Skip to content
2000
image of Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease

Abstract

Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially ground-breaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128344571241018154506
2024-11-01
2025-01-08
Loading full text...

Full text loading...

References

  1. Chitramuthu B. P. Bennett H. P. Bateman A. History of neurodegenerative diseases and its impact on aged population in India: An assessment. Indian J. Sci. 2017 52 1 106 115
    [Google Scholar]
  2. Parra-Damas A. Saura C.A. Tissue clearing and expansion methods for imaging brain pathology in neurodegeneration: From circuits to synapses and beyond. Front. Neurosci. 2020 14 914 10.3389/fnins.2020.00914 33122983
    [Google Scholar]
  3. Zvěřová M. Clinical aspects of Alzheimer’s disease. Clin. Biochem. 2019 72 3 6 10.1016/j.clinbiochem.2019.04.015 31034802
    [Google Scholar]
  4. Mandell A.M. Green R.C. Alzheimer’s disease. The handbook of Alzheimer’s disease and other dementias. Wiley Blackwell 2014 3 91
    [Google Scholar]
  5. Mendez M.F. Early-onset Alzheimer disease. Neurol. Clin. 2017 35 2 263 281 10.1016/j.ncl.2017.01.005 28410659
    [Google Scholar]
  6. Zetterberg H. Mattsson N. Understanding the cause of sporadic Alzheimer’s disease. Expert Rev. Neurother. 2014 14 6 621 10.1586/14737175.2014.915740 24852227
    [Google Scholar]
  7. Raphael D de L. The knowledge and attitudes of primary care and the barriers to early detection and diagnosis of Alzheimer’s disease. Med (N. Y.) 2022 58 7
    [Google Scholar]
  8. Zucchella C. Sinforiani E. Tamburin S. Federico A. Mantovani E. Bernini S. Casale R. Bartolo M. The multidisciplinary approach to Alzheimer’s disease and Dementia. A narrative review of non-pharmacological treatment. Front. Neurol. 2018 9 1058 10.3389/fneur.2018.01058 30619031
    [Google Scholar]
  9. Davis K.D. Aghaeepour N. Ahn A.H. Angst M.S. Borsook D. Brenton A. Burczynski M.E. Crean C. Edwards R. Gaudilliere B. Hergenroeder G.W. Iadarola M.J. Iyengar S. Jiang Y. Kong J.T. Mackey S. Saab C.Y. Sang C.N. Scholz J. Segerdahl M. Tracey I. Veasley C. Wang J. Wager T.D. Wasan A.D. Pelleymounter M.A. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 2020 16 7 381 400 10.1038/s41582‑020‑0362‑2 32541893
    [Google Scholar]
  10. Deb A. Thornton J.D. Sambamoorthi U. Innes K. Direct and indirect cost of managing alzheimer’s disease and related dementias in the United States. Expert Rev. Pharmacoecon. Outcomes Res. 2017 17 2 189 202 10.1080/14737167.2017.1313118 28351177
    [Google Scholar]
  11. Grill J.D. Karlawish J. Addressing the challenges to successful recruitment and retention in Alzheimer’s disease clinical trials. Alzheimers Res. Ther. 2010 2 6 34 10.1186/alzrt58 21172069
    [Google Scholar]
  12. Jicha G.A. Carr S.A. Conceptual evolution in Alzheimer’s disease: Implications for understanding the clinical phenotype of progressive neurodegenerative disease. J. Alzheimers Dis. 2010 19 1 253 272 10.3233/JAD‑2010‑1237 20061643
    [Google Scholar]
  13. Brawley E.C. Designing for Alzheimer’s disease. Strategies for creating better care environments. Wiley New York 1st ed 1997 295
    [Google Scholar]
  14. DeKosky S.T. Epidemiology and pathophysiology of Alzheimer’s disease. Clin. Cornerstone 2001 3 4 15 26 10.1016/S1098‑3597(01)90045‑6 11432119
    [Google Scholar]
  15. Ashrafian H. Zadeh E.H. Khan R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 2021 167 382 394 10.1016/j.ijbiomac.2020.11.192 33278431
    [Google Scholar]
  16. Takahashi R.H. Nagao T. Gouras G.K. Plaque formation and the intraneuronal accumulation of β‐amyloid in Alzheimer’s disease. Pathol. Int. 2017 67 4 185 193 10.1111/pin.12520 28261941
    [Google Scholar]
  17. Wang W.Y. Tan M.S. Yu J.T. Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015 3 10 136 26207229
    [Google Scholar]
  18. Zhang F. Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2015 243 Jan
    [Google Scholar]
  19. Carlson N.G. Wieggel W.A. Chen J. Bacchi A. Rogers S.W. Gahring L.C. Inflammatory cytokines IL-1 α, IL-1 β, IL-6, and TNF-α impart neuroprotection to an excitotoxin through distinct pathways. J. Immunol. 1999 163 7 3963 3968 10.4049/jimmunol.163.7.3963 10490998
    [Google Scholar]
  20. González-Reyes R.E. Nava-Mesa M.O. Vargas-Sánchez K. Ariza-Salamanca D. Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 2017 10 427 10.3389/fnmol.2017.00427 29311817
    [Google Scholar]
  21. Crimins J.L. Pooler A. Polydoro M. Luebke J.I. Spires-Jones T.L. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res. Rev. 2013 12 3 757 763 10.1016/j.arr.2013.03.002 23528367
    [Google Scholar]
  22. Schliebs R. Arendt T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011 221 2 555 563 10.1016/j.bbr.2010.11.058 21145918
    [Google Scholar]
  23. Laurent C. Buée L. Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies? Biomed. J. 2018 41 1 21 33 10.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  24. John A. Reddy P.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res. Rev. 2021 65 101208 10.1016/j.arr.2020.101208 33157321
    [Google Scholar]
  25. Chartier-Hariln M-C. Parfitt M. Legrain S. Pérez-Tur J. Brousseau T. Evans A. Berr C. Vldal O. Roques P. Gourlet V. Fruchart J-C. Delacourte A. Rossor M. Amouyel P. Apolipoprotein E, ɛ4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum. Mol. Genet. 1994 3 4 569 574 10.1093/hmg/3.4.569 8069300
    [Google Scholar]
  26. Wiseman F.K. Pulford L.J. Barkus C. Liao F. Portelius E. Webb R. Chávez-Gutiérrez L. Cleverley K. Noy S. Sheppard O. Collins T. Powell C. Sarell C.J. Rickman M. Choong X. Tosh J.L. Siganporia C. Whittaker H.T. Stewart F. Szaruga M. Murphy M.P. Blennow K. de Strooper B. Zetterberg H. Bannerman D. Holtzman D.M. Tybulewicz V.L.J. Fisher E.M.C. Strydom A. Fisher E. Nizetic D. Hardy J. Tybulewicz V. Karmiloff-Smith A. London Down syndrome consortium LonDownS Consortium Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 2018 141 8 2457 2474 10.1093/brain/awy159 29945247
    [Google Scholar]
  27. Uddin M.S. Kabir M.T. Begum M.M. Islam M.S. Behl T. Ashraf G.M. Retracted article: Exploring the role of clu in the pathogenesis of Alzheimer’s disease. Neurotox. Res. 2021 39 6 2108 2119 10.1007/s12640‑020‑00271‑4 32820456
    [Google Scholar]
  28. Rosenthal S.L. Kamboh M.I. Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr. Genet. Med. Rep. 2014 2 2 85 101 10.1007/s40142‑014‑0034‑x 24829845
    [Google Scholar]
  29. A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019 57 2 87 105 10.5114/fn.2019.85929 31556570
