Skip to content
2000
Volume 31, Issue 7
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant (MRSA), multidrug-resistant (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of reactive oxygen species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337749241021084050
2024-10-31
2025-03-07
Loading full text...

Full text loading...

References

  1. Ali AlghamdiB. Al-JohaniI. Al-ShamraniJ.M. Musamed AlshamraniH. Al-OtaibiB.G. AlmazmomiK. Yusnoraini YusofN. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus.Saudi J. Biol. Sci.202330410360410.1016/j.sjbs.2023.10360436936699
    [Google Scholar]
  2. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.000000003026343252
    [Google Scholar]
  3. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  4. TangK.W.K. MillarB.C. MooreJ.E. Antimicrobial resistance (AMR).Br. J. Biomed. Sci.2023801138710.3389/bjbs.2023.1138737448857
    [Google Scholar]
  5. VentolaC.L. The antibiotic resistance crisis: Part 1: Causes and threats.P&T201540427728325859123
    [Google Scholar]
  6. SalamM.A. Al-AminM.Y. SalamM.T. PawarJ.S. AkhterN. RabaanA.A. AlqumberM.A.A. Antimicrobial resistance: A growing serious threat for global public health.Healthcare (Basel)20231113194610.3390/healthcare1113194637444780
    [Google Scholar]
  7. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Al-OuqailiM.T.S. Chinedu IkemJ. Victor ChigozieU. SakiM. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.2465535949048
    [Google Scholar]
  8. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  9. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑835672712
    [Google Scholar]
  10. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  11. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances.Front Chem.2020828610.3389/fchem.2020.0028632391321
    [Google Scholar]
  12. ForierK RaemdonckK De SmedtS DemeesterJ CoenyeT BraeckmansK Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.J Control Release20141906072310.1016/j.jconrel.2014.03.055
    [Google Scholar]
  13. ShaikhS. NazamN. RizviS.M.D. AhmadK. BaigM.H. LeeE.J. ChoiI. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance.Int. J. Mol. Sci.20192010246810.3390/ijms2010246831109079
    [Google Scholar]
  14. AlfeiS. SchitoG.C. SchitoA.M. ZuccariG. Reactive Oxygen Species (ROS)-mediated antibacterial oxidative therapies: Available methods to generate ROS and a novel option proposal.Int. J. Mol. Sci.20242513718210.3390/ijms2513718239000290
    [Google Scholar]
  15. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  16. Abdal DayemA. HossainM. LeeS. KimK. SahaS. YangG.M. ChoiH. ChoS.G. The role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles.Int. J. Mol. Sci.201718112010.3390/ijms1801012028075405
    [Google Scholar]
  17. SkłodowskiK. Chmielewska-DeptułaS.J. PiktelE. WolakP. WollnyT. BuckiR. Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility.Int. J. Mol. Sci.2023243210410.3390/ijms2403210436768426
    [Google Scholar]
  18. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials (Basel)202010229210.3390/nano1002029232050443
    [Google Scholar]
  19. SharmaS. MohlerJ. MahajanS.D. SchwartzS.A. BruggemannL. AalinkeelR. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment.Microorganisms2023116161410.3390/microorganisms1106161437375116
    [Google Scholar]
  20. RoyR. TiwariM. DonelliG. TiwariV. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.Virulence20189152255410.1080/21505594.2017.131337228362216
    [Google Scholar]
  21. KumarL. BisenM. HarjaiK. ChhibberS. AzizovS. LalhlenmawiaH. KumarD. Advances in nanotechnology for biofilm inhibition.ACS Omega2023824213912140910.1021/acsomega.3c0223937360468
    [Google Scholar]
  22. OzdalM. GurkokS. A recent advances in nanoparticles as antibacterial agent.ADMET DMPK202210211512910.5599/admet.117235350114
