Skip to content
2000
image of Nano Revolution: Harnessing Nanoparticles to Combat Antibiotic-resistant Bacterial Infections

Abstract

Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant (MRSA), multidrug-resistant (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of Reactive Oxygen Species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337749241021084050
2024-10-31
2025-01-09
Loading full text...

Full text loading...

References

  1. Ali Alghamdi B. Al-Johani I. Al-Shamrani J.M. Musamed Alshamrani H. Al-Otaibi B.G. Almazmomi K. Yusnoraini Yusof N. Antimicrobial resistance in methicillin-resistant staphylococcus aureus. Saudi J. Biol. Sci. 2023 30 4 103604 10.1016/j.sjbs.2023.103604 36936699
    [Google Scholar]
  2. Prestinaci F. Pezzotti P. Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015 109 7 309 318 10.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  3. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  4. Tang K.W.K. Millar B.C. Moore J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023 80 11387 10.3389/bjbs.2023.11387 37448857
    [Google Scholar]
  5. Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T 2015 40 4 277 283 25859123
    [Google Scholar]
  6. Salam M.A. Al-Amin M.Y. Salam M.T. Pawar J.S. Akhter N. Rabaan A.A. Alqumber M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare (Basel) 2023 11 13 1946 10.3390/healthcare11131946 37444780
    [Google Scholar]
  7. Chinemerem Nwobodo D. Ugwu M.C. Oliseloke Anie C. Al-Ouqaili M.T.S. Chinedu Ikem J. Victor Chigozie U. Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022 36 9 e24655 10.1002/jcla.24655 35949048
    [Google Scholar]
  8. Altammar K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023 14 1155622 10.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  9. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  10. Wang L. Hu C. Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine 2017 12 1227 1249 10.2147/IJN.S121956 28243086
    [Google Scholar]
  11. Yeh Y.C. Huang T.H. Yang S.C. Chen C.C. Fang J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem. 2020 8 286 10.3389/fchem.2020.00286 32391321
    [Google Scholar]
  12. Forier K Raemdonck K De Smedt S Demeester J Coenye T Braeckmans K Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014 190 607 23 10.1016/j.jconrel.2014.03.055
    [Google Scholar]
  13. Shaikh S. Nazam N. Rizvi S.M.D. Ahmad K. Baig M.H. Lee E.J. Choi I. Mechanistic Insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019 20 10 2468 10.3390/ijms20102468 31109079
    [Google Scholar]
  14. Alfei S. Schito G.C. Schito A.M. Zuccari G. Reactive Oxygen Species (ROS)-mediated antibacterial oxidative therapies: Available methods to generate ROS and a novel option proposal. Int. J. Mol. Sci. 2024 25 13 7182 10.3390/ijms25137182 39000290
    [Google Scholar]
  15. Sirelkhatim A. Mahmud S. Seeni A. Kaus N.H.M. Ann L.C. Bakhori S.K.M. Hasan H. Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 7 3 219 242 10.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  16. Abdal Dayem A. Hossain M. Lee S. Kim K. Saha S. Yang G.M. Choi H. Cho S.G. The role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017 18 1 120 10.3390/ijms18010120 28075405
    [Google Scholar]
  17. Skłodowski K. Chmielewska-Deptuła S.J. Piktel E. Wolak P. Wollny T. Bucki R. Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility. Int. J. Mol. Sci. 2023 24 3 2104 10.3390/ijms24032104 36768426
    [Google Scholar]
  18. Sánchez-López E. Gomes D. Esteruelas G. Bonilla L. Lopez-Machado A.L. Galindo R. Cano A. Espina M. Ettcheto M. Camins A. Silva A.M. Durazzo A. Santini A. Garcia M.L. Souto E.B. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel) 2020 10 2 292 10.3390/nano10020292 32050443
    [Google Scholar]
  19. Sharma S. Mohler J. Mahajan S.D. Schwartz S.A. Bruggemann L. Aalinkeel R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023 11 6 1614 10.3390/microorganisms11061614 37375116
    [Google Scholar]