    [Google Scholar]
  30. Grossberg G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp. 2003 64 4 216 235 10.1016/S0011‑393X(03)00059‑6 24944370
    [Google Scholar]
  31. Haake A. Nguyen K. Friedman L. Chakkamparambil B. Grossberg G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf. 2020 19 2 147 157 10.1080/14740338.2020.1721456 31976781
    [Google Scholar]
  32. Liu J. Chang L. Song Y. Li H. Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci. 2019 13 FEB 43 10.3389/fnins.2019.00043 30800052
    [Google Scholar]
  33. Chen J. Duan Y. Li H. Lu L. Liu J. Tang C. Different durations of cognitive stimulation therapy for Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging 2019 14 1243 1254 10.2147/CIA.S210062 31371930
    [Google Scholar]
  34. Gilbert A.G. Creative Dance for All Ages. Creat Danc All Ages 2nd ed 2015 1 376 10.5040/9781718212763
    [Google Scholar]
  35. Bhatti G.K. Reddy A.P. Reddy P.H. Bhatti J.S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 2020 11 369 10.3389/fnagi.2019.00369 31998117
    [Google Scholar]
  36. Steffen L.M. Jacobs D.R. Jr Stevens J. Shahar E. Carithers T. Folsom A.R. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2003 78 3 383 390 10.1093/ajcn/78.3.383 12936919
    [Google Scholar]
  37. Alissa E.M. Ferns G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food Sci. Nutr. 2017 57 9 1950 1962 26192884
    [Google Scholar]
  38. Viswanathan M. Golin C.E. Jones C.D. Ashok M. Blalock S.J. Wines R.C.M. Coker-Schwimmer E.J.L. Rosen D.L. Sista P. Lohr K.N. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: a systematic review. Ann. Intern. Med. 2012 157 11 785 795 10.7326/0003‑4819‑157‑11‑201212040‑00538 22964778
    [Google Scholar]
  39. Burnier M. Egan B.M. Adherence in Hypertension. Circ. Res. 2019 124 7 1124 1140 10.1161/CIRCRESAHA.118.313220 30920917
    [Google Scholar]
  40. Iqbal I. Saqib F. Mubarak Z. Latif M.F. Wahid M. Nasir B. Shahzad H. Sharifi-Rad J. Mubarak M.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges. Eur. J. Med. Res. 2024 29 1 313 10.1186/s40001‑024‑01915‑3 38849950
    [Google Scholar]
  41. Fillit HM O’Connell AW Brown WM Altstiel LD Anand R Collins K Barriers to drug discovery and development for Alzheimer disease. Alzheimer Dis Assoc Disord 2002 16 1 1 8 10.1097/00002093‑200200001‑00001
    [Google Scholar]
  42. Zhou M. Fu X. Ma B. Chen Z. Cheng Y. Liu L. Kan S. Zhao X. Feng S. Jiang Z. Zhu R. Effects of low-intensity ultrasound opening the blood-brain barrier on Alzheimer’s disease—a mini review. Front. Neurol. 2023 14 1274642 10.3389/fneur.2023.1274642 38020620
    [Google Scholar]
  43. Deo A.K. Borson S. Link J.M. Domino K. Eary J.F. Ke B. Richards T.L. Mankoff D.A. Minoshima S. O’Sullivan F. Eyal S. Hsiao P. Maravilla K. Unadkat J.D. Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J. Nucl. Med. 2014 55 7 1106 1111 10.2967/jnumed.113.130161 24842892
    [Google Scholar]
  44. Ewers M. Mielke M.M. Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp. Gerontol. 2010 45 1 75 79 10.1016/j.exger.2009.09.005 19782124
    [Google Scholar]
  45. Tsartsalis S. Sleven H. Fancy N. Wessely F. Smith A.M. Willumsen N. Cheung T.K.D. Rokicki M.J. Chau V. Ifie E. Khozoie C. Ansorge O. Yang X. Jenkyns M.H. Davey K. McGarry A. Muirhead R.C.J. Debette S. Jackson J.S. Montagne A. Owen D.R. Miners J.S. Love S. Webber C. Cader M.Z. Matthews P.M. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer’s disease. Nat. Commun. 2024 15 1 2243 10.1038/s41467‑024‑46630‑z 38472200
    [Google Scholar]
  46. Sweeney M.D. Montagne A. Sagare A.P. Nation D.A. Schneider L.S. Chui H.C. Harrington M.G. Pa J. Law M. Wang D.J.J. Jacobs R.E. Doubal F.N. Ramirez J. Black S.E. Nedergaard M. Benveniste H. Dichgans M. Iadecola C. Love S. Bath P.M. Markus H.S. Al-Shahi Salman R. Allan S.M. Quinn T.J. Kalaria R.N. Werring D.J. Carare R.O. Touyz R.M. Williams S.C.R. Moskowitz M.A. Katusic Z.S. Lutz S.E. Lazarov O. Minshall R.D. Rehman J. Davis T.P. Wellington C.L. González H.M. Yuan C. Lockhart S.N. Hughes T.M. Chen C.L.H. Sachdev P. O’Brien J.T. Skoog I. Pantoni L. Gustafson D.R. Biessels G.J. Wallin A. Smith E.E. Mok V. Wong A. Passmore P. Barkof F. Muller M. Breteler M.M.B. Román G.C. Hamel E. Seshadri S. Gottesman R.F. van Buchem M.A. Arvanitakis Z. Schneider J.A. Drewes L.R. Hachinski V. Finch C.E. Toga A.W. Wardlaw J.M. Zlokovic B.V. Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019 15 1 158 167 10.1016/j.jalz.2018.07.222 30642436
    [Google Scholar]
  47. Kelleher R.J. Soiza R.L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis. 2013 3 4 197 226 24224133
    [Google Scholar]
  48. Abbott N.J. Rönnbäck L. Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006 7 1 41 53 10.1038/nrn1824 16371949
    [Google Scholar]
  49. Pardridge W.M. Treatment of Alzheimer’s disease and blood–brain barrier drug delivery. Pharmaceuticals 2020 13 11 394 10.3390/ph13110394 33207605
    [Google Scholar]
  50. Dufaÿ Wojcicki A. Hillaireau H. Nascimento T.L. Arpicco S. Taverna M. Ribes S. Bourge M. Nicolas V. Bochot A. Vauthier C. Tsapis N. Fattal E. Hyaluronic acid-bearing lipoplexes: Physico-chemical characterization and in vitro targeting of the CD44 receptor. J. Control. Release 2012 162 3 545 552 10.1016/j.jconrel.2012.07.015 22820451
    [Google Scholar]
  51. Ballabh P. Braun A. Nedergaard M. The blood–brain barrier: An overview. Neurobiol. Dis. 2004 16 1 1 13 10.1016/j.nbd.2003.12.016 15207256
    [Google Scholar]
  52. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  53. Fonseca-Santos B. Chorilli M. Palmira Daflon Gremião M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2015 10 Aug 4981 5003 10.2147/IJN.S87148 26345528
    [Google Scholar]
  54. Atri A. Effective pharmacological management of Alzheimer’s disease. Am J Manag Care 2011 17 13 345 355
    [Google Scholar]
  55. Fonseca L.C. Lopes J.A. Vieira J. Viegas C. Oliveira C.S. Hartmann R.P. Fonte P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv. Transl. Res. 2021 11 2 411 425 10.1007/s13346‑021‑00940‑7 33638130
    [Google Scholar]
  56. Jackson S. Ham R.J. Wilkinson D. The safety and tolerability of donepezil in patients with Alzheimer’s disease. Br. J. Clin. Pharmacol. 2004 58 s1 Suppl. 1 1 8 10.1111/j.1365‑2125.2004.01848.x 15496217
    [Google Scholar]
  57. Birks JS Cochrane Dementia and Cognitive Improvement Group Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006 2006 1 CD005593 10.1002/14651858.CD005593
    [Google Scholar]
  58. Prvulovic D. Hampel H. Pantel J. Galantamine for Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol. 2010 6 3 345 354 10.1517/17425251003592137 20113148
