Skip to content
2000
image of Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis

Abstract

Introduction

Non-Small-Cell Lung Cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.

Methods

We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched.

Results

Further analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data.

Conclusion

In summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330530240918073721
2024-12-02
2025-01-09
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Chen P. Liu Y. Wen Y. Zhou C. Non‐small cell lung cancer in China. Cancer Commun. (Lond.) 2022 42 10 937 970 10.1002/cac2.12359 36075878
    [Google Scholar]
  3. Wang J. Li H. CircRNA circ_0067934 silencing inhibits the proliferation, migration and invasion of NSCLC cells and correlates with unfavorable prognosis in NSCLC. Eur. Rev. Med. Pharmacol. Sci. 2018 22 10 3053 3060 29863250
    [Google Scholar]
  4. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  5. Zeng F. Wang X. Wang C. Zhang Y. Fu D. Wang X. Analysis of screening outcomes and factors influencing compliance among community-based lung cancer high-risk population in Nanchang, China, 2018-2020. Front. Oncol. 2024 14 1339036 10.3389/fonc.2024.1339036 38406800
    [Google Scholar]
  6. Rizzo A. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: A matter of debate. Br. J. Cancer 2022 127 8 1381 1382 10.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  7. Wu J. Lin Z. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance. Int. J. Mol. Sci. 2022 23 23 15056 10.3390/ijms232315056 36499382
    [Google Scholar]
  8. Zhang X. Zhu L. Zhang H. Chen S. Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front. Immunol. 2022 13 927153 10.3389/fimmu.2022.927153 35757715
    [Google Scholar]
  9. Sterner R.C. Sterner R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021 11 4 69 10.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  10. Xue T. Zhao X. Zhao K. Lu Y. Yao J. Ji X. Immunotherapy for lung cancer: Focusing on chimeric antigen receptor (CAR)-T cell therapy. Curr. Probl. Cancer 2022 46 1 100791 10.1016/j.currproblcancer.2021.100791 34538649
    [Google Scholar]
  11. Maher J. Chimeric antigen receptor (CAR) T-cell therapy for patients with lung cancer: Current perspectives. OncoTargets Ther. 2023 16 515 532 10.2147/OTT.S341179 37425981
    [Google Scholar]
  12. Catamero D. Richards T. Faiman B. A focus on CAR T-cell therapy and bispecific antibodies in multiple myeloma. J. Adv. Pract. Oncol. 2022 13 Suppl. 4 31 43 10.6004/jadpro.2022.13.5.13 35937467
    [Google Scholar]
  13. Khosla A.A. Jatwani K. Singh R. Reddy A. Jaiyesimi I. Desai A. Bispecific antibodies in lung cancer: A state-of-the-art review. Pharmaceuticals 2023 16 10 1461 10.3390/ph16101461 37895932
    [Google Scholar]
  14. Arasanz H. Chocarro L. Fernández-Rubio L. Blanco E. Bocanegra A. Echaide M. Labiano I. Huerta A.E. Alsina M. Vera R. Escors D. Kochan G. Current indications and future landscape of bispecific antibodies for the treatment of lung cancer. Int. J. Mol. Sci. 2023 24 12 9855 10.3390/ijms24129855 37373003
    [Google Scholar]
  15. Song X. Xiong A. Wu F. Li X. Wang J. Jiang T. Chen P. Zhang X. Zhao Z. Liu H. Cheng L. Zhao C. Wang Z. Pan C. Cui X. Xu T. Luo H. Zhou C. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J. Immunother. Cancer 2023 11 2 e006234 10.1136/jitc‑2022‑006234 36854570
    [Google Scholar]
