Skip to content
2000
Volume 31, Issue 16
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods. These novel CS-NGs are applied in cancer nanomedicine serving as drug delivery, gene delivery, and bioimaging. Besides, we proposed our perspectives regarding the clinical development of CS-NGs cancer nanomedicine applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347060241105032329
2025-01-01
2025-06-19
Loading full text...

Full text loading...

References

  1. El-HusseinA. ManotoS.L. Ombinda-LemboumbaS. AlrowailiZ.A. Mthunzi-KufaP. A review of chemotherapy and photodynamic therapy for lung cancer treatment.Anticancer. Agents Med. Chem.202121214916110.2174/18715206MTA1uNjQp332242788
    [Google Scholar]
  2. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.01825813885
    [Google Scholar]
  3. WoodmanC. VunduG. GeorgeA. WilsonC.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer.Semin. Cancer Biol.20216934936410.1016/j.semcancer.2020.02.00932088362
    [Google Scholar]
  4. HoH.M.K. CraigD.Q.M. DayR.M. Design of experiment approach to modeling the effects of formulation and drug loading on the structure and properties of therapeutic nanogels.Mol. Pharm.202219260261510.1021/acs.molpharmaceut.1c0069935061948
    [Google Scholar]
  5. LiX. LiH. ZhangC. PichA. XingL. ShiX. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy.Bioact. Mater.20216103473348410.1016/j.bioactmat.2021.03.02133869898
    [Google Scholar]
  6. AhamedJ. Jaswanth GowdaB.H. AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  7. ArifY. HasanN. GowdaBJ GuptaG. AlsayariA. WahabS. KesharwaniP. Advancements in dendrimer-based drug delivery for combinatorial cancer therapy.J. Drug Deliv. Sci. Technol.20249710575510.1016/j.jddst.2024.105755
    [Google Scholar]
  8. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  9. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  10. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  11. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  12. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  13. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  14. IacobA.T. LupascuF.G. ApotrosoaeiM. VasincuI.M. TauserR.G. LupascuD. GiuscaS.E. CaruntuI.D. ProfireL. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers.Pharmaceutics202113458710.3390/pharmaceutics1304058733924046
    [Google Scholar]
  15. ZhouW. YangG. NiX. DiaoS. XieC. FanQ. Recent advances in crosslinked nanogel for multimodal imaging and cancer therapy.Polymers (Basel)2020129190210.3390/polym1209190232846923
    [Google Scholar]
  16. HashimotoY. MukaiS. SasakiY. AkiyoshiK. Nanogel tectonics for tissue engineering: Protein delivery systems with nanogel chaperones.Adv. Healthc. Mater.2018723180072910.1002/adhm.20180072930221496
    [Google Scholar]
  17. AhmedS. AlharethK. MignetN. Advancement in nanogel formulations provides controlled drug release.Int. J. Pharm.202058411943510.1016/j.ijpharm.2020.11943532439585
    [Google Scholar]
  18. FronzaB.M. RadI.Y. ShahP.K. BarrosM.D. GianniniM. StansburyJ.W. Nanogel-based filler-matrix interphase for polymerization stress reduction.J. Dent. Res.201998777978510.1177/002203451984584331050913
    [Google Scholar]
  19. KazakovS. Liposome-nanogel structures for future pharmaceutical applications: An updated review.Curr. Pharm. Des.201622101391141310.2174/138161282266616012511473326806343