    [Google Scholar]
  59. Parsons C.G. Danysz W. Quack G. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 1999 38 6 735 767 10.1016/S0028‑3908(99)00019‑2 10465680
    [Google Scholar]
  60. Tariot P.N. Farlow M.R. Grossberg G.T. Graham S.M. McDonald S. Gergel I. for the Memantine Study Group Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004 291 3 317 324 10.1001/jama.291.3.317 14734594
    [Google Scholar]
  61. Salloway S. Chalkias S. Barkhof F. Burkett P. Barakos J. Purcell D. Suhy J. Forrestal F. Tian Y. Umans K. Wang G. Singhal P. Budd Haeberlein S. Smirnakis K. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022 79 1 13 21 10.1001/jamaneurol.2021.4161 34807243
    [Google Scholar]
  62. Steck A. Lecanemab in early Alzheimer’s Disease. N Engl J Med 2023 388 1 9 21
    [Google Scholar]
  63. Small G. Dubois B. A review of compliance to treatment in Alzheimer’s disease: Potential benefits of a transdermal patch. Curr. Med. Res. Opin. 2007 23 11 2705 2713 10.1185/030079907X233403 17892635
    [Google Scholar]
  64. Scialli A.R. Saavedra K. Fugh-Berman A. The benefits and risks of adherence to medical therapy. J. sci. pract. integr. 2021 3 1 10.35122/001c.21386
    [Google Scholar]
  65. Lima S. Gago M. Garrett C. Pereira M.G. Medication adherence in Alzheimer’s disease: The mediator role of mindfulness. Arch. Gerontol. Geriatr. 2016 67 92 97 10.1016/j.archger.2016.06.021 27475468
    [Google Scholar]
  66. Campbell N.L. Boustani M.A. Skopelja E.N. Gao S. Unverzagt F.W. Murray M.D. Medication adherence in older adults with cognitive impairment: A systematic evidence-based review. Am. J. Geriatr. Pharmacother. 2012 10 3 165 177 10.1016/j.amjopharm.2012.04.004 22657941
    [Google Scholar]
  67. El-Saifi N. Moyle W. Jones C. Tuffaha H. Medication adherence in older patients with dementia: A systematic literature review. J. Pharm. Pract. 2018 31 3 322 334 10.1177/0897190017710524 28539102
    [Google Scholar]
  68. Porsteinsson A.P. Isaacson R.S. Knox S. Sabbagh M.N. Rubino I. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J. Prev. Alzheimers Dis. 2021 8 3 371 386 34101796
    [Google Scholar]
  69. Bhujbal S.S. Kad M.M. Patole V.C. Recent diagnostic techniques for the detection of Alzheimer’s disease: A short review. Ir. J. Med. Sci. 2023 192 5 2417 2426 10.1007/s11845‑022‑03244‑y 36525239
    [Google Scholar]
  70. Small G.W. Rabins P.V. Barry P.P. Buckholtz N.S. DeKosky S.T. Ferris S.H. Finkel S.I. Gwyther L.P. Khachaturian Z.S. Lebowitz B.D. McRae T.D. Morris J.C. Oakley F. Schneider L.S. Streim J.E. Sunderland T. Teri L.A. Tune L.E. Diagnosis and treatment of alzheimer disease and related disorders. JAMA 1997 278 16 1363 1371 10.1001/jama.1997.03550160083043 9343469
    [Google Scholar]
  71. Liu C.C. Kanekiyo T. Xu H. Bu G. Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013 9 2 106 118 10.1038/nrneurol.2012.263 23296339
    [Google Scholar]
  72. Niazi S.K. Magoola M. Mariam Z. Innovative therapeutic strategies in Alzheimer’s disease: A synergistic approach to neurodegenerative disorders. Pharmaceuticals 2024 17 6 741 10.3390/ph17060741 38931409
    [Google Scholar]
  73. Cao J. Hou J. Ping J. Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener. 2018 13 1 64 10.1186/s13024‑018‑0299‑8 30541602
    [Google Scholar]
  74. Lin P. Sun J. Cheng Q. Yang Y. Cordato D. Gao J. The development of pharmacological therapies for Alzheimer’s Disease. Neurol. Ther. 2021 10 2 609 626 10.1007/s40120‑021‑00282‑z 34532845
    [Google Scholar]
  75. Yu T.W. Lane H.Y. Lin C.H. Novel therapeutic approaches for alzheimer’s disease: An updated review. Int. J. Mol. Sci. 2021 22 15 8208 10.3390/ijms22158208 34360973
    [Google Scholar]
  76. Golde T.E. Disease-modifying therapies for Alzheimer’s Disease: More questions than answers. Neurotherapeutics 2022 19 1 209 227 10.1007/s13311‑022‑01201‑2 35229269
    [Google Scholar]
  77. Cummings J. Ritter A. Zhong K. Clinical trials for disease-modifying therapies in alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. J. Alzheimers Dis. 2018 64 s1 S3 S22 10.3233/JAD‑179901 29562511
    [Google Scholar]
  78. Salloway S. Mintzer J. Weiner M.F. Cummings J.L. Disease‐modifying therapies in Alzheimer’s disease. Alzheimers Dement. 2008 4 2 65 79
    [Google Scholar]
  79. Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 2023 613 7943 227 228 10.1038/d41586‑023‑00030‑3 36627422
    [Google Scholar]
  80. Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021 16 1
    [Google Scholar]
  81. Prins N.D. Scheltens P. Treating Alzheimer’s disease with monoclonal antibodies: Current status and outlook for the future. Alzheimers Res. Ther. 2013 5 6 56 10.1186/alzrt220 24216217
    [Google Scholar]
  82. Rabinovici G.D. La Joie R. Amyloid-targeting monoclonal antibodies for alzheimer disease. JAMA 2023 330 6 507 509 10.1001/jama.2023.11703 37459124
    [Google Scholar]
  83. Song C. Shi J. Zhang P. Zhang Y. Xu J. Zhao L. Zhang R. Wang H. Chen H. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond. Transl. Neurodegener. 2022 11 1 18 10.1186/s40035‑022‑00292‑3 35300725
    [Google Scholar]
  84. Jucker M. Walker L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023 186 20 4260 4270 10.1016/j.cell.2023.08.021 37729908
    [Google Scholar]
  85. Morgan D. Immunotherapy for Alzheimer’s disease. J. Intern. Med. 2011 269 1 54 63 10.1111/j.1365‑2796.2010.02315.x 21158978
    [Google Scholar]
  86. Schreiner T.G. Croitoru C.G. Hodorog D.N. Cuciureanu D.I. Passive Anti-Amyloid beta immunotherapies in Alzheimer’s Disease: From mechanisms to therapeutic impact. Biomedicines 2024 12 5 1096 10.3390/biomedicines12051096 38791059
    [Google Scholar]
  87. Heller G.T. Aprile F.A. Michaels T.C.T. Limbocker R. Perni M. Ruggeri F.S. Mannini B. Löhr T. Bonomi M. Camilloni C. De Simone A. Felli I.C. Pierattelli R. Knowles T.P.J. Dobson C.M. Vendruscolo M. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv. 2020 6 45 eabb5924 10.1126/sciadv.abb5924 33148639
    [Google Scholar]
  88. Simões-Pires C. Zwick V. Nurisso A. Schenker E. Carrupt P.A. Cuendet M. HDAC6 as a target for neurodegenerative diseases: What makes it different from the other HDACs? Mol. Neurodegener. 2013 8 1 7 10.1186/1750‑1326‑8‑7 23356410
    [Google Scholar]
  89. Walsh S. Merrick R. Richard E. Nurock S. Brayne C. Lecanemab for Alzheimer’s disease. BMJ 2022 379 o3010 10.1136/bmj.o3010 36535691
    [Google Scholar]