  20. Roy R. Tiwari M. Donelli G. Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018 9 1 522 554 10.1080/21505594.2017.1313372 28362216
    [Google Scholar]
  21. Kumar L. Bisen M. Harjai K. Chhibber S. Azizov S. Lalhlenmawia H. Kumar D. Advances in nanotechnology for biofilm inhibition. ACS Omega 2023 8 24 21391 21409 10.1021/acsomega.3c02239 37360468
    [Google Scholar]
  22. Ozdal M. Gurkok S. A recent advances in nanoparticles as antibacterial agent. ADMET DMPK 2022 10 2 115 129 10.5599/admet.1172 35350114
    [Google Scholar]
  23. Ahmad F. Salem-Bekhit M.M. Khan F. Alshehri S. Khan A. Ghoneim M.M. Wu H.F. Taha E.I. Elbagory I. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomaterials (Basel) 2022 12 8 1333 10.3390/nano12081333 35458041
    [Google Scholar]
  24. Draviana H.T. Fitriannisa I. Khafid M. Krisnawati D.I. Widodo Lai C.H. Fan Y.J. Kuo T.R. Size and charge effects of metal nanoclusters on antibacterial mechanisms. J. Nanobiotechnology 2023 21 1 428 10.1186/s12951‑023‑02208‑3 37968705
    [Google Scholar]
  25. Hetta H.F. Ramadan Y.N. Al-Harbi A.I. A Ahmed E. Battah B. Abd Ellah N.H. Zanetti S. Donadu M.G. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines 2023 11 2 413 10.3390/biomedicines11020413 36830949
    [Google Scholar]
  26. Wu Z. Chan B. Low J. Chu J.J.H. Hey H.W.D. Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact. Mater. 2022 16 249 270 10.1016/j.bioactmat.2022.02.014 35415290
    [Google Scholar]
  27. Nowak M. Barańska-Rybak W. Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds? Antibiotics (Basel) 2021 10 8 941 10.3390/antibiotics10080941 34438991
    [Google Scholar]
  28. Zhu X. Tang Q. Zhou X. Momeni M.R. Antibiotic resistance and nanotechnology: A narrative review. Microb. Pathog. 2024 193 106741 10.1016/j.micpath.2024.106741 38871198
    [Google Scholar]
  29. Le H. Karakasyan C. Jouenne T. Le Cerf D. Dé E. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl. Sci. (Basel) 2021 11 22 10695 10.3390/app112210695
    [Google Scholar]
  30. Varier KM Gudeppu M Chinnasamy A Thangarajan S Balasubramanian J Li Y Nanoparticles: Antimicrobial applications and its prospects. Advanced Nanostructured Materials for Environmental Remediation Cham Springer 2019 10.1007/978‑3‑030‑04477‑0_12
    [Google Scholar]
  31. Wahab S. Salman A. Khan Z. Khan S. Krishnaraj C. Yun S.I. Metallic nanoparticles: A promising arsenal against antimicrobial resistance-unraveling mechanisms and enhancing medication efficacy. Int. J. Mol. Sci. 2023 24 19 14897 10.3390/ijms241914897 37834344
    [Google Scholar]
  32. Woźniak-Budych M.J. Staszak K. Staszak M. Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules 2023 28 18 6687 10.3390/molecules28186687 37764463
    [Google Scholar]
  33. Rashki S. Asgarpour K. Tarrahimofrad H. Hashemipour M. Ebrahimi M.S. Fathizadeh H. Khorshidi A. Khan H. Marzhoseyni Z. Salavati-Niasari M. Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym. 2021 251 117108 10.1016/j.carbpol.2020.117108 33142645
    [Google Scholar]
  34. Filipović N. Tomić N. Kuzmanović M. Stevanović M.M. Nanoparticles. Potential for Use to Prevent Infections. Urinary Stents: Current State and Future Perspectives. Soria F. Rako D. de Graaf P. Cham Springer International Publishing 2022 325 339 10.1007/978‑3‑031‑04484‑7_26
    [Google Scholar]
  35. Huang Y. Guo X. Wu Y. Chen X. Feng L. Xie N. Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  36. Khatoon N. Alam H. Khan A. Raza K. Sardar M. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci. Rep. 2019 9 1 6848 10.1038/s41598‑019‑43309‑0 31048721
    [Google Scholar]
  37. Trigo-Gutierrez J.K. Vega-Chacón Y. Soares A.B. Mima E.G.O. Antimicrobial activity of curcumin in nanoformulations: A comprehensive review. Int. J. Mol. Sci. 2021 22 13 7130 10.3390/ijms22137130 34281181
    [Google Scholar]
  38. Brown A.N. Smith K. Samuels T.A. Lu J. Obare S.O. Scott M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012 78 8 2768 2774 10.1128/AEM.06513‑11 22286985
