Skip to content
2000
image of Application of Chitosan-based Nanogel in Cancer Nanomedicine

Abstract

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods. These novel CS-NGs are applied in cancer nanomedicine serving as drug delivery, gene delivery, and bioimaging. Besides, we proposed our perspectives regarding the clinical development of CS-NGs cancer nanomedicine applications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347060241105032329
2025-01-01
2025-01-16
Loading full text...

Full text loading...

References

  1. El-Hussein A. Manoto S.L. Ombinda-Lemboumba S. Alrowaili Z.A. Mthunzi-Kufa P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer. Agents Med. Chem. 2021 21 2 149 161 10.2174/18715206MTA1uNjQp3 32242788
    [Google Scholar]
  2. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  3. Woodman C. Vundu G. George A. Wilson C.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin. Cancer Biol. 2021 69 349 364 10.1016/j.semcancer.2020.02.009 32088362
    [Google Scholar]
  4. Ho H.M.K. Craig D.Q.M. Day R.M. Design of experiment approach to modeling the effects of formulation and drug loading on the structure and properties of therapeutic nanogels. Mol. Pharm. 2022 19 2 602 615 10.1021/acs.molpharmaceut.1c00699 35061948
    [Google Scholar]
  5. Li X. Li H. Zhang C. Pich A. Xing L. Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact. Mater. 2021 6 10 3473 3484 10.1016/j.bioactmat.2021.03.021 33869898
    [Google Scholar]
  6. Ahamed J. Jaswanth Gowda B.H. Almalki W.H. Gupta N. Sahebkar A. Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur. Polym. J. 2023 193 112111 10.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  7. Arif Y. Sameeya Hasan N. Gowda B.H.J. Gupta G. Alsayari A. Wahab S. Kesharwani P. Advancements in dendrimer-based drug delivery for combinatorial cancer therapy. J. Drug Deliv. Sci. Technol. 2024 97 105755 10.1016/j.jddst.2024.105755
    [Google Scholar]
  8. Banazadeh M. Behnam B. Ganjooei N.A. Gowda B.H.J. Kesharwani P. Sahebkar A. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy. J. Drug Deliv. Sci. Technol. 2023 89 105040 10.1016/j.jddst.2023.105040
    [Google Scholar]
  9. Gowda B.H.J. Ahmed M.G. Almoyad M.A.A. Wahab S. Almalki W.H. Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv. Funct. Mater. 2024 34 7 2307074 10.1002/adfm.202307074
    [Google Scholar]
  10. Gowda B.H.J. Ahmed M.G. Alshehri S.A. Wahab S. Vora L.K. Singh Thakur R.R. Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res. 2023 237 Pt 1 116894 10.1016/j.envres.2023.116894 37586450
    [Google Scholar]
  11. Gowda B.H.J. Ahmed M.G. Chinnam S. Paul K. Ashrafuzzaman M. Chavali M. Gahtori R. Pandit S. Kesari K.K. Gupta P.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol. 2022 71 103305 10.1016/j.jddst.2022.103305
    [Google Scholar]
  12. Gowda B.H.J. Mohanto S. Singh A. Bhunia A. Abdelgawad M.A. Ghosh S. Ansari M.J. Pramanik S. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater. Today Chem. 2023 27 101319 10.1016/j.mtchem.2022.101319
    [Google Scholar]
  13. Hani U. Gowda B.H.J. Haider N. Ramesh K.V.R.N.S. Paul K. Ashique S. Ahmed M.G. Narayana S. Mohanto S. Kesharwani P. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023 24 8 233 10.1208/s12249‑023‑02670‑0 37973643
    [Google Scholar]
  14. Iacob A.T. Lupascu F.G. Apotrosoaei M. Vasincu I.M. Tauser R.G. Lupascu D. Giusca S.E. Caruntu I.D. Profire L. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers. Pharmaceutics 2021 13 4 587 10.3390/pharmaceutics13040587 33924046
    [Google Scholar]
  15. Zhou W. Yang G. Ni X. Diao S. Xie C. Fan Q. Recent advances in crosslinked nanogel for multimodal imaging and cancer therapy. Polymers (Basel) 2020 12 9 1902 10.3390/polym12091902 32846923
    [Google Scholar]