    [Google Scholar]
  20. WangH. GaoL. FanT. ZhangC. ZhangB. Al-HartomyO.A. Al-GhamdiA. WagehS. QiuM. ZhangH. Strategic design of intelligent-responsive nanogel carriers for cancer therapy.ACS Appl. Mater. Interfaces20211346546215464710.1021/acsami.1c1363434767342
    [Google Scholar]
  21. ZhangZ. HaoG. LiuC. FuJ. HuD. RongJ. YangX. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers.Food Res. Int.202114711056410.1016/j.foodres.2021.11056434399540
    [Google Scholar]
  22. PereiraP. CorreiaA. GamaF.M. In vivo imaging of glycol chitosan-based nanogel biodistribution.Macromol. Biosci.201616343244010.1002/mabi.20150026726663610
    [Google Scholar]
  23. WangH. MukherjeeS. YiJ. BanerjeeP. ChenQ. ZhouS. Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy.ACS Appl. Mater. Interfaces2017922186391864910.1021/acsami.7b0606228485151
    [Google Scholar]
  24. ZhaoM. ZhangY. YuanS. XuX. WuZ. WuZ. QiX. ATP responsive DNA nanogels grown on biocompatible branches for anticancer drug delivery.Soft Matter201915183655365810.1039/C9SM00480G31012474
    [Google Scholar]
  25. RusuA.G. ChiriacA.P. NitaL.E. RoscaI. PintealaM. Mititelu-TartauL. Chitosan derivatives in macromolecular co-assembly nanogels with potential for biomedical applications.Biomacromolecules202021104231424310.1021/acs.biomac.0c0100832909739
    [Google Scholar]
  26. ZuoY. KongM. MuY. FengC. ChenX. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin.Int J Biol Macromol.2017104Pt A15716410.1016/j.ijbiomac.2017.06.020
    [Google Scholar]
  27. YuJ. LiuY. ZhangY. RanR. KongZ. ZhaoD. LiuM. ZhaoW. CuiY. HuaY. GaoL. ZhangZ. YangY. Smart nanogels for cancer treatment from the perspective of functional groups.Front. Bioeng. Biotechnol.202411132931110.3389/fbioe.2023.132931138268937
    [Google Scholar]
  28. Pérez-ÁlvarezL. Ruiz-RubioL. ArtetxeB. VivancoM. Gutiérrez- ZorrillaJ.M. Vilas-VilelaJ.L. Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies.Carbohydr. Polym.201921315916710.1016/j.carbpol.2019.02.09130879655
    [Google Scholar]
  29. RaviH. KurreyN. ManabeY. SugawaraT. BaskaranV. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells).Mater. Sci. Eng. C20189178579510.1016/j.msec.2018.06.01830033314
    [Google Scholar]
  30. SahuP. KashawS.K. KashawV. ShabaazJ.P. DahiyaR. Synthesis and ex vivo evaluation of PLGA chitosan surface modulated double walled transdermal Pluronic nanogel for the controlled delivery of Temozolomide.Int. J. Biol. Macromol.202118774275410.1016/j.ijbiomac.2021.07.12934310997
    [Google Scholar]
  31. ShitritY. Bianco-PeledH. Insights into the formation mechanisms and properties of pectin hydrogel physically cross-linked with chitosan nanogels.Carbohydr. Polym.202126911827410.1016/j.carbpol.2021.11827434294306
    [Google Scholar]
  32. SundermannJ. OehmichenS. SydowS. BurmeisterL. QuaasB. HänschR. RinasU. HoffmannA. MenzelH. BunjesH. Varying the sustained release of BMP-2 from chitosan nanogel-functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications.J. Biomed. Mater. Res. A2021109560061410.1002/jbm.a.3704532608183
    [Google Scholar]
  33. SydowS. de CassanD. HänschR. GengenbachT.R. EastonC.D. ThissenH. MenzelH. Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers.Biomater. Sci.20197123324610.1039/C8BM00657A30511062
    [Google Scholar]