    [Google Scholar]
  23. AhmadF. Salem-BekhitM.M. KhanF. AlshehriS. KhanA. GhoneimM.M. WuH.F. TahaE.I. ElbagoryI. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application.Nanomaterials (Basel)2022128133310.3390/nano1208133335458041
    [Google Scholar]
  24. DravianaH.T. FitriannisaI. KhafidM. KrisnawatiD.I. Widodo LaiC.H. FanY.J. KuoT.R. Size and charge effects of metal nanoclusters on antibacterial mechanisms.J. Nanobiotechnology202321142810.1186/s12951‑023‑02208‑337968705
    [Google Scholar]
  25. HettaH.F. RamadanY.N. Al-HarbiA.I. A AhmedE. BattahB. Abd EllahN.H. ZanettiS. DonaduM.G. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives.Biomedicines202311241310.3390/biomedicines1102041336830949
    [Google Scholar]
  26. WuZ. ChanB. LowJ. ChuJ.J.H. HeyH.W.D. TayA. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants.Bioact. Mater.20221624927010.1016/j.bioactmat.2022.02.01435415290
    [Google Scholar]
  27. NowakM. Barańska-RybakW. Nanomaterials as a successor of antibiotics in antibiotic-resistant, biofilm infected wounds?Antibiotics (Basel)202110894110.3390/antibiotics1008094134438991
    [Google Scholar]
  28. ZhuX. TangQ. ZhouX. MomeniM.R. Antibiotic resistance and nanotechnology: A narrative review.Microb. Pathog.202419310674110.1016/j.micpath.2024.10674138871198
    [Google Scholar]
  29. LeH. KarakasyanC. JouenneT. Le CerfD. DéE. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance.Appl. Sci. (Basel)202111221069510.3390/app112210695
    [Google Scholar]
  30. VarierKM GudeppuM ChinnasamyA ThangarajanS BalasubramanianJ LiY Nanoparticles: Antimicrobial applications and its prospects. Advanced Nanostructured Materials for Environmental RemediationCham: Springer 2019; 25: 321-55.10.1007/978‑3‑030‑04477‑0_12
    [Google Scholar]
  31. WahabS. SalmanA. KhanZ. KhanS. KrishnarajC. YunS.I. Metallic nanoparticles: A promising arsenal against antimicrobial resistance-unraveling mechanisms and enhancing medication efficacy.Int. J. Mol. Sci.202324191489710.3390/ijms24191489737834344
    [Google Scholar]
  32. Woźniak-BudychM.J. StaszakK. StaszakM. Copper and copper-based nanoparticles in medicine-perspectives and challenges.Molecules20232818668710.3390/molecules2818668737764463
    [Google Scholar]
  33. RashkiS. AsgarpourK. TarrahimofradH. HashemipourM. EbrahimiM.S. FathizadehH. KhorshidiA. KhanH. MarzhoseyniZ. Salavati-NiasariM. MirzaeiH. Chitosan-based nanoparticles against bacterial infections.Carbohydr. Polym.202125111710810.1016/j.carbpol.2020.11710833142645
    [Google Scholar]
  34. FilipovićN. TomićN. KuzmanovićM. StevanovićM.M. Nanoparticles. Potential for Use to Prevent Infections.Urinary Stents: Current State and Future Perspectives. SoriaF. RakoD. de GraafP. ChamSpringer International Publishing202232533910.1007/978‑3‑031‑04484‑7_26
    [Google Scholar]
  35. HuangY. GuoX. WuY. ChenX. FengL. XieN. ShenG. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment.Signal Transduct. Target. Ther.2024913410.1038/s41392‑024‑01745‑z38378653
    [Google Scholar]
  36. KhatoonN. AlamH. KhanA. RazaK. SardarM. Ampicillin silver nanoformulations against multidrug resistant bacteria.Sci. Rep.201991684810.1038/s41598‑019‑43309‑031048721
    [Google Scholar]
  37. Trigo-GutierrezJ.K. Vega-ChacónY. SoaresA.B. MimaE.G.O. Antimicrobial activity of curcumin in nanoformulations: A comprehensive review.Int. J. Mol. Sci.20212213713010.3390/ijms2213713034281181
    [Google Scholar]
  38. BrownA.N. SmithK. SamuelsT.A. LuJ. ObareS.O. ScottM.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus.Appl. Environ. Microbiol.20127882768277410.1128/AEM.06513‑1122286985
    [Google Scholar]
  39. TanaseC. BertaL. ComanN.A. RoșcaI. ManA. TomaF. MocanA. NicolescuA. Jakab-FarkasL. BiróD. MareA. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract.Nanomaterials (Basel)2019911154110.3390/nano911154131671587