  16. Hashimoto Y. Mukai S. Sasaki Y. Akiyoshi K. Nanogel tectonics for tissue engineering: Protein delivery systems with nanogel chaperones. Adv. Healthc. Mater. 2018 7 23 1800729 10.1002/adhm.201800729 30221496
    [Google Scholar]
  17. Ahmed S. Alhareth K. Mignet N. Advancement in nanogel formulations provides controlled drug release. Int. J. Pharm. 2020 584 119435 10.1016/j.ijpharm.2020.119435 32439585
    [Google Scholar]
  18. Fronza B.M. Rad I.Y. Shah P.K. Barros M.D. Giannini M. Stansbury J.W. Nanogel-based filler-matrix interphase for polymerization stress reduction. J. Dent. Res. 2019 98 7 779 785 10.1177/0022034519845843 31050913
    [Google Scholar]
  19. Kazakov S. Liposome-nanogel structures for future pharmaceutical applications: An updated review. Curr. Pharm. Des. 2016 22 10 1391 1413 10.2174/1381612822666160125114733 26806343
    [Google Scholar]
  20. Wang H. Gao L. Fan T. Zhang C. Zhang B. Al-Hartomy O.A. Al-Ghamdi A. Wageh S. Qiu M. Zhang H. Strategic design of intelligent-responsive nanogel carriers for cancer therapy. ACS Appl. Mater. Interfaces 2021 13 46 54621 54647 10.1021/acsami.1c13634 34767342
    [Google Scholar]
  21. Zhang Z. Hao G. Liu C. Fu J. Hu D. Rong J. Yang X. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Res. Int. 2021 147 110564 10.1016/j.foodres.2021.110564 34399540
    [Google Scholar]
  22. Pereira P. Correia A. Gama F.M. In vivo imaging of glycol chitosan-based nanogel biodistribution. Macromol. Biosci. 2016 16 3 432 440 10.1002/mabi.201500267 26663610
    [Google Scholar]
  23. Wang H. Mukherjee S. Yi J. Banerjee P. Chen Q. Zhou S. Biocompatible chitosan–carbon dot hybrid nanogels for nir-imaging-guided synergistic photothermal–chemo therapy. ACS Appl. Mater. Interfaces 2017 9 22 18639 18649 10.1021/acsami.7b06062 28485151
    [Google Scholar]
  24. Zhao M. Zhang Y. Yuan S. Xu X. Wu Z. Wu Z. Qi X. ATP responsive DNA nanogels grown on biocompatible branches for anticancer drug delivery. Soft Matter 2019 15 18 3655 3658 10.1039/C9SM00480G 31012474
    [Google Scholar]
  25. Rusu A.G. Chiriac A.P. Nita L.E. Rosca I. Pinteala M. Mititelu-Tartau L. Chitosan derivatives in macromolecular co-assembly nanogels with potential for biomedical applications Chitosan Derivatives in Macromolecular Co-assembly Nanogels with Potential for Biomedical Applications. Biomacromolecules 2020 21 10 4231 4243 10.1021/acs.biomac.0c01008 32909739
    [Google Scholar]
  26. Zuo Y. Kong M. Mu Y. Feng C. Chen X. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. Int J Biol Macromol. 2017 104 Pt A 157 164 10.1016/j.ijbiomac.2017.06.020
    [Google Scholar]
  27. Yu J. Liu Y. Zhang Y. Ran R. Kong Z. Zhao D. Liu M. Zhao W. Cui Y. Hua Y. Gao L. Zhang Z. Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front. Bioeng. Biotechnol. 2024 11 1329311 10.3389/fbioe.2023.1329311 38268937
    [Google Scholar]
  28. Pérez-Álvarez L. Ruiz-Rubio L. Artetxe B. Vivanco M. Gutiérrez- Zorrilla J.M. Vilas-Vilela J.L. Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydr. Polym. 2019 213 159 167 10.1016/j.carbpol.2019.02.091 30879655
    [Google Scholar]
  29. Ravi H. Kurrey N. Manabe Y. Sugawara T. Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater. Sci. Eng. C 2018 91 785 795 10.1016/j.msec.2018.06.018 30033314
    [Google Scholar]
  30. Sahu P. Kashaw S.K. Kashaw V. Shabaaz J.P. Dahiya R. Synthesis and ex vivo evaluation of PLGA chitosan surface modulated double walled transdermal Pluronic nanogel for the controlled delivery of Temozolomide. Int. J. Biol. Macromol. 2021 187 742 754 10.1016/j.ijbiomac.2021.07.129 34310997
    [Google Scholar]
  31. Shitrit Y. Bianco-Peled H. Insights into the formation mechanisms and properties of pectin hydrogel physically cross-linked with chitosan nanogels. Carbohydr. Polym. 2021 269 118274 10.1016/j.carbpol.2021.118274 34294306