  34. TaoQ. ZhongJ. WangR. HuangY. Ionic and enzymatic multiple-crosslinked nanogels for drug delivery.Polymers (Basel)20211320356510.3390/polym1320356534685323
    [Google Scholar]
  35. XuY. SunL. FengS. ChenJ. GaoY. GuoL. AnX. NieY. ZhangY. LiuX. NingX. Smart pH-sensitive nanogels for enhancing synergistic anticancer effects of integrin αvβ3 specific apoptotic peptide and therapeutic nitric oxide.ACS Appl. Mater. Interfaces20191138346633467510.1021/acsami.9b1083031490654
    [Google Scholar]
  36. SahuP. KashawS.K. SauS. KushwahV. JainS. AgrawalR.K. IyerA.K. pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In vitro and ex vivo study.Int. J. Biol. Macromol.201912874075110.1016/j.ijbiomac.2019.01.14730699336
    [Google Scholar]
  37. LuckanagulJ.A. PitakchatwongC. Ratnatilaka Na BhuketP. MuangnoiC. RojsitthisakP. ChirachanchaiS. WangQ. RojsitthisakP. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin.Carbohydr. Polym.20181811119112710.1016/j.carbpol.2017.11.02729253940
    [Google Scholar]
  38. Mohammad GholihaH. EhsaniM. SaeidiA. GhadamiA. AlizadehN. Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior.Prog. Biomater.202110317318310.1007/s40204‑021‑00161‑834370266
    [Google Scholar]
  39. ZhouD. LiuS. HuY. YangS. ZhaoB. ZhengK. ZhangY. HeP. MoG. LiY. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy.J. Mater. Chem. B Mater. Biol. Med.20208173801381310.1039/D0TB00143K32227025
    [Google Scholar]
  40. RodkateN. RutnakornpitukM. Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release.Carbohydr. Polym.201615125125910.1016/j.carbpol.2016.05.08127474565
    [Google Scholar]
  41. NasrF.H. KhoeeS. Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N- succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery.Eur. J. Med. Chem.201510213214210.1016/j.ejmech.2015.07.04526263245
    [Google Scholar]
  42. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics1408157636015202
    [Google Scholar]
  43. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  44. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  45. LiuJ. LiuL. LiS. KangQ. ZhangR. ZhuZ. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor.Mater. Sci. Eng. C202111811152010.1016/j.msec.2020.11152033255075
    [Google Scholar]
  46. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  47. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  48. SamiraninezhadN. RezaeeM. GholamiA. AmanatiA. MardaniM. A novel chitosan-based doxepin nano-formulation for chemotherapy-induced oral mucositis: A randomized, double-blinded, placebo-controlled clinical trial.Inflammopharmacology20233152411242010.1007/s10787‑023‑01325‑737668810
    [Google Scholar]
  49. SanjanaA. AhmedM.G. Gowda BHJ. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  50. TianR. XianL. LiY. ZhengX. Silica modified chitosan/polyethylenimine nanogel for improved stability and gene carrier ability.J. Nanosci. Nanotechnol.20161655426543110.1166/jnn.2016.1244527483943
    [Google Scholar]
  51. KumaraswamyR.V. KumariS. ChoudharyR.C. PalA. RaliyaR. BiswasP. SaharanV. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.Int. J. Biol. Macromol.201811349450610.1016/j.ijbiomac.2018.02.13029481952
    [Google Scholar]
  52. WangH. DengH. GaoM. ZhangW. Self-assembled nanogels based on ionic gelation of natural polysaccharides for drug delivery.Front. Bioeng. Biotechnol.2021970355910.3389/fbioe.2021.70355934336811