    [Google Scholar]
  40. BushK. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae.Curr. Opin. Microbiol.201013555856410.1016/j.mib.2010.09.00620920882
    [Google Scholar]
  41. BushK. Antimicrobial agents targeting bacterial cell walls and cell membranes.Rev. Sci. Tech.2012311435610.20506/rst.31.1.209622849267
    [Google Scholar]
  42. KapoorG. SaigalS. ElongavanA. Action and resistance mechanisms of antibiotics: A guide for clinicians.J. Anaesthesiol. Clin. Pharmacol.201733330030510.4103/joacp.JOACP_349_1529109626
    [Google Scholar]
  43. LamS.J. O’Brien-SimpsonN.M. PantaratN. SulistioA. WongE.H.H. ChenY.Y. LenzoJ.C. HoldenJ.A. BlencoweA. ReynoldsE.C. QiaoG.G. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.Nat. Microbiol.20161111616210.1038/nmicrobiol.2016.16227617798
    [Google Scholar]
  44. WangX. LiuX. HanH. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum.Colloids Surf. B Biointerfaces201310313614210.1016/j.colsurfb.2012.09.04423201730
    [Google Scholar]
  45. CourvalinP. Vancomycin resistance in gram-positive cocci.Clin. Infect. Dis.200642Suppl. 1S25S3410.1086/49171116323116
    [Google Scholar]
  46. FalagasM.E. RafailidisP.I. MatthaiouD.K. Resistance to polymyxins: Mechanisms, frequency and treatment options.Drug Resist. Updat.2010134-513213810.1016/j.drup.2010.05.00220843473
    [Google Scholar]
  47. PetersonE. KaurP. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens.Front. Microbiol.20189292810.3389/fmicb.2018.0292830555448
    [Google Scholar]
  48. SirajE.A. YayehradA.T. BeleteA. How combined macrolide nanomaterials are effective against resistant pathogens? A comprehensive review of the literature.Int. J. Nanomedicine2023185289530710.2147/IJN.S41858837732155
    [Google Scholar]
  49. HuangC.M. ChenC.H. PornpattananangkulD. ZhangL. ChanM. HsiehM.F. ZhangL. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids.Biomaterials201132121422110.1016/j.biomaterials.2010.08.07620880576
    [Google Scholar]
  50. Raszewska-FamielecM. FliegerJ. Nanoparticles for topical application in the treatment of skin dysfunctions-an overview of dermo-cosmetic and dermatological products.Int. J. Mol. Sci.202223241598010.3390/ijms23241598036555619
    [Google Scholar]
  51. PangQ. JiangZ. WuK. HouR. ZhuY. Nanomaterials-based wound dressing for advanced management of infected wound.Antibiotics (Basel)202312235110.3390/antibiotics1202035136830262
    [Google Scholar]
  52. SangnimT. PuriV. DheerD. VenkateshD.N. HuanbuttaK. SharmaA. Nanomaterials in the wound healing process: New insights and advancements.Pharmaceutics202416330010.3390/pharmaceutics1603030038543194
    [Google Scholar]
  53. PatiR. MehtaR.K. MohantyS. PadhiA. SenguptaM. VaseeharanB. GoswamiC. SonawaneA. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.Nanomedicine20141061195120810.1016/j.nano.2014.02.01224607937
    [Google Scholar]
  54. ShakyaA.K. Al-SulaibiM. NaikR.R. NsairatH. SubohS. AbulailaA. Review on PLGA polymer based nanoparticles with antimicrobial properties and their application in various medical conditions or infections.Polymers (Basel)20231517359710.3390/polym1517359737688223
    [Google Scholar]
  55. ShariatiA. CheginiZ. Ghaznavi-RadE. ZareE.N. HosseiniS.M. PLGA-based nanoplatforms in drug delivery for inhibition and destruction of microbial biofilm.Front. Cell. Infect. Microbiol.20221292636310.3389/fcimb.2022.92636335800390
    [Google Scholar]
  56. SahooJ. SarkhelS. MukherjeeN. JaiswalA. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections.ACS Omega2022750459624598010.1021/acsomega.2c0621136570317
    [Google Scholar]
  57. SahaI. BhattacharyaS. MukhopadhyayA. ChattopadhyayD. GhoshU. ChatterjeeD. Role of nanotechnology in water treatment and purification: Potential applications and implications.Int. J. Chem. Sci. Technol.2013335964