  90. Arjmandi-Rad S. Vestergaard Nieland J.D. Goozee K.G. Vaseghi S. The effects of different acetylcholinesterase inhibitors on EEG patterns in patients with Alzheimer’s disease: A systematic review. Neurol. Sci. 2024 45 2 417 430 10.1007/s10072‑023‑07114‑y 37843690
    [Google Scholar]
  91. Lai R. Harrington C. Wischik C. Absence of a role for phosphorylation in the tau pathology of Alzheimer’s disease. Biomolecules 2016 6 2 19 10.3390/biom6020019 27070645
    [Google Scholar]
  92. Prati F. Bottegoni G. Bolognesi M.L. Cavalli A. BACE-1 Inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease. J. Med. Chem. 2018 61 3 619 637 10.1021/acs.jmedchem.7b00393 28749667
    [Google Scholar]
  93. Mintun M.A. Lo A.C. Duggan Evans C. Wessels A.M. Ardayfio P.A. Andersen S.W. Shcherbinin S. Sparks J. Sims J.R. Brys M. Apostolova L.G. Salloway S.P. Skovronsky D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 2021 384 18 1691 1704 10.1056/NEJMoa2100708 33720637
    [Google Scholar]
  94. Egan M.F. Kost J. Voss T. Mukai Y. Aisen P.S. Cummings J.L. Tariot P.N. Vellas B. van Dyck C.H. Boada M. Zhang Y. Li W. Furtek C. Mahoney E. Harper Mozley L. Mo Y. Sur C. Michelson D. Randomized trial of verubecestat for prodromal Alzheimer’s Disease. N. Engl. J. Med. 2019 380 15 1408 1420 10.1056/NEJMoa1812840 30970186
    [Google Scholar]
  95. Sevigny J. Chiao P. Bussière T. Weinreb P.H. Williams L. Maier M. Dunstan R. Salloway S. Chen T. Ling Y. O’Gorman J. Qian F. Arastu M. Li M. Chollate S. Brennan M.S. Quintero-Monzon O. Scannevin R.H. Arnold H.M. Engber T. Rhodes K. Ferrero J. Hang Y. Mikulskis A. Grimm J. Hock C. Nitsch R.M. Sandrock A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016 537 7618 50 56 10.1038/nature19323 27582220
    [Google Scholar]
  96. Henley D. Raghavan N. Sperling R. Aisen P. Raman R. Romano G. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N. Engl. J. Med. 2019 380 15 1483 1485 10.1056/NEJMc1813435 30970197
    [Google Scholar]
  97. Stone J. Johnstone D.M. Mitrofanis J. O’Rourke M. The mechanical cause of age-related dementia (Alzheimer’s disease): The brain is destroyed by the pulse. J. Alzheimers Dis. 2015 44 2 355 373 10.3233/JAD‑141884 25318547
    [Google Scholar]
  98. Ostrowitzki S. Lasser R.A. Dorflinger E. Scheltens P. Barkhof F. Nikolcheva T. Ashford E. Retout S. Hofmann C. Delmar P. Klein G. Andjelkovic M. Dubois B. Boada M. Blennow K. Santarelli L. Fontoura P. SCarlet RoAD Investigators A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 2017 9 1 95 10.1186/s13195‑017‑0318‑y 29221491
    [Google Scholar]
  99. Novak P. Zilka N. Zilkova M. Kovacech B. Skrabana R. Ondrus M. Fialova L. Kontsekova E. Otto M. Novak M. AADvac1, an active immunotherapy for Alzheimer’s disease and non Alzheimer Tauopathies: An overview of preclinical and clinical development. J. Prev. Alzheimers Dis. 2019 6 1 63 69 30569088
    [Google Scholar]
  100. Novak P. Schmidt R. Kontsekova E. Zilka N. Kovacech B. Skrabana R. Vince-Kazmerova Z. Katina S. Fialova L. Prcina M. Parrak V. Dal-Bianco P. Brunner M. Staffen W. Rainer M. Ondrus M. Ropele S. Smisek M. Sivak R. Winblad B. Novak M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017 16 2 123 134 10.1016/S1474‑4422(16)30331‑3 27955995
    [Google Scholar]
  101. Breitner J.C. Baker L.D. Montine T.J. Meinert C.L. Lyketsos C.G. Ashe K.H. Brandt J. Craft S. Evans D.E. Green R.C. Ismail M.S. Martin B.K. Mullan M.J. Sabbagh M. Tariot P.N. ADAPT Research Group Extended results of the Alzheimer’s disease anti‐inflammatory prevention trial. Alzheimers Dement. 2011 7 4 402 411 10.1016/j.jalz.2010.12.014 21784351
    [Google Scholar]
  102. Scharf S. Mander A. Ugoni A. Vajda F. Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology 1999 53 1 197 201 10.1212/WNL.53.1.197 10408559
    [Google Scholar]
  103. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016 12 6 719 732 10.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  104. Dubois B. Hermine O. Masitinib in mild to moderate Alzheimer’s disease: Results from study AB09004. Alzheimers Dement. 2021 17 S9 e049866 10.1002/alz.049866
    [Google Scholar]
  105. Khezri M.R. Ghasemnejad-Berenji M. Icariin: A potential neuroprotective agent in Alzheimer’s disease and Parkinson’s disease. Neurochem. Res. 2022 47 10 2954 2962 10.1007/s11064‑022‑03667‑0 35802286
    [Google Scholar]
  106. Jivaje K. Inamdar A. Gharge S. Kagwad P. Suryawanshi S.S. Bhandurge P. Palled M.S. Japti V. A brief review on evaluation and exploration of antioxidant activity of mango ginger. International Journal of Ayurvedic Medicine 2022 13 2 321 327 10.47552/ijam.v13i2.1946
    [Google Scholar]
  107. Shal B. Ding W. Ali H. Kim Y.S. Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol. 2018 9 MAY 548 10.3389/fphar.2018.00548 29896105
    [Google Scholar]
  108. Halagali P. Inamdar A. Singh J. Anand A. Sadhu P. Pathak R. Sharma H. Biswas D. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management. Endocr. Metab. Immune Disord. Drug Targets 2024 ••• 24 38676520
    [Google Scholar]
  109. Nagahara A.H. Tuszynski M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 2011 10 3 209 219 10.1038/nrd3366 21358740
    [Google Scholar]
  110. Tuszynski M.H. Yang J.H. Barba D. U H.S. Bakay R.A.E. Pay M.M. Masliah E. Conner J.M. Kobalka P. Roy S. Nagahara A.H. Nerve growth factor gene therapy activation of neuronal responses in Alzheimer disease. JAMA Neurol. 2015 72 10 1139 1147 10.1001/jamaneurol.2015.1807 26302439
    [Google Scholar]
  111. Galasko D.R. Peskind E. Clark C.M. Quinn J.F. Ringman J.M. Jicha G.A. Cotman C. Cottrell B. Montine T.J. Thomas R.G. Aisen P. Alzheimer’s Disease Cooperative Study Alzheimer’s Disease Cooperative Study Antioxidants for Alzheimer disease: A randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 2012 69 7 836 841 10.1001/archneurol.2012.85 22431837
    [Google Scholar]
  112. Reisberg B. Doody R. Stöffler A. Schmitt F. Ferris S. Möbius H.J. Memantine Study Group Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2003 348 14 1333 1341 10.1056/NEJMoa013128 12672860
    [Google Scholar]
  113. Nguyen T.T. Nguyen T.T.D. Nguyen T.K.O. Vo T.K. Vo V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother. 2021 139 111623 10.1016/j.biopha.2021.111623 33915504
    [Google Scholar]
  114. Nunes D. Loureiro J.A. Pereira M.C. Drug delivery systems as a strategy to improve the efficacy of FDA-approved Alzheimer’s drugs. Pharmaceutics 2022 14 11 2296 10.3390/pharmaceutics14112296 36365114
    [Google Scholar]
  115. Chaparro C.I.P. Simões B.T. Borges J.P. Castanho M.A.R.B. Soares P.I.P. Neves V. A promising approach: Magnetic nanosystems for Alzheimer’s disease theranostics. Pharmaceutics 2023 15 9 2316 10.3390/pharmaceutics15092316 37765284
