expression to identify novel biomarkers of immunotherapy in non‐small cell lung cancer.Cancer Med.20211072216223110.1002/cam4.3649 33655698
    [Google Scholar]
  78. EinseleH. BorghaeiH. OrlowskiR.Z. The BiTE (bispecific T‐cell engager) platform: Development and future potential of a targeted immuno‐oncology therapy across tumor types.Cancer2020126143192320110.1002/cncr.32909 32401342
    [Google Scholar]
  79. KleinC. BrinkmannU. ReichertJ.M. KontermannR.E. The present and future of bispecific antibodies for cancer therapy.Nat. Rev. Drug Discov.202423430131910.1038/s41573‑024‑00896‑6 38448606
    [Google Scholar]
  80. JohnA.O. RamnathN. Neoadjuvant versus adjuvant systemic therapy for early-stage non-small cell lung cancer: The changing landscape due to immunotherapy.Oncologist202328975276410.1093/oncolo/oyad125 37338126
    [Google Scholar]
  81. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.013 31378236
    [Google Scholar]
  82. ParkS.Y. BousheyC.J. ShvetsovY.B. Diet quality and risk of lung cancer in the multiethnic cohort study.Nutrients2021135161410.3390/nu13051614 34065794
    [Google Scholar]
  83. KimS.H. ParkD.H. LimY.J. Impact of diet on colorectal cancer progression and prevention: From nutrients to neoplasms.Korean J. Gastroenterol.2023822738310.4166/kjg.2023.079 37621242
    [Google Scholar]
  84. YangG. ShuX.O. LiH.L. Prediagnosis soy food consumption and lung cancer survival in women.J. Clin. Oncol.201331121548155310.1200/JCO.2012.43.0942 23530109
    [Google Scholar]
  85. ZaheerK. Humayoun AkhtarM. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health.Crit. Rev. Food Sci. Nutr.20175761280129310.1080/10408398.2014.989958 26565435
    [Google Scholar]
  86. ApplegateC. RowlesJ.III RanardK. JeonS. ErdmanJ. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis.Nutrients20181014010.3390/nu10010040 29300347
    [Google Scholar]
  87. GuoS. WangY. LiY. LiY. FengC. LiZ. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway.Immunol. Lett.2020222677210.1016/j.imlet.2020.03.004 32197974
    [Google Scholar]
  88. WeiX. ZhuC. JiM. Diet and risk of incident lung cancer: A large prospective cohort study in UK Biobank.Am. J. Clin. Nutr.202111462043205110.1093/ajcn/nqab298 34582556
    [Google Scholar]
  89. FuD. ZuoQ. HuangQ. SuL. RingH.Z. RingB.Z. Molecular classification of lobular carcinoma of the breast.Sci. Rep.2017714326510.1038/srep43265 28303886
    [Google Scholar]
  90. CharkiewiczR. SulewskaA. KarabowiczP. Six-gene signature for differential diagnosis and therapeutic decisions in non-small-cell lung cancer-A validation study.Int. J. Mol. Sci.2024257360710.3390/ijms25073607 38612418
    [Google Scholar]
  91. FuD. ZhangB. YangL. HuangS. XinW. Development of an immune-related risk signature for predicting prognosis in lung squamous cell carcinoma.Front. Genet.20201197810.3389/fgene.2020.00978 33005178
    [Google Scholar]
  92. FuD. ZhangB. WuS. Prognosis and characterization of immune microenvironment in acute myeloid leukemia through identification of an autophagy-related signature.Front. Immunol.20211269586510.3389/fimmu.2021.695865 34135913
    [Google Scholar]
  93. ZhangB. YangL. WangX. FuD. Identification of survival-related alternative splicing signatures in acute myeloid leukemia.Biosci. Rep.2021417BSR2020403710.1042/BSR20204037 34212178
    [Google Scholar]
  94. FuD. ZhangB. ZhangY. FengJ. JiangH. Immunogenomic classification of lung squamous cell carcinoma characterizes tumor immune microenvironment and predicts cancer therapy.Genes Dis.20231062274227710.1016/j.gendis.2023.01.022 37554217
    [Google Scholar]
  95. WangD. Discrepancy between mRNA and protein abundance: Insight from information retrieval process in computers.Comput. Biol. Chem.200832646246810.1016/j.compbiolchem.2008.07.014 18757239
    [Google Scholar]
  96. BergsbakenT. FinkS.L. CooksonB.T. Pyroptosis: Host cell death and inflammation.Nat. Rev. Microbiol.2009729910910.1038/nrmicro2070 19148178
    [Google Scholar]
  97. YuP. ZhangX. LiuN. TangL. PengC. ChenX. Pyroptosis: Mechanisms and diseases.Signal Transduct. Target. Ther.20216112810.1038/s41392‑021‑00507‑5 33776057
    [Google Scholar]
  98. TanY. ChenQ. LiX. Pyroptosis: A new paradigm of cell death for fighting against cancer.J. Exp. Clin. Cancer Res.202140115310.1186/s13046‑021‑01959‑x 33941231
    [Google Scholar]
  99. JinZ. BorjihanG. ZhaoR. SunZ. HammondG.B. UryuT. Antihyperlipidemic compounds from the fruit of Piper longum L.Phytother. Res.20092381194119610.1002/ptr.2630 19172581
    [Google Scholar]
  100. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑0179 33225800
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330530240918073721
Loading
/content/journals/cpd/10.2174/0113816128330530240918073721
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Daidzein; H1299 cells; lung cancer; NSCLC; nude mice model; proteomics; pyroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test