    [Google Scholar]
  32. Sundermann J. Oehmichen S. Sydow S. Burmeister L. Quaas B. Hänsch R. Rinas U. Hoffmann A. Menzel H. Bunjes H. Varying the sustained release of BMP-2 from chitosan nanogel-functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications. J. Biomed. Mater. Res. A 2021 109 5 600 614 10.1002/jbm.a.37045 32608183
    [Google Scholar]
  33. Sydow S. de Cassan D. Hänsch R. Gengenbach T.R. Easton C.D. Thissen H. Menzel H. Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers. Biomater. Sci. 2019 7 1 233 246 10.1039/C8BM00657A 30511062
    [Google Scholar]
  34. Tao Q. Zhong J. Wang R. Huang Y. Ionic and enzymatic multiple-crosslinked nanogels for drug delivery. Polymers (Basel) 2021 13 20 3565 10.3390/polym13203565 34685323
    [Google Scholar]
  35. Xu Y. Sun L. Feng S. Chen J. Gao Y. Guo L. An X. Nie Y. Zhang Y. Liu X. Ning X. Smart pH-sensitive nanogels for enhancing synergistic anticancer effects of integrin α v β 3 specific apoptotic peptide and therapeutic nitric oxide. ACS Appl. Mater. Interfaces 2019 11 38 34663 34675 10.1021/acsami.9b10830 31490654
    [Google Scholar]
  36. Sahu P. Kashaw S.K. Sau S. Kushwah V. Jain S. Agrawal R.K. Iyer A.K. pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study. Int. J. Biol. Macromol. 2019 128 740 751 10.1016/j.ijbiomac.2019.01.147 30699336
    [Google Scholar]
  37. Luckanagul J.A. Pitakchatwong C. Ratnatilaka Na Bhuket P. Muangnoi C. Rojsitthisak P. Chirachanchai S. Wang Q. Rojsitthisak P. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr. Polym. 2018 181 1119 1127 10.1016/j.carbpol.2017.11.027 29253940
    [Google Scholar]
  38. Mohammad Gholiha H. Ehsani M. Saeidi A. Ghadami A. Alizadeh N. Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior. Prog. Biomater. 2021 10 3 173 183 10.1007/s40204‑021‑00161‑8 34370266
    [Google Scholar]
  39. Zhou D. Liu S. Hu Y. Yang S. Zhao B. Zheng K. Zhang Y. He P. Mo G. Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 17 3801 3813 10.1039/D0TB00143K 32227025
    [Google Scholar]
  40. Rodkate N. Rutnakornpituk M. Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release. Carbohydr. Polym. 2016 151 251 259 10.1016/j.carbpol.2016.05.081 27474565
    [Google Scholar]
  41. Nasr F.H. Khoee S. Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N- succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery. Eur. J. Med. Chem. 2015 102 132 142 10.1016/j.ejmech.2015.07.045 26263245
    [Google Scholar]
  42. Hani U. Osmani R.A.M. Yasmin S. Gowda B.H.J. Ather H. Ansari M.Y. Siddiqua A. Ghazwani M. Fatease A.A. Alamri A.H. Rahamathulla M. Begum M.Y. Wahab S. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022 14 8 1576 10.3390/pharmaceutics14081576 36015202
    [Google Scholar]
  43. Khan M.S. Gowda B.H.J. Nasir N. Wahab S. Pichika M.R. Sahebkar A. Kesharwani P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm. 2023 643 123276 10.1016/j.ijpharm.2023.123276 37516217
    [Google Scholar]
  44. Khan M.S. Jaswanth Gowda B.H. Almalki W.H. Singh T. Sahebkar A. Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov. Today 2024 29 1 103819 10.1016/j.drudis.2023.103819 37940034
    [Google Scholar]
  45. Liu J. Liu L. Li S. Kang Q. Zhang R. Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater. Sci. Eng. C 2021 118 111520 10.1016/j.msec.2020.111520 33255075
    [Google Scholar]
  46. Mohanto S. Narayana S. Merai K.P. Kumar J.A. Bhunia A. Hani U. Al Fatease A. Gowda B.H.J. Nag S. Ahmed M.G. Paul K. Vora L.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int. J. Biol. Macromol. 2023 253 Pt 5 127143 10.1016/j.ijbiomac.2023.127143 37793512
    [Google Scholar]