    [Google Scholar]
  53. ChellathuraiM.S. ChungL.Y. HillesA.R. SofianZ.M. SinghaS. GhosalK. MahmoodS. Pharmaceutical chitosan hydrogels: A review on its design and applications.Int. J. Biol. Macromol.2024280Pt 213577510.1016/j.ijbiomac.2024.13577539307491
    [Google Scholar]
  54. QiuS. ZhouS. TanY. FengJ. BaiY. HeJ. CaoH. CheQ. GuoJ. SuZ. Biodegradation and prospect of polysaccharide from crustaceans.Mar. Drugs202220531010.3390/md2005031035621961
    [Google Scholar]
  55. Tehrani FatehS. MoradiL. KohanE. HamblinM.R. Shiralizadeh DezfuliA. Comprehensive review on ultrasound-responsive theranostic nanomaterials: Mechanisms, structures and medical applications.Beilstein J. Nanotechnol.20211280886210.3762/bjnano.12.6434476167
    [Google Scholar]
  56. SaraogiG.K. TholiyaS. MishraY. MishraV. AlbuttiA. NayakP. TambuwalaM.M. Formulation development and evaluation of pravastatin-loaded nanogel for hyperlipidemia management.Gels2022828110.3390/gels802008135200462
    [Google Scholar]
  57. LiW. ZhaoY. SunW. DongT. SaldañaM.D.A. SunW. Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material.Int. J. Biol. Macromol.20222081019102810.1016/j.ijbiomac.2022.03.19835381289
    [Google Scholar]
  58. Pragti, KunduB.K. SinghS. Carlton RanjithW.A. SarkarS. SonawaneA. MukhopadhyayS. Chitosan–biotin-conjugated pH-responsive Ru(II) glucose nanogel: A dual pathway of targeting cancer cells and self-drug delivery.ACS Appl. Mater. Interfaces20231537433454335810.1021/acsami.3c0715737658475
    [Google Scholar]
  59. XuQ. TengH. LiX. ZhangZ. HanY. SunH. Natural biomolecule ovomucin–chitosan oligosaccharide self-assembly nanogel for lutein application enhancement: Characterization, environmental stability and bioavailability.J. Funct. Biomater.202415411110.3390/jfb1504011138667568
    [Google Scholar]
  60. ZhangQ. HuW. GuoM. ZhangX. ZhangQ. PengF. YanL. HuZ. TangthianchaichanaJ. ShenY. HuH. DuS. LuY. MMP-2 responsive peptide hydrogel-based nanoplatform for multimodal tumor therapy.Int. J. Nanomedicine202419537110.2147/IJN.S43211238187906
    [Google Scholar]
  61. WuC. ZhiZ. DuanM. SunJ. JiangH. PangJ. Insights into the formation of carboxymethyl chitosan-nisin nanogels for sustainable antibacterial activity.Food Chem.202340213426010.1016/j.foodchem.2022.13426036166921
    [Google Scholar]
  62. Muñana-GonzálezS. Veloso-FernándezA. Ruiz-RubioL. Pérez-ÁlvarezL. Vilas-VilelaJ.L. Covalent cross-linking as a strategy to prepare water-dispersible chitosan nanogels.Polymers (Basel)202315243410.3390/polym1502043436679313
    [Google Scholar]
  63. Tenorio-BarajasA.Y. OlveraM.L. Romero-ParedesG. AltuzarV. Garrido-GuerreroE. Mendoza-BarreraC. Chitosan, chitosan/IgG-loaded, and n-trimethyl chitosan chloride nanoparticles as potential adjuvant and carrier-delivery systems.Molecules20232810410710.3390/molecules2810410737241848
    [Google Scholar]
  64. WangY. HuR. GuoY. QinW. ZhangX. HuaL. YangY. Preparation, evaluation, and in vitro release of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules.Technol Health Care.2021294687695
    [Google Scholar]
  65. ShahidN. ErumA. ZamanM. TulainU.R. ShoaibQ. MajeedA. RasoolM.F. ImranI. AlshehriS. NooraniB. AlqahtaniF. pH-responsive nanocomposite based hydrogels for the controlled delivery of ticagrelor; In vitro and in vivo approaches.Int. J. Nanomedicine2021166345636610.2147/IJN.S33018634556985