    [Google Scholar]
  39. Tanase C. Berta L. Coman N.A. Roșca I. Man A. Toma F. Mocan A. Nicolescu A. Jakab-Farkas L. Biró D. Mare A. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract. Nanomaterials (Basel) 2019 9 11 1541 10.3390/nano9111541 31671587
    [Google Scholar]
  40. Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol. 2010 13 5 558 564 10.1016/j.mib.2010.09.006 20920882
    [Google Scholar]
  41. Bush K. Antimicrobial agents targeting bacterial cell walls and cell membranes. Rev. Sci. Tech. 2012 31 1 43 56 10.20506/rst.31.1.2096 22849267
    [Google Scholar]
  42. Kapoor G. Saigal S. Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017 33 3 300 305 10.4103/joacp.JOACP_349_15 29109626
    [Google Scholar]
  43. Lam S.J. O’Brien-Simpson N.M. Pantarat N. Sulistio A. Wong E.H.H. Chen Y.Y. Lenzo J.C. Holden J.A. Blencowe A. Reynolds E.C. Qiao G.G. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 2016 1 11 16162 10.1038/nmicrobiol.2016.162 27617798
    [Google Scholar]
  44. Wang X. Liu X. Han H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B Biointerfaces 2013 103 136 142 10.1016/j.colsurfb.2012.09.044 23201730
    [Google Scholar]
  45. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 2006 42 Suppl. 1 S25 S34 10.1086/491711 16323116
    [Google Scholar]
  46. Falagas M.E. Rafailidis P.I. Matthaiou D.K. Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist. Updat. 2010 13 4-5 132 138 10.1016/j.drup.2010.05.002 20843473
    [Google Scholar]
  47. Peterson E. Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018 9 2928 10.3389/fmicb.2018.02928 30555448
    [Google Scholar]
  48. Siraj E.A. Yayehrad A.T. Belete A. How combined macrolide nanomaterials are effective against resistant pathogens? A comprehensive review of the literature. Int. J. Nanomedicine 2023 18 5289 5307 10.2147/IJN.S418588 37732155
    [Google Scholar]
  49. Huang C.M. Chen C.H. Pornpattananangkul D. Zhang L. Chan M. Hsieh M.F. Zhang L. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 2011 32 1 214 221 10.1016/j.biomaterials.2010.08.076 20880576
    [Google Scholar]
  50. Raszewska-Famielec M. Flieger J. Nanoparticles for topical application in the treatment of skin dysfunctions-an overview of dermo-cosmetic and dermatological products. Int. J. Mol. Sci. 2022 23 24 15980 10.3390/ijms232415980 36555619
    [Google Scholar]
  51. Pang Q. Jiang Z. Wu K. Hou R. Zhu Y. Nanomaterials-based wound dressing for advanced management of infected wound. Antibiotics (Basel) 2023 12 2 351 10.3390/antibiotics12020351 36830262
    [Google Scholar]
  52. Sangnim T. Puri V. Dheer D. Venkatesh D.N. Huanbutta K. Sharma A. Nanomaterials in the wound healing process: New insights and advancements. Pharmaceutics 2024 16 3 300 10.3390/pharmaceutics16030300 38543194
    [Google Scholar]
  53. Pati R. Mehta R.K. Mohanty S. Padhi A. Sengupta M. Vaseeharan B. Goswami C. Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 2014 10 6 1195 1208 10.1016/j.nano.2014.02.012 24607937
    [Google Scholar]
  54. Shakya A.K. Al-Sulaibi M. Naik R.R. Nsairat H. Suboh S. Abulaila A. Review on PLGA polymer based nanoparticles with antimicrobial properties and their application in various medical conditions or infections. Polymers (Basel) 2023 15 17 3597 10.3390/polym15173597 37688223
    [Google Scholar]
  55. Shariati A. Chegini Z. Ghaznavi-Rad E. Zare E.N. Hosseini S.M. PLGA-based nanoplatforms in drug delivery for inhibition and destruction of microbial biofilm. Front. Cell. Infect. Microbiol. 2022 12 926363 10.3389/fcimb.2022.926363 35800390
    [Google Scholar]
  56. Sahoo J. Sarkhel S. Mukherjee N. Jaiswal A. Nanomaterial-based antimicrobial coating for biomedical implants: New age solution for biofilm-associated infections. ACS Omega 2022 7 50 45962 45980 10.1021/acsomega.2c06211 36570317
    [Google Scholar]