    [Google Scholar]
  116. Boyetey M.J.B. Choi Y. Lee H.Y. Choi J. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood–brain barrier for Alzheimer’s disease treatment. Biomater. Sci. 2024 12 8 2007 2018 10.1039/D3BM02003G 38456516
    [Google Scholar]
  117. Liu N. Ruan J. Li H. Fu J. Nanoparticles loaded with natural medicines for the treatment of Alzheimer’s disease. Front. Neurosci. 2023 17 1112435 10.3389/fnins.2023.1112435 37877008
    [Google Scholar]
  118. Singh A. Maheshwari S. Yadav J.P. Varshney A.P. Singh S. Prajapati B.G. A review on tau targeting biomimetics nano formulations: Novel approach for targeting Alzheimer’s diseases. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 3 294 303 10.2174/0118715249289120240321065936 38646682
    [Google Scholar]
  119. Sharma H. Anand A. Halagali P. Inamdar A. Pathak R. Advancement of nanoengineered flavonoids for chronic metabolic diseases. In Role of Flavonoids in Chronic Metabolic Diseases Wiley 2024 459 510 10.1002/9781394238071.ch13
    [Google Scholar]
  120. Ross C. Taylor M. Fullwood N. Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 8507 8522 10.2147/IJN.S183117 30587974
    [Google Scholar]
  121. Maiti P. Dunbar G. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci. 2018 19 6 1637 10.3390/ijms19061637 29857538
    [Google Scholar]
  122. Hebbar S. Poonja M. Shetty A. Dubey A. In vitro investigation of conventional, chitosan coated and electrosteric stealth liposomes of rivastigmine tartrate for the treatment of Alzheimer’s disease. Int. J. Pharm. Investig. 2020 10 4 553 558 10.5530/ijpi.2020.4.96
    [Google Scholar]
  123. Lu Y. Guo Z. Zhang Y. Li C. Zhang Y. Guo Q. Chen Q. Chen X. He X. Liu L. Ruan C. Sun T. Ji B. Lu W. Jiang C. Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Adv. Sci. (Weinh.) 2019 6 4 1801586 10.1002/advs.201801586 30828531
    [Google Scholar]
  124. Ren J. Jiang F. Wang M. Hu H. Zhang B. Chen L. Dai F. Increased cross-linking micelle retention in the brain of Alzheimer’s disease mice by elevated asparagine endopeptidase protease responsive aggregation. Biomater. Sci. 2020 8 23 6533 6544 10.1039/D0BM01439G 33111725
    [Google Scholar]
  125. Duan L. Li X. Ji R. Hao Z. Kong M. Wen X. Guan F. Ma S. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers 2023 15 9 2196 10.3390/polym15092196 37177342
    [Google Scholar]
  126. Yavarpour-Bali H. Ghasemi-Kasman M. Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine 2019 14 4449 4460 10.2147/IJN.S208332 31417253
    [Google Scholar]
  127. Dubois B. López-Arrieta J. Lipschitz S. Triantafyllos D. Spiru L. Moroz S. Masitinib for mild-to-moderate Alzheimer’s disease: Results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res. Ther. 2023 15 1
    [Google Scholar]
  128. Dahmane E.M. Rhazi M. Taourirte M. Chitosan nanoparticles as a new delivery system for the anti-HIV drug zidovudine. Bull. Korean Chem. Soc. 2013 34 5 1333 1338 10.5012/bkcs.2013.34.5.1333
    [Google Scholar]
  129. Pinheiro R.G.R. Granja A. Loureiro J.A. Pereira M.C. Pinheiro M. Neves A.R. Reis S. RVG29-functionalized lipid nanoparticles for Quercetin brain delivery and Alzheimer’s disease. Pharm. Res. 2020 37 7 139 10.1007/s11095‑020‑02865‑1 32661727
    [Google Scholar]
  130. Dunn B. Stein P. Cavazzoni P. Approval of aducanumab for Alzheimer disease—the FDA’s perspective. JAMA Intern. Med. 2021 181 10 1276 1278 10.1001/jamainternmed.2021.4607 34254984
    [Google Scholar]
  131. Sims J.R. Zimmer J.A. Evans C.D. Lu M. Ardayfio P. Sparks J. Wessels A.M. Shcherbinin S. Wang H. Monkul Nery E.S. Collins E.C. Solomon P. Salloway S. Apostolova L.G. Hansson O. Ritchie C. Brooks D.A. Mintun M. Skovronsky D.M. Abreu R. Agarwal P. Aggarwal P. Agronin M. Allen A. Altamirano D. Alva G. Andersen J. Anderson A. Anderson D. Arnold J. Asada T. Aso Y. Atit V. Ayala R. Badruddoja M. Badzio-jagiello H. Bajacek M. Barton D. Bear D. Benjamin S. Bergeron R. Bhatia P. Black S. Block A. Bolouri M. Bond W. Bouthillier J. Brangman S. Brew B. Brisbin S. Brisken T. Brodtmann A. Brody M. Brosch J. Brown C. Brownstone P. Bukowczan S. Burns J. Cabrera A. Capote H. Carrasco A. Cevallos Yepez J. Chavez E. Chertkow H. Chyrchel-paszkiewicz U. Ciabarra A. Clemmons E. Cohen D. Cohen R. Cohen I. Concha M. Costell B. Crimmins D. Cruz-pagan Y. Cueli A. Cupelo R. Czarnecki M. Darby D. Dautzenberg P. De Deyn P. De La Gandara J. Deck K. Dibenedetto D. Dibuono M. Dinnerstein E. Dirican A. Dixit S. Dobryniewski J. Drake R. Drysdale P. Duara R. Duffy J. Ellenbogen A. Faradji V. Feinberg M. Feldman R. Fishman S. Flitman S. Forchetti C. Fraga I. Frank A. Frishberg B. Fujigasaki H. Fukase H. Fumero I. Furihata K. Galloway C. Gandhi R. George K. Germain M. Gitelman D. Goetsch N. Goldfarb D. Goldstein M. Goldstick L. Gonzalez Rojas Y. Goodman I. Greeley D. Griffin C. Grigsby E. Grosz D. Hafner K. Hart D. Henein S. Herskowitz B. Higashi S. Higashi Y. Ho G. Hodgson J. Hohenberg M. Hollenbeck L. Holub R. Hori T. Hort J. Ilkowski J. Ingram K.J. Isaac M. Ishikawa M. Janu L. Johnston M. Julio W. Justiz W. Kaga T. Kakigi T. Kalafer M. Kamijo M. Kaplan J. Karathanos M. Katayama S. Kaul S. Keegan A. Kerwin D. Khan U. Khan A. Kimura N. Kirk G. Klodowska G. Kowa H. Kutz C. Kwentus J. Lai R. Lall A. Lawrence M. Lee E. Leon R. Linker G. Lisewski P. Liss J. Liu C. Losk S. Lukaszyk E. Lynch J. Macfarlane S. Macsweeney J. Mannering N. Markovic O. Marks D. Masdeu J. Matsui Y. Matsuishi K. Mcallister P. Mcconnehey B. Mcelveen A. Mcgill L. Mecca A. Mega M. Mensah J. Mickielewicz A. Minaeian A. Mocherla B. Murphy C. Murphy P. Nagashima H. Nair A. Nair M. Nardandrea J. Nash M. Nasreddine Z. Nishida Y. Norton J. Nunez L. Ochiai J. Ohkubo T. Okamura Y. Okorie E. Olivera E. O’mahony J. Omidvar O. Ortiz-Cruz D. Osowa A. Papka M. Parker A. Patel P. Patel A. Patel M. Patry C. Peckham E. Pfeffer M. Pietras A. Plopper M. Porsteinsson A. Poulin Robitaille R. Prins N. Puente O. Ratajczak M. Rhee M. Ritter A. Rodriguez R. Rodriguez Ables L. Rojas J. Ross J. Royer P. Rubin J. Russell D. Rutgers S.M. Rutrick S. Sadowski M. Safirstein B. Sagisaka T. Scharre D. Schneider L. Schreiber C. Schrift M. Schulz P. Schwartz H. Schwartzbard J. Scott J. Selem L. Sethi P. Sha S. Sharlin K. Sharma S. Shiovitz T. Shiwach R. Sladek M. Sloan B. Smith A. Solomon P. Sorial E. Sosa E. Stedman M. Steen S. Stein L. Stolyar A. Stoukides J. Sudoh S. Sutton J. Syed J. Szigeti K. Tachibana H. Takahashi Y. Tateno A. Taylor J.D. Taylor K. Tcheremissine O. Thebaud A. Thein S. Thurman L. Toenjes S. Toji H. Toma M. Tran D. Trueba P. Tsujimoto M. Turner R. Uchiyama A. Ussorowska D. Vaishnavi S. Valor E. Vandersluis J. Vasquez A. Velez J. Verghese C. Vodickova-borzova K. Watson D. Weidman D. Weisman D. White A. Willingham K. Winkel I. Winner P. Winston J. Wolff A. Yagi H. Yamamoto H. Yathiraj S. Yoshiyama Y. Zboch M. TRAILBLAZER-ALZ 2 Investigators Donanemab in early symptomatic Alzheimer disease. JAMA 2023 330 6 512 527 10.1001/jama.2023.13239 37459141