  47. Sameer Khan M. Jaswanth Gowda B.H. Hasan N. Gupta G. Singh T. Md S. Kesharwani P. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives. Eur. Polym. J. 2024 206 112800 10.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  48. Samiraninezhad N. Rezaee M. Gholami A. Amanati A. Mardani M. A novel chitosan-based doxepin nano-formulation for chemotherapy-induced oral mucositis: A randomized, double-blinded, placebo-controlled clinical trial. Inflammopharmacology 2023 31 5 2411 2420 10.1007/s10787‑023‑01325‑7 37668810
    [Google Scholar]
  49. Sanjana A. Ahmed M.G. Gowda BH J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc. 2022 50 197 205 10.1016/j.matpr.2021.04.120
    [Google Scholar]
  50. Tian R. Xian L. Li Y. Zheng X. Silica modified chitosan/polyethylenimine nanogel for improved stability and gene carrier ability. J. Nanosci. Nanotechnol. 2016 16 5 5426 5431 10.1166/jnn.2016.12445 27483943
    [Google Scholar]
  51. Kumaraswamy R.V. Kumari S. Choudhary R.C. Pal A. Raliya R. Biswas P. Saharan V. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 2018 113 494 506 10.1016/j.ijbiomac.2018.02.130 29481952
    [Google Scholar]
  52. Wang H. Deng H. Gao M. Zhang W. Self-assembled nanogels based on ionic gelation of natural polysaccharides for drug delivery. Front. Bioeng. Biotechnol. 2021 9 703559 10.3389/fbioe.2021.703559 34336811
    [Google Scholar]
  53. Chellathurai M.S. Chung L.Y. Hilles A.R. Sofian Z.M. Singha S. Ghosal K. Mahmood S. Pharmaceutical chitosan hydrogels: A review on its design and applications. Int. J. Biol. Macromol. 2024 280 Pt 2 135775 10.1016/j.ijbiomac.2024.135775 39307491
    [Google Scholar]
  54. Qiu S. Zhou S. Tan Y. Feng J. Bai Y. He J. Cao H. Che Q. Guo J. Su Z. Biodegradation and prospect of polysaccharide from crustaceans. Mar. Drugs 2022 20 5 310 10.3390/md20050310 35621961
    [Google Scholar]
  55. Tehrani Fateh S. Moradi L. Kohan E. Hamblin M.R. Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: Mechanisms, structures and medical applications. Beilstein J. Nanotechnol. 2021 12 808 862 10.3762/bjnano.12.64 34476167
    [Google Scholar]
  56. Saraogi G.K. Tholiya S. Mishra Y. Mishra V. Albutti A. Nayak P. Tambuwala M.M. Formulation development and evaluation of pravastatin-loaded nanogel for hyperlipidemia management. Gels 2022 8 2 81 10.3390/gels8020081 35200462
    [Google Scholar]
  57. Li W. Zhao Y. Sun W. Dong T. Saldaña M.D.A. Sun W. Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. Int. J. Biol. Macromol. 2022 208 1019 1028 10.1016/j.ijbiomac.2022.03.198 35381289
    [Google Scholar]
  58. Pragti Kundu B.K. Singh S. Carlton Ranjith W.A. Sarkar S. Sonawane A. Mukhopadhyay S. Chitosan–biotin-conjugated pH-responsive Ru(II) glucose nanogel: A dual pathway of targeting cancer cells and self-drug delivery. ACS Appl. Mater. Interfaces 2023 15 37 43345 43358 10.1021/acsami.3c07157 37658475
    [Google Scholar]
  59. Xu Q. Teng H. Li X. Zhang Z. Han Y. Sun H. Natural biomolecule ovomucin–chitosan oligosaccharide self-assembly nanogel for lutein application enhancement: Characterization, environmental stability and bioavailability. J. Funct. Biomater. 2024 15 4 111 10.3390/jfb15040111 38667568
    [Google Scholar]
  60. Zhang Q. Hu W. Guo M. Zhang X. Zhang Q. Peng F. Yan L. Hu Z. Tangthianchaichana J. Shen Y. Hu H. Du S. Lu Y. MMP-2 responsive peptide hydrogel-based nanoplatform for multimodal tumor therapy. Int. J. Nanomedicine 2024 19 53 71 10.2147/IJN.S432112 38187906
    [Google Scholar]
  61. Wu C. Zhi Z. Duan M. Sun J. Jiang H. Pang J. Insights into the formation of carboxymethyl chitosan-nisin nanogels for sustainable antibacterial activity. Food Chem. 2023 402 134260 10.1016/j.foodchem.2022.134260 36166921
    [Google Scholar]
  62. Muñana-González S. Veloso-Fernández A. Ruiz-Rubio L. Pérez-Álvarez L. Vilas-Vilela J.L. Covalent cross-linking as a strategy to prepare water-dispersible chitosan nanogels. Polymers (Basel) 2023 15 2 434 10.3390/polym15020434 36679313