  16. Guven D.C. Sahin T.K. Erul E. Rizzo A. Ricci A.D. Aksoy S. Yalcin S. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Mol. Biosci. 2022 9 1039121 10.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  17. Zhao Y. Ma Y. Fan Y. Zhou J. Yang N. Yu Q. Zhuang W. Song W. Wang Z.M. Li B. Xia Y. Zhao H. Zhang L. A multicenter, open-label phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific antibody) monotherapy in previously treated advanced non–small-cell lung cancer (AK104-202 study). Lung Cancer 2023 184 107355 10.1016/j.lungcan.2023.107355 37677918
    [Google Scholar]
  18. Pecher A.C. Hensen L. Klein R. Schairer R. Lutz K. Atar D. Seitz C. Stanger A. Schneider J. Braun C. Schmidt M. Horger M. Bornemann A. Faul C. Bethge W. Henes J. Lengerke C. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 2023 329 24 2154 2162 10.1001/jama.2023.8753 37367976
    [Google Scholar]
  19. Adusumilli P.S. Zauderer M.G. Rivière I. Solomon S.B. Rusch V.W. O’Cearbhaill R.E. Zhu A. Cheema W. Chintala N.K. Halton E. Pineda J. Perez-Johnston R. Tan K.S. Daly B. Araujo Filho J.A. Ngai D. McGee E. Vincent A. Diamonte C. Sauter J.L. Modi S. Sikder D. Senechal B. Wang X. Travis W.D. Gönen M. Rudin C.M. Brentjens R.J. Jones D.R. Sadelain M. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti–PD-1 agent Pembrolizumab. Cancer Discov. 2021 11 11 2748 2763 10.1158/2159‑8290.CD‑21‑0407 34266984
    [Google Scholar]
  20. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  21. Krusinska B. Hawrysz I. Wadolowska L. Slowinska M. Biernacki M. Czerwinska A. Golota J. Associations of mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: A case-control study. Nutrients 2018 10 4 470 10.3390/nu10040470 29641468
    [Google Scholar]
  22. Roddy M.K. Flores R.M. Burt B. Badr H. Lifestyle behaviors and intervention preferences of early-stage lung cancer survivors and their family caregivers. Support. Care Cancer 2021 29 3 1465 1475 10.1007/s00520‑020‑05632‑5 32691229
    [Google Scholar]
  23. Yang W.S. Va P. Wong M.Y. Zhang H.L. Xiang Y.B. Soy intake is associated with lower lung cancer risk: Results from a meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2011 94 6 1575 1583 10.3945/ajcn.111.020966 22071712
    [Google Scholar]
  24. Chei C.L. Sawada N. Khankari N.K. Iwasaki M. Yamaji T. Cai H. Shimazu T. Inoue M. Shu X.O. Zheng W. Tsugane S. Isoflavone and soy food intake and risk of lung cancer in never smokers: Report from prospective studies in Japan and China. Eur. J. Nutr. 2023 62 1 125 137 10.1007/s00394‑022‑02968‑y 35913505
    [Google Scholar]
  25. Rawat S. Pathak S. Gupta G. Singh S.K. Singh H. Mishra A. Gilhotra R. Recent updates on daidzein against oxidative stress and cancer. EXCLI J. 2019 18 950 954 31762721
    [Google Scholar]
  26. Morozova E. Abo Qoura L. Anufrieva N. Koval V. Lesnova E. Kushch A. Kulikova V. Revtovich S. Pokrovsky V.S. Demidkina T. Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer. Biochimie 2022 201 177 183 10.1016/j.biochi.2022.05.007 35738490
    [Google Scholar]
  27. Salama A.A.A. Allam R.M. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. Eur. J. Pharmacol. 2021 892 173763 10.1016/j.ejphar.2020.173763 33249075
    [Google Scholar]
  28. Wang X. Hao A. Song G. Elena V. Sun Y. Zhang H. Zhan Y. An H. Chen Y. Inhibitory effect of daidzein on the calcium-activated chloride channel TMEM16A and its anti-lung adenocarcinoma activity. Int. J. Biol. Macromol. 2023 253 Pt 6 127261 10.1016/j.ijbiomac.2023.127261 37802433