  57. Saha I. Bhattacharya S. Mukhopadhyay A. Chattopadhyay D. Ghosh U. Chatterjee D. Role of nanotechnology in water treatment and purification: Potential applications and implications. Int. J. Chem. Sci. Technol. 2013 3 3 59 64
    [Google Scholar]
  58. Nagar A. Pradeep T. Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano 2020 14 6 6420 6435 10.1021/acsnano.9b01730 32433866
    [Google Scholar]
  59. Jia Y. Jiang Y. He Y. Zhang W. Zou J. Magar K.T. Boucetta H. Teng C. He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023 15 3 774 10.3390/pharmaceutics15030774 36986635
    [Google Scholar]
  60. Rodríguez F. Caruana P. De la Fuente N. Español P. Gámez M. Balart J. Llurba E. Rovira R. Ruiz R. Martín-Lorente C. Corchero J.L. Céspedes M.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules 2022 12 6 784 10.3390/biom12060784 35740909
    [Google Scholar]
  61. Kumar M. Virmani T. Kumar G. Deshmukh R. Sharma A. Duarte S. Brandão P. Fonte P. Nanocarriers in Tuberculosis treatment: Challenges and delivery strategies. Pharmaceuticals (Basel) 2023 16 10 1360 10.3390/ph16101360 37895831
    [Google Scholar]
  62. Singh A.P. Biswas A. Shukla A. Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019 4 1 33 10.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  63. Makabenta J.M.V. Nabawy A. Li C.H. Schmidt-Malan S. Patel R. Rotello V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021 19 1 23 36 10.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  64. Karnwal A. Kumar G. Pant G. Hossain K. Ahmad A. Alshammari M.B. Perspectives on usage of functional nanomaterials in antimicrobial therapy for antibiotic-resistant bacterial infections. ACS Omega 2023 8 15 13492 13508 10.1021/acsomega.3c00110 37091369
    [Google Scholar]
  65. Patel U. Hunt E.C. Recent advances in combating bacterial infections by using hybrid nano-systems. J. Nanotheranostics 2023 4 3 429 462 10.3390/jnt4030019
    [Google Scholar]
  66. Wu Y. Song Z. Wang H. Han H. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat. Commun. 2019 10 1 4464 10.1038/s41467‑019‑12233‑2 31578336
    [Google Scholar]
  67. Bruna T. Maldonado-Bravo F. Jara P. Caro N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021 22 13 7202 10.3390/ijms22137202 34281254
    [Google Scholar]
  68. Bahadar H. Maqbool F. Niaz K. Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 2016 20 1 1 11 10.7508/ibj.2016.01.001 26286636
    [Google Scholar]
  69. Kus-Liśkiewicz M. Fickers P. Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021 22 20 10952 10.3390/ijms222010952 34681612
    [Google Scholar]
  70. Kroll A. Pillukat M.H. Hahn D. Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges. Eur. J. Pharm. Biopharm. 2009 72 2 370 377 10.1016/j.ejpb.2008.08.009 18775492
    [Google Scholar]
  71. Ramos T.I. Villacis-Aguirre C.A. López-Aguilar K.V. Santiago Padilla L. Altamirano C. Toledo J.R. Santiago Vispo N. The Hitchhiker’s guide to human therapeutic nanoparticle development. Pharmaceutics 2022 14 2 247 10.3390/pharmaceutics14020247 35213980
    [Google Scholar]
  72. Foulkes R. Man E. Thind J. Yeung S. Joy A. Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020 8 17 4653 4664 10.1039/D0BM00558D 32672255
    [Google Scholar]
  73. Wasti S. Lee I.H. Kim S. Lee J.H. Kim H. Ethical and legal challenges in nanomedical innovations: A scoping review. Front. Genet. 2023 14 1163392 10.3389/fgene.2023.1163392 37252668
    [Google Scholar]
  74. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers (Basel) 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  75. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  76. Adeniji O.O. Nontongana N. Okoh J.C. Okoh A.I. The potential of antibiotics and nanomaterial combinations as therapeutic strategies in the management of multidrug-resistant infections: A review. Int. J. Mol. Sci. 2022 23 23 15038 10.3390/ijms232315038 36499363
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337749241021084050
Loading
/content/journals/cpd/10.2174/0113816128337749241021084050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test