    [Google Scholar]
  63. Tenorio-Barajas A.Y. Olvera M.L. Romero-Paredes G. Altuzar V. Garrido-Guerrero E. Mendoza-Barrera C. Chitosan, chitosan/IgG-loaded, and n-trimethyl chitosan chloride nanoparticles as potential adjuvant and carrier-delivery systems. Molecules 2023 28 10 4107 10.3390/molecules28104107 37241848
    [Google Scholar]
  64. Wang Y. Hu R. Guo Y. Qin W. Zhang X. Hua L. Yang Y. Preparation, evaluation, and in vitro release of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules. Technol Health Care. 2021 29 4 687 695
    [Google Scholar]
  65. Shahid N. Erum A. Zaman M. Tulain U.R. Shoaib Q. Majeed A. Rasool M.F. Imran I. Alshehri S. Noorani B. Alqahtani F. pH-responsive nanocomposite based hydrogels for the controlled delivery of ticagrelor; in vitro and in vivo approaches. Int. J. Nanomedicine 2021 16 6345 6366 10.2147/IJN.S330186 34556985
    [Google Scholar]
  66. Chen Y. Wu W. Yu J. Wang Y. Zhu J. Hu Z. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator. J. Biomater. Sci. Polym. Ed. 2020 31 14 1770 1792 10.1080/09205063.2020.1775760 32462969
    [Google Scholar]
  67. Raskin M.M. Schlachet I. Sosnik A. Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers. Nanomedicine (Lond.) 2016 11 3 217 233 10.2217/nnm.15.191 26786232
    [Google Scholar]
  68. Hao Q. Wang J. Shen J. Gu R. Rao Y. Feng J. Wang H. Brash J.L. Chen H. Robust, anti-biofouling 2D nanogel films from poly( N -vinyl caprolactam- co -vinylimidazole) polymers. J. Mater. Chem. B Mater. Biol. Med. 2022 10 19 3723 3733 10.1039/D1TB02726C 35451441
    [Google Scholar]
  69. Madhusudana Rao K. Mallikarjuna B. Krishna Rao K.S.V. Siraj S. Chowdoji Rao K. Subha M.C.S. Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf. B Biointerfaces 2013 102 891 897 10.1016/j.colsurfb.2012.09.009 23107966
    [Google Scholar]
  70. Lee J. Lee C. Kim T.H. Lee E.S. Shin B.S. Chi S.C. Park E.S. Lee K.C. Youn Y.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release 2012 161 3 728 734 10.1016/j.jconrel.2012.05.029 22634071
    [Google Scholar]
  71. Mohsenabadi N. Rajaei A. Tabatabaei M. Mohsenifar A. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. Int. J. Biol. Macromol. 2018 112 148 155 10.1016/j.ijbiomac.2018.01.034 29337097
    [Google Scholar]
  72. Nguyen V.T. Doan P. Nguyen D.T. Doan V.D. Dao T.P. Plavskii V. Nguyen B.T. Tran N.Q. Effect of targeting ligand designation of self-assembly chitosan-poloxamer nanogels loaded Paclitacel on inhibiting MCF-7 cancer cell growth. J. Biomater. Sci. Polym. Ed. 2022 33 4 426 442 10.1080/09205063.2021.1992587 34641768
    [Google Scholar]
  73. Noi I. Schlachet I. Kumarasamy M. Sosnik A. Permeability of novel Chitosan-g-Poly(Methyl Methacrylate) amphiphilic nanoparticles in a model of small intestine in vitro. Polymers (Basel) 2018 10 5 478 10.3390/polym10050478 30966512
    [Google Scholar]
  74. Rusu A.G. Chiriac A.P. Nita L.E. Rosca I. Rusu D. Neamtu I. Self-assembled nanocarriers based on modified chitosan for biomedical applications: Preparation and characterization. Polymers (Basel) 2020 12 11 2593 10.3390/polym12112593 33158235
    [Google Scholar]
  75. Arteche Pujana M. Pérez-Álvarez L. Cesteros Iturbe L.C. Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr. Polym. 2013 94 2 836 842 10.1016/j.carbpol.2013.01.082 23544640
    [Google Scholar]
  76. Pujana M.A. Pérez-Álvarez L. Iturbe L.C.C. Katime I. Water soluble folate-chitosan nanogels crosslinked by genipin. Carbohydr. Polym. 2014 101 113 120 10.1016/j.carbpol.2013.09.014 24299756
    [Google Scholar]
  77. Wang H. Qian J. Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med. 2017 5 34 6986 7007 10.1039/C7TB01624G 32263890
    [Google Scholar]
  78. Sahu P. Kashaw S.K. Sau S. Kushwah V. Jain S. Agrawal R.K. Iyer A.K. pH responsive 5-Fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces 2019 174 232 245 10.1016/j.colsurfb.2018.11.018 30465998