    [Google Scholar]
  29. Aslam B. Basit M. Nisar M.A. Khurshid M. Rasool M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci. 2017 55 2 182 196 10.1093/chromsci/bmw167 28087761
    [Google Scholar]
  30. Bodén E. Andreasson J. Hirdman G. Malmsjö M. Lindstedt S. Quantitative proteomics indicate radical removal of non-small cell lung cancer and predict outcome. Biomedicines 2022 10 11 2738 10.3390/biomedicines10112738 36359256
    [Google Scholar]
  31. Chen X. Sun Y. Zhang T. Shu L. Roepstorff P. Yang F. Quantitative proteomics using isobaric labeling: A practical guide. Genomics Proteomics Bioinformatics 2021 19 5 689 706 10.1016/j.gpb.2021.08.012 35007772
    [Google Scholar]
  32. Terigar B.G. Balasubramanian S. Boldor D. Xu Z. Lima M. Sabliov C.M. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation. Bioresour. Technol. 2010 101 7 2466 2471 10.1016/j.biortech.2009.11.039 20018507
    [Google Scholar]
  33. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. Cantalapiedra C.P. Hernández-Plaza A. Letunic I. Bork P. Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021 38 12 5825 5829 10.1093/molbev/msab293 34597405
    [Google Scholar]
  35. Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024 5 3 100625 10.1016/j.xinn.2024.100625 38706955
    [Google Scholar]
  36. Zhou Y. Yu S. Zhang W. NOD-like receptor signaling pathway in gastrointestinal inflammatory diseases and cancers. Int. J. Mol. Sci. 2023 24 19 14511 10.3390/ijms241914511 37833958
    [Google Scholar]
  37. Yuan R. Zhao W. Wang Q.Q. He J. Han S. Gao H. Feng Y. Yang S. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol. Res. 2021 170 105748 10.1016/j.phrs.2021.105748 34217831
    [Google Scholar]
  38. von Haussen J. Koczulla R. Shaykhiev R. Herr C. Pinkenburg O. Reimer D. Wiewrodt R. Biesterfeld S. Aigner A. Czubayko F. Bals R. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 2008 59 1 12 23 10.1016/j.lungcan.2007.07.014 17764778
    [Google Scholar]
  39. Cordes C. Bartling B. Simm A. Afar D. Lautenschläger C. Hansen G. Silber R.E. Burdach S. Hofmann H.S. Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer 2009 64 1 79 85 10.1016/j.lungcan.2008.07.005 18760860
    [Google Scholar]
  40. Yuan M. Zhu H. Xu J. Zheng Y. Cao X. Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J. Immunol. Res. 2016 2016 1 11 10.1155/2016/6530410 27446967
    [Google Scholar]
  41. Lv M. Xu Y. Tang R. Ren J. Shen S. Chen Y. Liu B. Hou Y. Wang T. miR141-CXCL1-CXCR2 signaling-induced Treg recruitment regulates metastases and survival of non-small cell lung cancer. Mol. Cancer Ther. 2014 13 12 3152 3162 10.1158/1535‑7163.MCT‑14‑0448 25349304
    [Google Scholar]
  42. Lu J. Xu W. Qian J. Wang S. Zhang B. Zhang L. Qiao R. Hu M. Zhao Y. Zhao X. Han B. Transcriptome profiling analysis reveals that CXCL2 is involved in anlotinib resistance in human lung cancer cells. BMC Med. Genomics 2019 12 S2 Suppl. 2 38 10.1186/s12920‑019‑0482‑y 30871526
    [Google Scholar]
  43. Fan M. Wu J. Li X. Jiang Y. Wang X. Bie M. Weng Y. Chen S. Chen B. An L. Zhang M. Huang G. Zhu M. Shi Q. CX 3 CL1 promotes tumour cell by inducing tyrosine phosphorylation of cortactin in lung cancer. J. Cell. Mol. Med. 2021 25 1 132 146 10.1111/jcmm.15887 33191645
    [Google Scholar]
  44. Tanaka S. Hattori N. Ishikawa N. Horimasu Y. Deguchi N. Takano A. Tomoda Y. Yoshioka K. Fujitaka K. Arihiro K. Okada M. Yokoyama A. Kohno N. Interferon (alpha, beta and omega) receptor 2 is a prognostic biomarker for lung cancer. Pathobiology 2012 79 1 24 33 10.1159/000331230 22236545