    [Google Scholar]
  132. Rogers S.L. Farlow M.R. Doody R.S. Mohs R. Friedhoff L.T. Donepezil Study Group A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998 50 1 136 145 10.1212/WNL.50.1.136 9443470
    [Google Scholar]
  133. Rösler M. Anand R. Cicin-Sain A. Gauthier S. Agid Y. Dal-Bianco P. Stähelin H.B. Hartman R. Gharabawi M. Bayer T. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial commentary: Another piece of the Alzheimer’s jigsaw. BMJ 1999 318 7184 633 640 10.1136/bmj.318.7184.633 10066203
    [Google Scholar]
  134. Raskind M.A. Peskind E.R. Wessel T. Yuan W. Galantamine in AD. Neurology 2000 54 12 2261 2268 10.1212/WNL.54.12.2261 10881250
    [Google Scholar]
  135. Howard R. Zubko O. Bradley R. Harper E. Pank L. O’Brien J. Fox C. Tabet N. Livingston G. Bentham P. McShane R. Burns A. Ritchie C. Reeves S. Lovestone S. Ballard C. Noble W. Nilforooshan R. Wilcock G. Gray R. Minocycline in Alzheimer Disease Efficacy (MADE) Trialist Group Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer Disease. JAMA Neurol. 2020 77 2 164 174 10.1001/jamaneurol.2019.3762 31738372
    [Google Scholar]
  136. Quinn J.F. Raman R. Thomas R.G. Yurko-Mauro K. Nelson E.B. Van Dyck C. Galvin J.E. Emond J. Jack C.R. Jr Weiner M. Shinto L. Aisen P.S. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial. JAMA 2010 304 17 1903 1911 10.1001/jama.2010.1510 21045096
    [Google Scholar]
  137. Singh A. Ansari V.A. Mahmood T. Ahsan F. Wasim R. Dendrimers: A neuroprotective lead in Alzheimer disease: A review on its synthetic approach and applications. Drug Res. (Stuttg.) 2022 72 8 417 423 10.1055/a‑1886‑3208 35931069
    [Google Scholar]
  138. Vohra M. Amir M. Sharma A. Wadhwa S. Formulation Strategies for Nose-to-Brain Drug Delivery. Journal of Pharmaceutical Technology, Research and Management 2022 10 1 87 102 10.15415/jptrm.2022.101008
    [Google Scholar]
  139. Craft S. Baker L.D. Montine T.J. Minoshima S. Watson G.S. Claxton A. Arbuckle M. Callaghan M. Tsai E. Plymate S.R. Green P.S. Leverenz J. Cross D. Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012 69 1 29 38 10.1001/archneurol.2011.233 21911655
    [Google Scholar]
  140. Hanson L.R. Fine J.M. Renner D.B. Svitak A.L. Burns R.B. Nguyen T.M. Tuttle N.J. Marti D.L. Panter S.S. Frey W.H. II Intranasal delivery of deferoxamine reduces spatial memory loss in APP/PS1 mice. Drug Deliv. Transl. Res. 2012 2 3 160 168 10.1007/s13346‑011‑0050‑2 25786865
    [Google Scholar]
  141. Ooms F. Weber P. Carrupt P.A. Testa B. A simple model to predict blood–brain barrier permeation from 3D molecular fields. Biochim. Biophys. Acta Mol. Basis Dis. 2002 1587 2-3 118 125 10.1016/S0925‑4439(02)00074‑1 12084453
    [Google Scholar]
  142. Osmani R.A. Functionalized polysaccharides based hydrogels: Application in tissue engineering and regenerative medicines. Int. J. Nat. Sci. 2023 54095 54107
    [Google Scholar]
  143. Jordão J.F. Ayala-Grosso C.A. Markham K. Huang Y. Chopra R. McLaurin J. Hynynen K. Aubert I. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 2010 5 5 e10549 10.1371/journal.pone.0010549 20485502
    [Google Scholar]
  144. Yu Y.J. Zhang Y. Kenrick M. Hoyte K. Luk W. Lu Y. Atwal J. Elliott J.M. Prabhu S. Watts R.J. Dennis M.S. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 2011 3 84 84ra44 10.1126/scitranslmed.3002230 21613623
    [Google Scholar]
  145. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  146. Miller D.S. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci. 2010 31 6 246 254 10.1016/j.tips.2010.03.003 20417575
    [Google Scholar]
  147. Hawkes C.A. McLaurin J. Clinical immunotherapy trials in Alzheimer’s disease. Drug Discov. Today Ther. Strateg. 2008 5 3 177 183 10.1016/j.ddstr.2008.09.004
    [Google Scholar]
  148. Ryan K.A. Weldon A. Huby N.M. Persad C. Bhaumik A.K. Heidebrink J.L. Barbas N. Staffend N. Franti L. Giordani B. Caregiver support service needs for patients with mild cognitive impairment and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2010 24 2 171 176 10.1097/WAD.0b013e3181aba90d 19571729
    [Google Scholar]
  149. Gillet J.P. Macadangdang B. Fathke R.L. Gottesman M.M. Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol. Biol. 2009 542 5 54 10.1007/978‑1‑59745‑561‑9_1 19565894
    [Google Scholar]
  150. Cavazzana-Calvo M Hacein-Bey S De Saint Basile G Gross F Yvon E Nusbaum P Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 2000 288 5466 669 672
    [Google Scholar]
  151. Förster A Fraser P Cohen JI Basile CD S Alexander I LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003 302 5644 415 419
    [Google Scholar]
  152. Davé U.P. Akagi K. Tripathi R. Cleveland S.M. Thompson M.A. Yi M. Stephens R. Downing J.R. Jenkins N.A. Copeland N.G. Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet. 2009 5 5 e1000491 10.1371/journal.pgen.1000491 19461887
    [Google Scholar]
  153. Howe S.J. Mansour M.R. Schwarzwaelder K. Bartholomae C. Hubank M. Kempski H. Brugman M.H. Pike-Overzet K. Chatters S.J. de Ridder D. Gilmour K.C. Adams S. Thornhill S.I. Parsley K.L. Staal F.J.T. Gale R.E. Linch D.C. Bayford J. Brown L. Quaye M. Kinnon C. Ancliff P. Webb D.K. Schmidt M. von Kalle C. Gaspar H.B. Thrasher A.J. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 2008 118 9 3143 3150 10.1172/JCI35798 18688286
    [Google Scholar]
  154. Deakin C.T. Alexander I.E. Kerridge I. Accepting risk in clinical research: Is the gene therapy field becoming too risk-averse? Mol. Ther. 2009 17 11 1842 1848 10.1038/mt.2009.223 19773741
    [Google Scholar]
  155. Morgan RA Dudley ME Wunderlich JR Hughes MS Yang JC Sherry RM Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006 314 5796 126 129 10.1126/science.1129003
    [Google Scholar]
  156. Ott M.G. Schmidt M. Schwarzwaelder K. Stein S. Siler U. Koehl U. Glimm H. Kühlcke K. Schilz A. Kunkel H. Naundorf S. Brinkmann A. Deichmann A. Fischer M. Ball C. Pilz I. Dunbar C. Du Y. Jenkins N.A. Copeland N.G. Lüthi U. Hassan M. Thrasher A.J. Hoelzer D. von Kalle C. Seger R. Grez M. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 2006 12 4 401 409 10.1038/nm1393 16582916
    [Google Scholar]