    [Google Scholar]
  79. Azadi A. Hamidi M. Khoshayand M.R. Amini M. Rouini M.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydr. Polym. 2012 90 1 462 471 10.1016/j.carbpol.2012.05.066 24751066
    [Google Scholar]
  80. Rigaux G. Gheran C.V. Callewaert M. Cadiou C. Voicu S.N. Dinischiotu A. Andry M.C. Vander Elst L. Laurent S. Muller R.N. Berquand A. Molinari M. Huclier-Markai S. Chuburu F. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). Nanotechnology 2017 28 5 055705 10.1088/1361‑6528/aa5188 28029111
    [Google Scholar]
  81. Whiteley Z. Ho H.M.K. Gan Y.X. Panariello L. Gkogkos G. Gavriilidis A. Craig D.Q.M. Microfluidic synthesis of protein-loaded nanogels in a coaxial flow reactor using a design of experiments approach. Nanoscale Adv. 2021 3 7 2039 2055 10.1039/D0NA01051K 36133085
    [Google Scholar]
  82. Barman M. Mahmood S. Augustine R. Hasan A. Thomas S. Ghosal K. Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. Int. J. Biol. Macromol. 2020 162 1849 1861 10.1016/j.ijbiomac.2020.08.060 32781129
    [Google Scholar]
  83. Paul A. Augustine R. Hasan A. Zahid A.A. Thomas S. Agatemor C. Ghosal K. Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties. J. Drug Deliv. Sci. Technol. 2022 72 103380 10.1016/j.jddst.2022.103380
    [Google Scholar]
  84. Aminu N. Chan S.Y. Yam M.F. Toh S.M. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int. J. Pharm. 2019 570 118659 10.1016/j.ijpharm.2019.118659 31493495
    [Google Scholar]
  85. Barati M. Mohammadi Samani S. Pourtalebi Jahromi L. Ashrafi H. Azadi A. Controlled-release in-situ gel forming formulation of tramadol containing chitosan-based pro-nanogels. Int J Biol Macromol. 2018 118 Pt B 1449 1454 10.1016/j.ijbiomac.2018.06.152
    [Google Scholar]
  86. Mustafa A. Indiran M.A. Ramalingam K. Perumal E. Shanmugham R. Karobari M.I. Anticancer potential of thiocolchicoside and lauric acid loaded chitosan nanogel against oral cancer cell lines: A comprehensive study. Sci. Rep. 2024 14 1 9270 10.1038/s41598‑024‑60046‑1 38649421
    [Google Scholar]
  87. Nag S. Mitra O. P S. Bhattacharjee A. Mohanto S. Gowda B.H.J. Kar S. Ramaiah S. Anbarasu A. Ahmed M.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater. Today Chem. 2024 35 101894 10.1016/j.mtchem.2023.101894
    [Google Scholar]
  88. Nag S. Mitra O. Tripathi G. Adur I. Mohanto S. Nama M. Samanta S. Gowda B.H.J. Subramaniyan V. Sundararajan V. Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn. Photodyn. Ther. 2024 45 103959 10.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  89. Naghib S.M. Ahmadi B. Mozafari M.R. Smart physicochemical-triggered chitosan-based nanogels for siRNA delivery and gene therapy: A focus on emerging strategies and paradigms for cancer therapy. Curr. Med. Chem. 2024 31 10.2174/0109298673286052240426044945 38847253
    [Google Scholar]
  90. Singh N. Anand S.K. Sharma A. Singh S. Kakkar P. Srivastava V. Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells. Int. J. Biol. Macromol. 2024 257 Pt 2 128717 10.1016/j.ijbiomac.2023.128717 38081485
    [Google Scholar]
  91. Cheng B. Gao F. Maissy E. Xu P. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater. 2019 84 378 390 10.1016/j.actbio.2018.12.010 30528604
    [Google Scholar]
  92. Ding Y.F. Wei J. Li S. Pan Y.T. Wang L.H. Wang R. Host–guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl. Mater. Interfaces 2019 11 32 28665 28670 10.1021/acsami.9b09059 31381300
    [Google Scholar]
  93. Indulekha S. Arunkumar P. Bahadur D. Srivastava R. Dual responsive magnetic composite nanogels for thermo-chemotherapy. Colloids Surf. B Biointerfaces 2017 155 304 313 10.1016/j.colsurfb.2017.04.035 28448900
    [Google Scholar]