    [Google Scholar]
  45. Xiang F. Wu R. Ni Z. Pan C. Zhan Y. Xu J. Meng X. Kang X. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells. Oncol. Rep. 2014 32 5 1837 1844 10.3892/or.2014.3433 25175786
    [Google Scholar]
  46. Li Y. Gao Y. Jiang X. Cheng Y. Zhang J. Xu L. Liu X. Huang Z. Xie C. Gong Y. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma. J. Transl. Med. 2022 20 1 628 10.1186/s12967‑022‑03844‑3 36578072
    [Google Scholar]
  47. Tang Z. Wang L. Bajinka O. Wu G. Tan Y. Abnormal gene expression regulation mechanism of myeloid cell nuclear differentiation antigen in lung Adenocarcinoma. Biology 2022 11 7 1047 10.3390/biology11071047 36101427
    [Google Scholar]
  48. Jia S. Li L. Xie L. Zhang W. Zhu T. Qian B. Transcriptome based estrogen related genes biomarkers for diagnosis and prognosis in non-small cell lung cancer. Front. Genet. 2021 12 666396 10.3389/fgene.2021.666396 33936178
    [Google Scholar]
  49. Hao S. Li S. Wang J. Zhao L. Yan Y. Wu T. Zhang J. Wang C. C-phycocyanin suppresses the in vitro proliferation and migration of non-small-cell lung cancer cells through reduction of RIPK1/NF-κB activity. Mar. Drugs 2019 17 6 362 10.3390/md17060362 31216707
    [Google Scholar]
  50. Park J.E. Lee J.H. Lee S.Y. Hong M.J. Choi J.E. Park S. Jeong J.Y. Lee E.B. Choi S.H. Lee Y.H. Seo H. Yoo S.S. Lee J. Cha S.I. Kim C.H. Park J.Y. Expression of key regulatory genes in necroptosis and its effect on the prognosis in non-small cell lung cancer. J. Cancer 2020 11 18 5503 5510 10.7150/jca.46172 32742497
    [Google Scholar]
  51. Kim J. Chung J.Y. Park Y.S. Jang S.J. Kim H.R. Choi C.M. Song J.S. Prognostic significance of CHIP and RIPK3 in non-small cell lung cancer. Cancers 2020 12 6 1496 10.3390/cancers12061496 32521727
    [Google Scholar]
  52. Lim J.H. Oh S. Kim L. Suh Y.J. Ha Y.J. Kim J.S. Kim H.J. Park M.H. Kim Y.S. Cho Y. Kwak S.M. Lee H.L. Kim Y.S. Ryu J.S. Low-level expression of necroptosis factors indicates a poor prognosis of the squamous cell carcinoma subtype of non-small-cell lung cancer. Transl. Lung Cancer Res. 2021 10 3 1221 1230 10.21037/tlcr‑20‑1027 33889504
    [Google Scholar]
  53. Zhang M. Jin C. Yang Y. Wang K. Zhou Y. Zhou Y. Wang R. Li T. Hu R. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway. J. Cell. Physiol. 2019 234 11 20161 20173 10.1002/jcp.28617 30953357
    [Google Scholar]
  54. Zheng J.Q. Lin C.H. Lee H.H. Chang W.M. Li L.J. Su C.Y. Lee K.Y. Chiu H.W. Lin Y.F. AIM2 upregulation promotes metastatic progression and PD‐L1 expression in lung adenocarcinoma. Cancer Sci. 2023 114 1 306 320 10.1111/cas.15584 36104978
    [Google Scholar]
  55. Lee S.Y. Kang H.G. Yoo S.S. Kang Y.R. Choi Y.Y. Lee W.K. Choi J.E. Jeon H.S. Shin K.M. Oh I.J. Kim K.S. Lee J. Cha S.I. Kim C.H. Kim Y.C. Park J.Y. Polymorphisms in DNA repair and apoptosis-related genes and clinical outcomes of patients with non-small cell lung cancer treated with first-line paclitaxel-cisplatin chemotherapy. Lung Cancer 2013 82 2 330 339 10.1016/j.lungcan.2013.07.024 23973201
    [Google Scholar]
  56. Liu D. Xu W. Ding X. Yang Y. Lu Y. Fei K. Su B. Caspase 8 polymorphisms contribute to the prognosis of advanced lung adenocarcinoma patients after platinum-based chemotherapy. Cancer Biol. Ther. 2017 18 12 948 957 10.1080/15384047.2016.1276128 28278082