  157. Liu T-C. Kirn D. Gene therapy progress and prospects cancer: Oncolytic viruses. Gene Ther. 2008 15 12 877 884 10.1038/gt.2008.72 18418413
    [Google Scholar]
  158. Bankiewicz K.S. Forsayeth J. Eberling J.L. Sanchez-Pernaute R. Pivirotto P. Bringas J. Herscovitch P. Carson R.E. Eckelman W. Reutter B. Cunningham J. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 2006 14 4 564 570 10.1016/j.ymthe.2006.05.005 16829205
    [Google Scholar]
  159. Björklund T. Kirik D. Scientific rationale for the development of gene therapy strategies for Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2009 1792 7 703 713 10.1016/j.bbadis.2009.02.009 19254760
    [Google Scholar]
  160. Ishino Y. Shinagawa H. Makino K. Amemura M. Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987 169 12 5429 5433 10.1128/jb.169.12.5429‑5433.1987 3316184
    [Google Scholar]
  161. Mir A. Edraki A. Lee J. Sontheimer E.J. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem. Biol. 2018 13 2 357 365 10.1021/acschembio.7b00855 29202216
    [Google Scholar]
  162. Li T. Yang Y. Qi H. Cui W. Zhang L. Fu X. He X. Liu M. Li P. Yu T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023 8 1 36 10.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  163. Bhardwaj S. Kesari K.K. Rachamalla M. Mani S. Ashraf G.M. Jha S.K. Kumar P. Ambasta R.K. Dureja H. Devkota H.P. Gupta G. Chellappan D.K. Singh S.K. Dua K. Ruokolainen J. Kamal M.A. Ojha S. Jha N.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J. Adv. Res. 2022 40 207 221 10.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  164. Cao Z. Kong F. Ding J. Chen C. He F. Deng W. Promoting Alzheimer’s disease research and therapy with stem cell technology. Stem Cell Res. Ther. 2024 15 1 136 10.1186/s13287‑024‑03737‑w 38715083
    [Google Scholar]
  165. Berkowitz C.L. Mosconi L. Scheyer O. Rahman A. Hristov H. Isaacson R.S. Precision medicine for alzheimer’s disease prevention. Healthcare 2018 6 3 82 10.3390/healthcare6030082 30011822
    [Google Scholar]
  166. Antman E.M. Loscalzo J. Precision medicine in cardiology. Nat. Rev. Cardiol. 2016 13 10 591 602 10.1038/nrcardio.2016.101 27356875
    [Google Scholar]
  167. Shin SH Bode AM Dong Z Precision medicine: The foundation of future cancer therapeutics. npj Precis Oncol 2017 1 1 12
    [Google Scholar]
  168. Ridge PG Ebbert M Hoyt K Boehme KL Mukherjee S Assessment of the genetic variance of late‐onset Alzheimer’s disease. Neurobiol Aging 2016 41 200 13 200
    [Google Scholar]
  169. Bufill E. Ribosa-Nogué R. Blesa R. The therapeutic potential of epigenetic modifications in Alzheimer’s Disease. Alzheimer’s Dis Drug Discov Exon citations Brisbane (AU) 2020 151 164
    [Google Scholar]
  170. Hazzan A.A. Dauenhauer J. Follansbee P. Hazzan J.O. Allen K. Omobepade I. Family caregiver quality of life and the care provided to older people living with dementia: Qualitative analyses of caregiver interviews. BMC Geriatr 2022 22 1 86 10.1186/s12877‑022‑02787‑0
    [Google Scholar]
  171. Raggi A. Tasca D. Ferri R. A brief essay on non-pharmacological treatment of Alzheimer’s disease. Rev. Neurosci. 2017 28 6 587 597 10.1515/revneuro‑2017‑0002 28422708
    [Google Scholar]
  172. Gregory C. Lough S. Stone V. Erzinclioglu S. Martin L. Baron-Cohen S. Hodges J.R. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: theoretical and practical implications. Brain 2002 125 4 752 764 10.1093/brain/awf079 11912109
    [Google Scholar]
  173. Herrmann N. Chau S.A. Kircanski I. Lanctôt K.L. Current and emerging drug treatment options for Alzheimer’s disease: A systematic review. Drugs 2011 71 15 2031 2065 10.2165/11595870‑000000000‑00000 21985169
    [Google Scholar]
  174. Pierce T.W.E.A. Recent progress in reminiscence research. International Perspectives on Reminiscence. Life Review and Life Story Work 2018
    [Google Scholar]
  175. Braden B.A. Gaspar P.M. Implementation of a baby doll therapy protocol for people with dementia: Innovative practice. Dementia 2015 14 5 696 706 10.1177/1471301214561532 25432935
    [Google Scholar]
  176. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. Contributors NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  177. Dubois B. Villain N. Frisoni G.B. Rabinovici G.D. Sabbagh M. Cappa S. Bejanin A. Bombois S. Epelbaum S. Teichmann M. Habert M.O. Nordberg A. Blennow K. Galasko D. Stern Y. Rowe C.C. Salloway S. Schneider L.S. Cummings J.L. Feldman H.H. Clinical diagnosis of Alzheimer’s disease: Recommendations of the International working group. Lancet Neurol. 2021 20 6 484 496 10.1016/S1474‑4422(21)00066‑1 33933186
    [Google Scholar]
  178. Jack C.R. Jr Therneau T.M. Lundt E.S. Wiste H.J. Mielke M.M. Knopman D.S. Graff-Radford J. Lowe V.J. Vemuri P. Schwarz C.G. Senjem M.L. Gunter J.L. Petersen R.C. Long-term associations between amyloid positron emission tomography, sex, apolipoprotein E and incident dementia and mortality among individuals without dementia: hazard ratios and absolute risk. Brain Commun. 2022 4 2 fcac017 10.1093/braincomms/fcac017 35310829
    [Google Scholar]
  179. Bucci M. Chiotis K. Nordberg A. Alzheimer’s Disease Neuroimaging Initiative Alzheimer’s disease profiled by fluid and imaging markers: Tau PET best predicts cognitive decline. Mol. Psychiatry 2021 26 10 5888 5898 10.1038/s41380‑021‑01263‑2 34593971
    [Google Scholar]
  180. Chen Y.F. Ma X. Sundell K. Alaka K. Schuh K. Raskin J. Dean R.A. Quantile regression to characterize solanezumab effects in Alzheimer’s disease trials. Alzheimers Dement. (N. Y.) 2016 2 3 192 198 10.1016/j.trci.2016.07.005 29067306
    [Google Scholar]
  181. Braak H. Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991 82 4 239 259 10.1007/BF00308809 1759558
    [Google Scholar]
  182. Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin. Transl. Imaging 2013 1 4 217 233 10.1007/s40336‑013‑0026‑y 24409422
    [Google Scholar]
  183. De Leon M.J. DeSanti S. Zinkowski R. Mehta P.D. Pratico D. Segal S. Clark C. Kerkman D. DeBernardis J. Li J. Lair L. Reisberg B. Tsui W. Rusinek H. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J. Intern. Med. 2004 256 3 205 223 10.1111/j.1365‑2796.2004.01381.x 15324364
    [Google Scholar]
  184. Jack C.R. Jr Dickson D.W. Parisi J.E. Xu Y.C. Cha R.H. O’Brien P.C. Edland S.D. Smith G.E. Boeve B.F. Tangalos E.G. Kokmen E. Petersen R.C. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002 58 5 750 757 10.1212/WNL.58.5.750 11889239
    [Google Scholar]
  185. Colliot O. Chételat G. Chupin M. Desgranges B. Magnin B. Benali H. Dubois B. Garnero L. Eustache F. Lehéricy S. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 2008 248 1 194 201 10.1148/radiol.2481070876 18458242