  94. Song P. Song N. Li L. Wu M. Lu Z. Zhao X. Angiopep-2-modified Carboxymethyl chitosan-based ph/reduction dual-stimuli-responsive nanogels for enhanced targeting glioblastoma. Biomacromolecules 2021 22 7 2921 2934 10.1021/acs.biomac.1c00314 34180218
    [Google Scholar]
  95. Suhail M. Chiu I.H. Ullah A. Khan A. Ullah H. Al-Sowayan N.S. Wu P.C. Formulation and in vitro assessment of polymeric ph-responsive nanogels of chitosan for sustained delivery of madecassoside. ACS Omega 2024 9 17 19345 19352 10.1021/acsomega.4c00461 38708249
    [Google Scholar]
  96. Deiab N.S. Kodous A.S. Mahfouz M.K. Said A.M. Ghobashy M.M. Abozaid O.A.R. Smart Hesperidin/Chitosan nanogel mitigates apoptosis and endoplasmic reticulum stress in fluoride and aluminum-induced testicular injury. Biol. Trace Elem. Res. 2024 202 9 4106 4124 10.1007/s12011‑023‑03991‑8 38087036
    [Google Scholar]
  97. Zhang H. Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu2+-doped MOF for enhanced synergistic and precise cancer therapy. Int. J. Biol. Macromol. 2024 262 Pt 2 129996 10.1016/j.ijbiomac.2024.129996 38342271
    [Google Scholar]
  98. Piri-Gharaghie T. Beiranvand S. Riahi A. Shirin N.J. Badmasti F. Mirzaie A. Elahianfar Y. Ghahari S. Ghahari S. Pasban K. Hajrasouliha S. Fabrication and characterization of thymol-loaded chitosan nanogels: Improved antibacterial and anti-biofilm activities with negligible cytotoxicity. Chem. Biodivers. 2022 19 3 e202100426 10.1002/cbdv.202100426 34989129
    [Google Scholar]
  99. Cao Y. Tan Y.F. Wong Y.S. Aminuddin M. Ramya B. Liew M.W.J. Liu J. Venkatraman S.S. Designing siRNA/chitosan-methacrylate complex nanolipogel for prolonged gene silencing effects. Sci. Rep. 2022 12 1 3527 10.1038/s41598‑022‑07554‑0 35241750
    [Google Scholar]
  100. Bagheri F. Darakhshan S. Mazloomi S. Shiri Varnamkhasti B. Tahvilian R. Dual loading of Nigella sativa oil-atorvastatin in chitosan–carboxymethyl cellulose nanogel as a transdermal delivery system. Drug Dev. Ind. Pharm. 2021 47 4 569 578 10.1080/03639045.2021.1892742 33819116
    [Google Scholar]
  101. Singh P.P. Kumar A. Prakash B. Elucidation of antifungal toxicity of Callistemon lanceolatus essential oil encapsulated in chitosan nanogel against Aspergillus flavus using biochemical and in-silico approaches. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020 37 9 1520 1530 10.1080/19440049.2020.1775310 32619396
    [Google Scholar]
  102. Kumar A. Pratap Singh P. Prakash B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr. Polym. 2020 236 116050 10.1016/j.carbpol.2020.116050 32172864
    [Google Scholar]
  103. Xing L. Fan Y.T. Shen L.J. Yang C.X. Liu X.Y. Ma Y.N. Qi L.Y. Cho K.H. Cho C.S. Jiang H.L. pH-sensitive and specific ligand- conjugated chitosan nanogels for efficient drug delivery. Int. J. Biol. Macromol. 2019 141 85 97 10.1016/j.ijbiomac.2019.08.237 31473314
    [Google Scholar]
  104. Khatamsaz S. Hashemi M. Curcumin and curcumin-loaded nanogel induce apoptosis activity in K562 chronic Myelogenous Leukemia cells. Galen Med. J. 2018 7 e921 10.31661/gmj.v7i0.921 34466417
    [Google Scholar]
  105. Ta H.T. Dass C.R. Larson I. Choong P.F.M. Dunstan D.E. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials 2009 30 27 4815 4823 10.1016/j.biomaterials.2009.05.035 19505719
    [Google Scholar]
  106. Pereira P. Morgado D. Crepet A. David L. Gama F.M. Glycol chitosan-based nanogel as a potential targetable carrier for siRNA. Macromol. Biosci. 2013 13 10 1369 1378 10.1002/mabi.201300123 23996912
    [Google Scholar]
  107. Yu Q. Gao Y. Dai W. Li D. Zhang L. Hameed M.M.A. Guo R. Liu M. Shi X. Cao X. Cell membrane-camouflaged chitosan-polypyrrole nanogels co-deliver drug and gene for targeted chemotherapy and bone metastasis inhibition of prostate cancer. Adv. Healthc. Mater. 2024 13 20 2400114 10.1002/adhm.202400114 38581263