    [Google Scholar]
  66. ChenY. WuW. YuJ. WangY. ZhuJ. HuZ. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator.J. Biomater. Sci. Polym. Ed.202031141770179210.1080/09205063.2020.177576032462969
    [Google Scholar]
  67. RaskinM.M. SchlachetI. SosnikA. Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers.Nanomedicine (Lond.)201611321723310.2217/nnm.15.19126786232
    [Google Scholar]
  68. HaoQ. WangJ. ShenJ. GuR. RaoY. FengJ. WangH. BrashJ.L. ChenH. Robust, anti-biofouling 2D nanogel films from poly(N-vinyl caprolactam-co-vinylimidazole) polymers.J. Mater. Chem. B Mater. Biol. Med.202210193723373310.1039/D1TB02726C35451441
    [Google Scholar]
  69. Madhusudana RaoK. MallikarjunaB. Krishna RaoK.S.V. SirajS. Chowdoji RaoK. SubhaM.C.S. Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug.Colloids Surf. B Biointerfaces201310289189710.1016/j.colsurfb.2012.09.00923107966
    [Google Scholar]
  70. LeeJ. LeeC. KimT.H. LeeE.S. ShinB.S. ChiS.C. ParkE.S. LeeK.C. YounY.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system.J. Control. Release2012161372873410.1016/j.jconrel.2012.05.02922634071
    [Google Scholar]
  71. MohsenabadiN. RajaeiA. TabatabaeiM. MohsenifarA. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel.Int. J. Biol. Macromol.201811214815510.1016/j.ijbiomac.2018.01.03429337097
    [Google Scholar]
  72. NguyenV.T. DoanP. NguyenD.T. DoanV.D. DaoT.P. PlavskiiV. NguyenB.T. TranN.Q. Effect of targeting ligand designation of self-assembly chitosan-poloxamer nanogels loaded Paclitacel on inhibiting MCF-7 cancer cell growth.J. Biomater. Sci. Polym. Ed.202233442644210.1080/09205063.2021.199258734641768
    [Google Scholar]
  73. NoiI. SchlachetI. KumarasamyM. SosnikA. Permeability of novel Chitosan-g-Poly(Methyl Methacrylate) amphiphilic nanoparticles in a model of small intestine in vitro.Polymers (Basel)201810547810.3390/polym1005047830966512
    [Google Scholar]
  74. RusuA.G. ChiriacA.P. NitaL.E. RoscaI. RusuD. NeamtuI. Self- assembled nanocarriers based on modified chitosan for biomedical applications: Preparation and characterization.Polymers (Basel)20201211259310.3390/polym1211259333158235
    [Google Scholar]
  75. Arteche PujanaM. Pérez-ÁlvarezL. Cesteros IturbeL.C. KatimeI. Biodegradable chitosan nanogels crosslinked with genipin.Carbohydr. Polym.201394283684210.1016/j.carbpol.2013.01.08223544640
    [Google Scholar]
  76. PujanaM.A. Pérez-ÁlvarezL. IturbeL.C.C. KatimeI. Water soluble folate-chitosan nanogels crosslinked by genipin.Carbohydr. Polym.201410111312010.1016/j.carbpol.2013.09.01424299756
    [Google Scholar]
  77. WangH. QianJ. DingF. Recent advances in engineered chitosan-based nanogels for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20175346986700710.1039/C7TB01624G32263890
    [Google Scholar]
  78. SahuP. KashawS.K. SauS. KushwahV. JainS. AgrawalR.K. IyerA.K. pH responsive 5-Fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma.Colloids Surf. B Biointerfaces201917423224510.1016/j.colsurfb.2018.11.01830465998
    [Google Scholar]
  79. AzadiA. HamidiM. KhoshayandM.R. AminiM. RouiniM.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery.Carbohydr. Polym.201290146247110.1016/j.carbpol.2012.05.06624751066
    [Google Scholar]