    [Google Scholar]
  57. Sakaizawa T. Matsumura T. Fujii C. Hida S. Toishi M. Shiina T. Yoshida K. Hamanaka K. Ito K. Taniguchi S. Potential role of ASC, a proapoptotic protein, for determining the cisplatin susceptibility of lung cancer cells. Tohoku J. Exp. Med. 2018 244 2 133 144 10.1620/tjem.244.133 29459573
    [Google Scholar]
  58. Huang T. Zhang P. Li W. Zhao T. Zhang Z. Chen S. Yang Y. Feng Y. Li F. Shirley Liu X. Zhang L. Jiang G. Zhang F. G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death Dis. 2017 8 4 e2726 10.1038/cddis.2017.65 28383547
    [Google Scholar]
  59. Gao J. Qiu X. Xi G. Liu H. Zhang F. Lv T. Song Y. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non‑small cell lung cancer. Oncol. Rep. 2018 40 4 1971 1984 10.3892/or.2018.6634 30106450
    [Google Scholar]
  60. Xi G. Gao J. Wan B. Zhan P. Xu W. Lv T. Song Y. GSDMD is required for effector CD8+ T cell responses to lung cancer cells. Int. Immunopharmacol. 2019 74 105713 10.1016/j.intimp.2019.105713 31276977
    [Google Scholar]
  61. Kim J.W. Koh Y. Kim D.W. Ahn Y.O. Kim T.M. Han S.W. Oh D.Y. Lee S.H. Im S.A. Kim T.Y. Heo D.S. Bang Y.J. Clinical implications of VEGF, TGF-β1, and IL-1β in patients with advanced non-small cell lung cancer. Cancer Res. Treat. 2013 45 4 325 333 10.4143/crt.2013.45.4.325 24454005
    [Google Scholar]
  62. Abolfathi H. Sheikhpour M. Shahraeini S.S. Khatami S. Nojoumi S.A. Studies in lung cancer cytokine proteomics: A review. Expert Rev. Proteomics 2021 18 1 49 64 10.1080/14789450.2021.1892491 33612047
    [Google Scholar]
  63. Li Y. Yan B. He S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023 169 115891 10.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  64. Rossi A. Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: Optimal number of treatment cycles. Expert Rev. Anticancer Ther. 2016 16 6 653 660 10.1586/14737140.2016.1170596 27010977
    [Google Scholar]
  65. Chaft J.E. Rimner A. Weder W. Azzoli C.G. Kris M.G. Cascone T. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 2021 18 9 547 557 10.1038/s41571‑021‑00501‑4 33911215
    [Google Scholar]
  66. Pirker R. Chemotherapy remains a cornerstone in the treatment of nonsmall cell lung cancer. Curr. Opin. Oncol. 2020 32 1 63 67 10.1097/CCO.0000000000000592 31599771
    [Google Scholar]
  67. Ruiz-Cordero R. Devine W.P. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg. Pathol. Clin. 2020 13 1 17 33 10.1016/j.path.2019.11.002 32005431
    [Google Scholar]
  68. Miller M. Hanna N. Advances in systemic therapy for non-small cell lung cancer. BMJ 2021 375 2363 n2363 10.1136/bmj.n2363 34753715
    [Google Scholar]
  69. de Scordilli M. Michelotti A. Bertoli E. De Carlo E. Del Conte A. Bearz A. Targeted therapy and immunotherapy in early-stage non-small cell lung cancer: Current evidence and ongoing trials. Int. J. Mol. Sci. 2022 23 13 7222 10.3390/ijms23137222 35806230
    [Google Scholar]
  70. Tan A.C. Tan D.S.W. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J. Clin. Oncol. 2022 40 6 611 625 10.1200/JCO.21.01626 34985916
    [Google Scholar]
  71. Herrera-Juárez M. Serrano-Gómez C. Bote-de-Cabo H. Paz-Ares L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023 129 12 1803 1820 10.1002/cncr.34757 37073562
    [Google Scholar]