    [Google Scholar]
  186. Bobinski M. de Leon M.J. Wegiel J. Desanti S. Convit A. Saint Louis L.A. Rusinek H. Wisniewski H.M. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 2000 95 3 721 725 10.1016/S0306‑4522(99)00476‑5 10670438
    [Google Scholar]
  187. Du A.T. Schuff N. Amend D. Laakso M.P. Hsu Y.Y. Jagust W.J. Yaffe K. Kramer J.H. Reed B. Norman D. Chui H.C. Weiner M.W. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2001 71 4 441 447 10.1136/jnnp.71.4.441 11561025
    [Google Scholar]
  188. Panegyres P.K. Rogers J.M. McCarthy M. Campbell A. Wu J.S. Fluorodeoxyglucose-Positron Emission Tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol. 2009 9 1 41 10.1186/1471‑2377‑9‑41 19674446
    [Google Scholar]
  189. Hampel H. Frank R. Broich K. Teipel S.J. Katz R.G. Hardy J. Herholz K. Bokde A.L.W. Jessen F. Hoessler Y.C. Sanhai W.R. Zetterberg H. Woodcock J. Blennow K. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 2010 9 7 560 574 10.1038/nrd3115 20592748
    [Google Scholar]
  190. Marcus C. Mena E. Subramaniam R.M. Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med. 2014 39 10 e413 e426 10.1097/RLU.0000000000000547 25199063
    [Google Scholar]
  191. Henriques A.D. Benedet A.L. Camargos E.F. Rosa-Neto P. Nóbrega O.T. Fluid and imaging biomarkers for Alzheimer’s disease: Where we stand and where to head to. Exp. Gerontol. 2018 107 169 177 10.1016/j.exger.2018.01.002 29307736
    [Google Scholar]
  192. Liu X. Chen K. Wu T. Weidman D. Lure F. Li J. Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer’s disease. Transl. Res. 2018 194 56 67 10.1016/j.trsl.2018.01.001 29352978
    [Google Scholar]
  193. Johnson K.A. Fox N.C. Sperling R.A. Klunk W.E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012 2 4 a006213 10.1101/cshperspect.a006213 22474610
    [Google Scholar]
  194. Benson D.F. Kuhl D.E. Hawkins R.A. Phelps M.E. Cummings J.L. Tsai S.Y. The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch. Neurol. 1983 40 12 711 714 10.1001/archneur.1983.04050110029003 6605139
    [Google Scholar]
  195. Foster N.L. Chase T.N. Fedio P. Patronas N.J. Brooks R.A. Chiro G.D. Alzheimer’s disease. Neurology 1983 33 8 961 965 10.1212/WNL.33.8.961 6603596
    [Google Scholar]
  196. Friedland R.P. Budinger T.F. Ganz E. Yano Y. Mathis C.A. Koss B. Ober B.A. Huesman R.H. Derenzo S.E. Regional cerebral metabolic alterations in dementia of the Alzheimer type: Positron emission tomography with [18F]fluorodeoxyglucose. J. Comput. Assist. Tomogr. 1983 7 4 590 598 10.1097/00004728‑198308000‑00003 6602819
    [Google Scholar]
  197. Sharma H. Chandra P. Pathak R. Bhandari M. Arushi S.V. Advancements in the therapeutic approaches to treat neurological disorders. Cah Magellanes-NS. 2024 6 2 4328 4389
    [Google Scholar]
  198. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  199. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  200. Sharma H. Pathak R. Biswas D. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative Disorders: A comprehensive exploration, review and future perspectives on intervention strategies. Curr. Psychiatry Res. Rev. 2024 20 [Internet]. 10.2174/0126660822304321240520075036
    [Google Scholar]
  201. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Verma A. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders. Curr. Bioact. Compd. 2024 20 10.2174/0115734072292339240416095600
    [Google Scholar]
  202. Sharma H. Chandra P. Effects of natural remedies on memory loss and Alzheimer’s disease. Afr.J.Bio.Sc. 2024 6 7 187 211 10.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  203. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB signaling and Sirtuin-1 protein for targeted inflammatory intervention. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  204. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in Brain Development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  205. Ashique S. Pal R. Sharma H. Mishra N. Garg A. Unraveling the emerging niche role of extracellular vesicles (evs) in traumatic brain injury (TBI). CNS Neurol. Disord. Drug Targets 2024 23 11 1357 1370 10.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  206. Sharma H Chandra P Verma A Pandey SN Kumar P Sigh A Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur Chem Bull 2023 12 5 1575 1596
    [Google Scholar]
  207. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  208. Sharma H. Pathak R. Kumar N. Nogai L. Mishra R. Bhandari M. Koli M. Pandey P. Endocannabinoid system: Role in depression, recompense, and pain control. J. Surv. Fish.. 2023 10 4S 2743 2751 10.17762/sfs.v10i4S.1655
    [Google Scholar]
  209. Sharma H. Rani T. Khan S. An insight into neuropathic pain: A Systemic and up-to-Date review. Int. J. Pharm. Sci. Res. 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  210. Spoorthi Shetty S. Halagali P. Johnson A.P. Spandana K.M.A. Gangadharappa H.V. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int. J. Biol. Macromol. 2023 242 Pt 3 125114 10.1016/j.ijbiomac.2023.125114 37263330
    [Google Scholar]
  211. Rane S Adhyapak A Gharge S Koli R Singadi R Halagali P. UV UV and HPTLC-based approaches towards rutin determination in abutilon theophrasti extract J. Pharm. Sci. 2022 14 7 790 794
    [Google Scholar]
  212. Halagali P. Singadi R. Ranganath Arjun H. Rakshanaa G.S. Nair S.P. Halagali P. Somanna P. Role of traditional plant compounds in the treatment of neuropsychiatric diseases. Int. J. Pharm. Investig. 2023 14 1 48 54 10.5530/ijpi.14.1.7
    [Google Scholar]
  213. James A. Halagali P. Jafar M. Sanu J. Bharadwaj R.K. Shaju B. Basheer S. Arjun H.R. Somanna P. Formulation and evaluation of fumaria parviflora loaded oil in water emulsion-based cream. Int. J. Pharm. Investig. 2024 14 2 493 503 10.5530/ijpi.14.2.59
    [Google Scholar]
  214. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to exosome and its role in brain disorders BT - Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  215. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of exosomes in Parkinson’s and Alzheimer’s diseases BT - Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  216. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation between exosomes and neuro-inflammation in various brain disorders bt- Exosomes based drug delivery strategies for brain disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128344571241018154506
Loading
/content/journals/cpd/10.2174/0113816128344571241018154506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test