    [Google Scholar]
  108. Li D.D. Pan J.F. Ji Q.X. Yu X.B. Liu L.S. Li H. Jiao X.J. Wang L. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J. Mater. Sci. Mater. Med. 2016 27 8 134 10.1007/s10856‑016‑5743‑0 27405491
    [Google Scholar]
  109. Pereira P. Pedrosa S.S. Wymant J.M. Sayers E. Correia A. Vilanova M. Jones A.T. Gama F.M. siRNA inhibition of endocytic pathways to characterize the cellular uptake mechanisms of folate-functionalized glycol chitosan nanogels. Mol. Pharm. 2015 12 6 1970 1979 10.1021/mp500785t 25879919
    [Google Scholar]
  110. Malytskyi V. Moreau J. Callewaert M. Henoumont C. Cadiou C. Feuillie C. Laurent S. Molinari M. Chuburu F. Synthesis and characterization of conjugated hyaluronic acids. application to stability studies of chitosan-hyaluronic acid nanogels based on fluorescence resonance energy transfer. Gels 2022 8 3 182 10.3390/gels8030182 35323295
    [Google Scholar]
  111. Hashemi F. Mohajeri N. Radnia F. Zarghami N. Design of an efficient fluorescent nanoplatform carrier for hydrophobic drugs along with green carbon dot: Possible application in cancer image-guided drug therapy. Photodiagn. Photodyn. Ther. 2022 37 102738 10.1016/j.pdpdt.2022.102738 35074467
    [Google Scholar]
  112. Carniato F. Ricci M. Tei L. Garello F. Terreno E. Ravera E. Parigi G. Luchinat C. Botta M. High relaxivity with no coordinated waters: A seemingly paradoxical behavior of [Gd(DOTP)] 5– Embedded in Nanogels. Inorg. Chem. 2022 61 13 5380 5387 10.1021/acs.inorgchem.2c00225 35316037
    [Google Scholar]
  113. Zlotnikov I.D. Ezhov A.A. Belogurova N.G. Kudryashova E.V. pH-sensitive fluorescent probe in nanogel particles as theragnostic agent for imaging and elimination of latent bacterial cells residing inside macrophages. Gels 2024 10 9 567 10.3390/gels10090567 39330169
    [Google Scholar]
  114. Gheran C. Rigaux G. Callewaert M. Berquand A. Molinari M. Chuburu F. Voicu S. Dinischiotu A. Biocompatibility of Gd-loaded chitosan-hyaluronic acid nanogels as contrast agents for magnetic resonance cancer imaging. Nanomaterials (Basel) 2018 8 4 201 10.3390/nano8040201 29597306
    [Google Scholar]
  115. Teng Y. Jin H. Nan D. Li M. Fan C. Liu Y. Lv P. Cui W. Sun Y. Hao H. Qu X. Yang Z. Huang Y. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model. Bioact. Mater. 2018 3 1 102 109 10.1016/j.bioactmat.2017.08.001 29744447
    [Google Scholar]
  116. Carniato F. Tei L. Botta M. Ravera E. Fragai M. Parigi G. Luchinat C. 1 H NMR relaxometric study of chitosan-based nanogels containing Mono- and Bis-hydrated Gd(III) Chelates: Clues for MRI probes of improved sensitivity. ACS Appl. Bio Mater. 2020 3 12 9065 9072 10.1021/acsabm.0c01295 35019583
    [Google Scholar]
  117. Wang X. Niu D. Li P. Wu Q. Bo X. Liu B. Bao S. Su T. Xu H. Wang Q. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T 2 -weighted magnetic resonance imaging. ACS Nano 2015 9 6 5646 5656 10.1021/nn5068094 26035730
    [Google Scholar]
  118. Patel S. Goyal A. Chitin and chitinase: Role in pathogenicity, allergenicity and health. Int. J. Biol. Macromol. 2017 97 331 338 10.1016/j.ijbiomac.2017.01.042 28093332
    [Google Scholar]
  119. Abo-ser M.M. Toson E.S.A. El-Bindary A.A. Schlatter G. Shoueir K.R. Smart chitosan nanogel for targeted doxorubicin delivery, ensuring precise release, and minimizing side effects in Ehrlich ascites carcinoma-bearing mice. Int. J. Biol. Macromol. 2024 267 Pt 1 131390 10.1016/j.ijbiomac.2024.131390 38582473
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347060241105032329
Loading
/content/journals/cpd/10.2174/0113816128347060241105032329
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chitosan ; nanogel ; cancer nanomedicine ; Chitosan-based nanogel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test