  72. Lahiri A. Maji A. Potdar P.D. Singh N. Parikh P. Bisht B. Mukherjee A. Paul M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023 22 1 40 10.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  73. Yu Y. Zeng D. Ou Q. Liu S. Li A. Chen Y. Lin D. Gao Q. Zhou H. Liao W. Yao H. Association of survival and immune-related biomarkers with immunotherapy in patients with non–small cell lung cancer. JAMA Netw. Open 2019 2 7 e196879 10.1001/jamanetworkopen.2019.6879 31290993
    [Google Scholar]
  74. Sui H. Ma N. Wang Y. Li H. Liu X. Su Y. Yang J. Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies. J. Immunol. Res. 2018 2018 1 17 10.1155/2018/6984948 30159341
    [Google Scholar]
  75. Xia L. Liu Y. Wang Y. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist 2019 24 S1 Suppl. 1 S31 S41 10.1634/theoncologist.2019‑IO‑S1‑s05 30819829
    [Google Scholar]
  76. Bhattarai A. Shah S. Abu Serhan H. Sah R. Sah S. Genomic profiling for non-small cell lung cancer: Clinical relevance in staging and prognosis. Medicine (Baltimore) 2023 102 47 e36003 10.1097/MD.0000000000036003 38013359
    [Google Scholar]
  77. Shi Y. Lei Y. Liu L. Zhang S. Wang W. Zhao J. Zhao S. Dong X. Yao M. Wang K. Zhou Q. Integration of comprehensive genomic profiling, tumor mutational burden, and PD‐L1 expression to identify novel biomarkers of immunotherapy in non‐small cell lung cancer. Cancer Med. 2021 10 7 2216 2231 10.1002/cam4.3649 33655698
    [Google Scholar]
  78. Einsele H. Borghaei H. Orlowski R.Z. Subklewe M. Roboz G.J. Zugmaier G. Kufer P. Iskander K. Kantarjian H.M. The BiTE (bispecific T‐cell engager) platform: Development and future potential of a targeted immuno‐oncology therapy across tumor types. Cancer 2020 126 14 3192 3201 10.1002/cncr.32909 32401342
    [Google Scholar]
  79. Klein C. Brinkmann U. Reichert J.M. Kontermann R.E. The present and future of bispecific antibodies for cancer therapy. Nat. Rev. Drug Discov. 2024 23 4 301 319 10.1038/s41573‑024‑00896‑6 38448606
    [Google Scholar]
  80. John A.O. Ramnath N. Neoadjuvant versus adjuvant systemic therapy for early-stage non-small cell lung cancer: The changing landscape due to immunotherapy. Oncologist 2023 28 9 752 764 10.1093/oncolo/oyad125 37338126
    [Google Scholar]
  81. Duma N. Santana-Davila R. Molina J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 2019 94 8 1623 1640 10.1016/j.mayocp.2019.01.013 31378236
    [Google Scholar]
  82. Park S.Y. Boushey C.J. Shvetsov Y.B. Wirth M.D. Shivappa N. Hébert J.R. Haiman C.A. Wilkens L.R. Le Marchand L. Diet quality and risk of lung cancer in the multiethnic cohort study. Nutrients 2021 13 5 1614 10.3390/nu13051614 34065794
    [Google Scholar]
  83. Kim S.H. Park D.H. Lim Y.J. Impact of diet on colorectal cancer progression and prevention: From nutrients to neoplasms. Korean J. Gastroenterol. 2023 82 2 73 83 10.4166/kjg.2023.079 37621242
    [Google Scholar]
  84. Yang G. Shu X.O. Li H.L. Chow W.H. Wen W. Xiang Y.B. Zhang X. Cai H. Ji B.T. Gao Y.T. Zheng W. Prediagnosis soy food consumption and lung cancer survival in women. J. Clin. Oncol. 2013 31 12 1548 1553 10.1200/JCO.2012.43.0942 23530109
    [Google Scholar]
  85. Zaheer K. Humayoun Akhtar M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr. 2017 57 6 1280 1293 10.1080/10408398.2014.989958 26565435
    [Google Scholar]
  86. Applegate C. Rowles J. III Ranard K. Jeon S. Erdman J. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients 2018 10 1 40 10.3390/nu10010040 29300347
    [Google Scholar]
  87. Guo S. Wang Y. Li Y. Li Y. Feng C. Li Z. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway. Immunol. Lett. 2020 222 67 72 10.1016/j.imlet.2020.03.004 32197974