  80. RigauxG. GheranC.V. CallewaertM. CadiouC. VoicuS.N. DinischiotuA. AndryM.C. Vander ElstL. LaurentS. MullerR.N. BerquandA. MolinariM. Huclier-MarkaiS. ChuburuF. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI).Nanotechnology201728505570510.1088/1361‑6528/aa518828029111
    [Google Scholar]
  81. WhiteleyZ. HoH.M.K. GanY.X. PanarielloL. GkogkosG. GavriilidisA. CraigD.Q.M. Microfluidic synthesis of protein-loaded nanogels in a coaxial flow reactor using a design of experiments approach.Nanoscale Adv.2021372039205510.1039/D0NA01051K36133085
    [Google Scholar]
  82. BarmanM. MahmoodS. AugustineR. HasanA. ThomasS. GhosalK. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner.Int. J. Biol. Macromol.20201621849186110.1016/j.ijbiomac.2020.08.06032781129
    [Google Scholar]
  83. PaulA. AugustineR. HasanA. ZahidA.A. ThomasS. AgatemorC. GhosalK. Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties.J. Drug Deliv. Sci. Technol.20227210338010.1016/j.jddst.2022.103380
    [Google Scholar]
  84. AminuN. ChanS.Y. YamM.F. TohS.M. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis.Int. J. Pharm.201957011865910.1016/j.ijpharm.2019.11865931493495
    [Google Scholar]
  85. BaratiM. Mohammadi SamaniS. Pourtalebi JahromiL. AshrafiH. AzadiA. Controlled-release in situ gel forming formulation of tramadol containing chitosan-based pro-nanogels.Int J Biol Macromol.2018118Pt B1449145410.1016/j.ijbiomac.2018.06.152
    [Google Scholar]
  86. MustafaA. IndiranM.A. RamalingamK. PerumalE. ShanmughamR. KarobariM.I. Anticancer potential of thiocolchicoside and lauric acid loaded chitosan nanogel against oral cancer cell lines: A comprehensive study.Sci. Rep.2024141927010.1038/s41598‑024‑60046‑138649421
    [Google Scholar]
  87. NagS. MitraO. SankarganeshP BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  88. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  89. NaghibS.M. AhmadiB. MozafariM.R. Smart physicochemical-triggered chitosan-based nanogels for siRNA delivery and gene therapy: A focus on emerging strategies and paradigms for cancer therapy.Curr. Med. Chem.20243110.2174/010929867328605224042604494538847253
    [Google Scholar]
  90. SinghN. AnandS.K. SharmaA. SinghS. KakkarP. SrivastavaV. Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells.Int. J. Biol. Macromol.2024257Pt 212871710.1016/j.ijbiomac.2023.12871738081485
    [Google Scholar]
  91. ChengB. GaoF. MaissyE. XuP. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles.Acta Biomater.20198437839010.1016/j.actbio.2018.12.01030528604
    [Google Scholar]
  92. DingY.F. WeiJ. LiS. PanY.T. WangL.H. WangR. Host–guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery.ACS Appl. Mater. Interfaces20191132286652867010.1021/acsami.9b0905931381300
    [Google Scholar]
  93. IndulekhaS. ArunkumarP. BahadurD. SrivastavaR. Dual responsive magnetic composite nanogels for thermo-chemotherapy.Colloids Surf. B Biointerfaces201715530431310.1016/j.colsurfb.2017.04.03528448900
    [Google Scholar]
  94. SongP. SongN. LiL. WuM. LuZ. ZhaoX. Angiopep-2-modified Carboxymethyl chitosan-based ph/reduction dual-stimuli-responsive nanogels for enhanced targeting glioblastoma.Biomacromolecules20212272921293410.1021/acs.biomac.1c0031434180218
    [Google Scholar]
  95. SuhailM. ChiuI.H. UllahA. KhanA. UllahH. Al-SowayanN.S. WuP.C. Formulation and in vitro assessment of polymeric ph-responsive nanogels of chitosan for sustained delivery of madecassoside.ACS Omega2024917193451935210.1021/acsomega.4c0046138708249