    [Google Scholar]
  58. NagarA. PradeepT. Clean water through nanotechnology: Needs, gaps, and fulfillment.ACS Nano20201466420643510.1021/acsnano.9b0173032433866
    [Google Scholar]
  59. JiaY. JiangY. HeY. ZhangW. ZouJ. MagarK.T. BoucettaH. TengC. HeW. Approved nanomedicine against diseases.Pharmaceutics202315377410.3390/pharmaceutics1503077436986635
    [Google Scholar]
  60. RodríguezF. CaruanaP. De la FuenteN. EspañolP. GámezM. BalartJ. LlurbaE. RoviraR. RuizR. Martín-LorenteC. CorcheroJ.L. CéspedesM.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges.Biomolecules202212678410.3390/biom1206078435740909
    [Google Scholar]
  61. KumarM. VirmaniT. KumarG. DeshmukhR. SharmaA. DuarteS. BrandãoP. FonteP. Nanocarriers in tuberculosis treatment: Challenges and delivery strategies.Pharmaceuticals (Basel)20231610136010.3390/ph1610136037895831
    [Google Scholar]
  62. SinghA.P. BiswasA. ShuklaA. MaitiP. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.Signal Transduct. Target. Ther.2019413310.1038/s41392‑019‑0068‑331637012
    [Google Scholar]
  63. MakabentaJ.M.V. NabawyA. LiC.H. Schmidt-MalanS. PatelR. RotelloV.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021191233610.1038/s41579‑020‑0420‑132814862
    [Google Scholar]
  64. KarnwalA. KumarG. PantG. HossainK. AhmadA. AlshammariM.B. Perspectives on usage of functional nanomaterials in antimicrobial therapy for antibiotic-resistant bacterial infections.ACS Omega2023815134921350810.1021/acsomega.3c0011037091369
    [Google Scholar]
  65. PatelU. HuntE.C. Recent advances in combating bacterial infections by using hybrid nano-systems.J. Nanotheranostics20234342946210.3390/jnt4030019
    [Google Scholar]
  66. WuY. SongZ. WangH. HanH. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections.Nat. Commun.2019101446410.1038/s41467‑019‑12233‑231578336
    [Google Scholar]
  67. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms2213720234281254
    [Google Scholar]
  68. BahadarH. MaqboolF. NiazK. AbdollahiM. Toxicity of nanoparticles and an overview of current experimental models.Iran. Biomed. J.201620111110.7508/ibj.2016.01.00126286636
    [Google Scholar]
  69. Kus-LiśkiewiczM. FickersP. Ben TaharI. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations.Int. J. Mol. Sci.202122201095210.3390/ijms22201095234681612
    [Google Scholar]
  70. KrollA. PillukatM.H. HahnD. SchnekenburgerJ. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges.Eur. J. Pharm. Biopharm.200972237037710.1016/j.ejpb.2008.08.00918775492
    [Google Scholar]
  71. RamosT.I. Villacis-AguirreC.A. López-AguilarK.V. Santiago PadillaL. AltamiranoC. ToledoJ.R. Santiago VispoN. The Hitchhiker’s guide to human therapeutic nanoparticle development.Pharmaceutics202214224710.3390/pharmaceutics1402024735213980
    [Google Scholar]
  72. FoulkesR. ManE. ThindJ. YeungS. JoyA. HoskinsC. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives.Biomater. Sci.20208174653466410.1039/D0BM00558D32672255
    [Google Scholar]
  73. WastiS. LeeI.H. KimS. LeeJ.H. KimH. Ethical and legal challenges in nanomedical innovations: A scoping review.Front. Genet.202314116339210.3389/fgene.2023.116339237252668
    [Google Scholar]
  74. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers (Basel)2023157159610.3390/polym1507159637050210
    [Google Scholar]
  75. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  76. AdenijiO.O. NontonganaN. OkohJ.C. OkohA.I. The potential of antibiotics and nanomaterial combinations as therapeutic strategies in the management of multidrug-resistant infections: A review.Int. J. Mol. Sci.202223231503810.3390/ijms23231503836499363
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337749241021084050
Loading
/content/journals/cpd/10.2174/0113816128337749241021084050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test