    [Google Scholar]
  88. Wei X. Zhu C. Ji M. Fan J. Xie J. Huang Y. Jiang X. Xu J. Yin R. Du L. Wang Y. Dai J. Jin G. Xu L. Hu Z. Shen H. Zhu M. Ma H. Diet and risk of incident lung cancer: A large prospective cohort study in UK Biobank. Am. J. Clin. Nutr. 2021 114 6 2043 2051 10.1093/ajcn/nqab298 34582556
    [Google Scholar]
  89. Fu D. Zuo Q. Huang Q. Su L. Ring H.Z. Ring B.Z. Molecular classification of lobular carcinoma of the breast. Sci. Rep. 2017 7 1 43265 10.1038/srep43265 28303886
    [Google Scholar]
  90. Charkiewicz R. Sulewska A. Karabowicz P. Lapuc G. Charkiewicz A. Kraska M. Pancewicz J. Lukasik M. Kozlowski M. Stec R. Ziembicka D. Piszcz W. Miltyk W. Niklinska W. Six-gene signature for differential diagnosis and therapeutic decisions in non-small-cell lung cancer—A validation study. Int. J. Mol. Sci. 2024 25 7 3607 10.3390/ijms25073607 38612418
    [Google Scholar]
  91. Fu D. Zhang B. Yang L. Huang S. Xin W. Development of an immune-related risk signature for predicting prognosis in lung squamous cell carcinoma. Front. Genet. 2020 11 978 10.3389/fgene.2020.00978 33005178
    [Google Scholar]
  92. Fu D. Zhang B. Wu S. Zhang Y. Xie J. Ning W. Jiang H. Prognosis and characterization of immune microenvironment in acute myeloid leukemia through identification of an autophagy-related signature. Front. Immunol. 2021 12 695865 10.3389/fimmu.2021.695865 34135913
    [Google Scholar]
  93. Zhang B. Yang L. Wang X. Fu D. Identification of survival-related alternative splicing signatures in acute myeloid leukemia. Biosci. Rep. 2021 41 7 BSR20204037 10.1042/BSR20204037 34212178
    [Google Scholar]
  94. Fu D. Zhang B. Zhang Y. Feng J. Jiang H. Immunogenomic classification of lung squamous cell carcinoma characterizes tumor immune microenvironment and predicts cancer therapy. Genes Dis. 2023 10 6 2274 2277 10.1016/j.gendis.2023.01.022 37554217
    [Google Scholar]
  95. Wang D. Discrepancy between mRNA and protein abundance: Insight from information retrieval process in computers. Comput. Biol. Chem. 2008 32 6 462 468 10.1016/j.compbiolchem.2008.07.014 18757239
    [Google Scholar]
  96. Bergsbaken T. Fink S.L. Cookson B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009 7 2 99 109 10.1038/nrmicro2070 19148178
    [Google Scholar]
  97. Yu P. Zhang X. Liu N. Tang L. Peng C. Chen X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021 6 1 128 10.1038/s41392‑021‑00507‑5 33776057
    [Google Scholar]
  98. Tan Y. Chen Q. Li X. Zeng Z. Xiong W. Li G. Li X. Yang J. Xiang B. Yi M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res. 2021 40 1 153 10.1186/s13046‑021‑01959‑x 33941231
    [Google Scholar]
  99. Jin Z. Borjihan G. Zhao R. Sun Z. Hammond G.B. Uryu T. Antihyperlipidemic compounds from the fruit of Piper longum L. Phytother. Res. 2009 23 8 1194 1196 10.1002/ptr.2630 19172581
    [Google Scholar]
  100. Dall’Olio F.G. Rizzo A. Mollica V. Massucci M. Maggio I. Massari F. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis. Immunotherapy 2021 13 3 257 270 10.2217/imt‑2020‑0179 33225800
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330530240918073721
Loading
/content/journals/cpd/10.2174/0113816128330530240918073721
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Daidzein ; NSCLC ; pyroptosis ; nude mice model ; proteomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test