    [Google Scholar]
  96. DeiabN.S. KodousA.S. MahfouzM.K. SaidA.M. GhobashyM.M. AbozaidO.A.R. Smart hesperidin/chitosan nanogel mitigates apoptosis and endoplasmic reticulum stress in fluoride and aluminum-induced testicular injury.Biol. Trace Elem. Res.202420294106412410.1007/s12011‑023‑03991‑838087036
    [Google Scholar]
  97. ZhangH. YuanW. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu2+-doped MOF for enhanced synergistic and precise cancer therapy.Int. J. Biol. Macromol.2024262Pt 212999610.1016/j.ijbiomac.2024.12999638342271
    [Google Scholar]
  98. Piri-GharaghieT. BeiranvandS. RiahiA. ShirinN.J. BadmastiF. MirzaieA. ElahianfarY. GhahariS. GhahariS. PasbanK. HajrasoulihaS. Fabrication and characterization of thymol-loaded chitosan nanogels: Improved antibacterial and anti-biofilm activities with negligible cytotoxicity.Chem. Biodivers.2022193e20210042610.1002/cbdv.20210042634989129
    [Google Scholar]
  99. CaoY. TanY.F. WongY.S. AminuddinM. RamyaB. LiewM.W.J. LiuJ. VenkatramanS.S. Designing siRNA/chitosan-methacrylate complex nanolipogel for prolonged gene silencing effects.Sci. Rep.2022121352710.1038/s41598‑022‑07554‑035241750
    [Google Scholar]
  100. BagheriF. DarakhshanS. MazloomiS. Shiri VarnamkhastiB. TahvilianR. Dual loading of Nigella sativa oil-atorvastatin in chitosan–carboxymethyl cellulose nanogel as a transdermal delivery system.Drug Dev. Ind. Pharm.202147456957810.1080/03639045.2021.189274233819116
    [Google Scholar]
  101. SinghP.P. KumarA. PrakashB. Elucidation of antifungal toxicity of Callistemon lanceolatus essential oil encapsulated in chitosan nanogel against Aspergillus flavus using biochemical and in silico approaches.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.20203791520153010.1080/19440049.2020.177531032619396
    [Google Scholar]
  102. KumarA. Pratap SinghP. PrakashB. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil.Carbohydr. Polym.202023611605010.1016/j.carbpol.2020.11605032172864
    [Google Scholar]
  103. XingL. FanY.T. ShenL.J. YangC.X. LiuX.Y. MaY.N. QiL.Y. ChoK.H. ChoC.S. JiangH.L. pH-sensitive and specific ligand- conjugated chitosan nanogels for efficient drug delivery.Int. J. Biol. Macromol.2019141859710.1016/j.ijbiomac.2019.08.23731473314
    [Google Scholar]
  104. KhatamsazS. HashemiM. Curcumin and curcumin-loaded nanogel induce apoptosis activity in K562 chronic Myelogenous Leukemia cells.Galen Med. J.20187e92110.31661/gmj.v7i0.92134466417
    [Google Scholar]
  105. TaH.T. DassC.R. LarsonI. ChoongP.F.M. DunstanD.E. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy.Biomaterials200930274815482310.1016/j.biomaterials.2009.05.03519505719
    [Google Scholar]
  106. PereiraP. MorgadoD. CrepetA. DavidL. GamaF.M. Glycol chitosan-based nanogel as a potential targetable carrier for siRNA.Macromol. Biosci.201313101369137810.1002/mabi.20130012323996912
    [Google Scholar]
  107. YuQ. GaoY. DaiW. LiD. ZhangL. HameedM.M.A. GuoR. LiuM. ShiX. CaoX. Cell membrane-camouflaged chitosan-polypyrrole nanogels co-deliver drug and gene for targeted chemotherapy and bone metastasis inhibition of prostate cancer.Adv. Healthc. Mater.20241320240011410.1002/adhm.20240011438581263
    [Google Scholar]
  108. LiD.D. PanJ.F. JiQ.X. YuX.B. LiuL.S. LiH. JiaoX.J. WangL. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA.J. Mater. Sci. Mater. Med.201627813410.1007/s10856‑016‑5743‑027405491
    [Google Scholar]
  109. PereiraP. PedrosaS.S. WymantJ.M. SayersE. CorreiaA. VilanovaM. JonesA.T. GamaF.M. siRNA inhibition of endocytic pathways to characterize the cellular uptake mechanisms of folate-functionalized glycol chitosan nanogels.Mol. Pharm.20151261970197910.1021/mp500785t25879919
    [Google Scholar]
  110. MalytskyiV. MoreauJ. CallewaertM. HenoumontC. CadiouC. FeuillieC. LaurentS. MolinariM. ChuburuF. Synthesis and characterization of conjugated hyaluronic acids. Application to stability studies of chitosan-hyaluronic acid nanogels based on fluorescence resonance energy transfer.Gels20228318210.3390/gels803018235323295
    [Google Scholar]
  111. HashemiF. MohajeriN. RadniaF. ZarghamiN. Design of an efficient fluorescent nanoplatform carrier for hydrophobic drugs along with green carbon dot: Possible application in cancer image-guided drug therapy.Photodiagn. Photodyn. Ther.20223710273810.1016/j.pdpdt.2022.10273835074467
    [Google Scholar]
  112. CarniatoF. RicciM. TeiL. GarelloF. TerrenoE. RaveraE. ParigiG. LuchinatC. BottaM. High relaxivity with no coordinated waters: A seemingly paradoxical behavior of [Gd(DOTP)]5– embedded in nanogels.Inorg. Chem.202261135380538710.1021/acs.inorgchem.2c0022535316037
    [Google Scholar]
  113. ZlotnikovI.D. EzhovA.A. BelogurovaN.G. KudryashovaE.V. pH-sensitive fluorescent probe in nanogel particles as theragnostic agent for imaging and elimination of latent bacterial cells residing inside macrophages.Gels202410956710.3390/gels1009056739330169
    [Google Scholar]
  114. GheranC. RigauxG. CallewaertM. BerquandA. MolinariM. ChuburuF. VoicuS. DinischiotuA. Biocompatibility of Gd-loaded chitosan-hyaluronic acid nanogels as contrast agents for magnetic resonance cancer imaging.Nanomaterials (Basel)20188420110.3390/nano804020129597306
    [Google Scholar]
  115. TengY. JinH. NanD. LiM. FanC. LiuY. LvP. CuiW. SunY. HaoH. QuX. YangZ. HuangY. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model.Bioact. Mater.20183110210910.1016/j.bioactmat.2017.08.00129744447
    [Google Scholar]
  116. CarniatoF. TeiL. BottaM. RaveraE. FragaiM. ParigiG. LuchinatC. 1H NMR relaxometric study of chitosan-based nanogels containing mono- and bis-hydrated Gd(III) chelates: Clues for MRI probes of improved sensitivity.ACS Appl. Bio Mater.20203129065907210.1021/acsabm.0c0129535019583
    [Google Scholar]
  117. WangX. NiuD. LiP. WuQ. BoX. LiuB. BaoS. SuT. XuH. WangQ. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T 2-weighted magnetic resonance imaging.ACS Nano2015965646565610.1021/nn506809426035730
    [Google Scholar]
  118. PatelS. GoyalA. Chitin and chitinase: Role in pathogenicity, allergenicity and health.Int. J. Biol. Macromol.20179733133810.1016/j.ijbiomac.2017.01.04228093332
    [Google Scholar]
  119. Abo-serM.M. TosonE.S.A. El-BindaryA.A. SchlatterG. ShoueirK.R. Smart chitosan nanogel for targeted doxorubicin delivery, ensuring precise release, and minimizing side effects in Ehrlich ascites carcinoma-bearing mice.Int. J. Biol. Macromol.2024267Pt 113139010.1016/j.ijbiomac.2024.13139038582473
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347060241105032329
Loading
/content/journals/cpd/10.2174/0113816128347060241105032329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test