Skip to content
2000
image of Network Pharmacological Analysis of Hydroxychloroquine Intervention in the Treatment of Iga Nephropathy

Abstract

Background

IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network pharmacology was used to investigate the mechanism.

Methods

PubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cytoscape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.

Results

167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. At the same time, the molecular docking results showed that the core targets all combined with hydroxychloroquine closely.

Conclusion

This study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347345241028063515
2024-11-01
2025-01-08
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128347345241028063515/BMS-CPD-2024-801.html?itemId=/content/journals/cpd/10.2174/0113816128347345241028063515&mimeType=html&fmt=ahah

References

  1. Stamellou E. Seikrit C. Tang S.C.W. Boor P. Tesař V. Floege J. Barratt J. Kramann R. IgA nephropathy. Nat. Rev. Dis. Primers 2023 9 1 67 10.1038/s41572‑023‑00476‑9 38036542
    [Google Scholar]
  2. Rajasekaran A. Julian B.A. Rizk D.V. IgA nephropathy: An interesting autoimmune kidney disease. Am. J. Med. Sci. 2021 361 2 176 194 10.1016/j.amjms.2020.10.003 33309134
    [Google Scholar]
  3. Jash R. Maparu K. Seksaria S. Das S. Decrypting the pathological pathways in IgA nephropathy. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 1 43 56 10.2174/0127722708275167231011102924 37870060
    [Google Scholar]
  4. Lai K.N. Tang S.C.W. Schena F.P. Novak J. Tomino Y. Fogo A.B. Glassock R.J. IgA nephropathy. Nat. Rev. Dis. Primers 2016 2 1 16001 10.1038/nrdp.2016.1 27189177
    [Google Scholar]
  5. Pattrapornpisut P. Avila-Casado C. Reich H.N. IgA nephropathy: Core curriculum 2021. Am. J. Kidney Dis. 2021 78 3 429 441 10.1053/j.ajkd.2021.01.024 34247883
    [Google Scholar]
  6. Caster D.J. Lafayette R.A. The treatment of primary IgA nephropathy: Change, change, change. Am. J. Kidney Dis. 2024 83 2 229 240 10.1053/j.ajkd.2023.08.007 37742867
    [Google Scholar]
  7. Mestecky J. Novak J. Moldoveanu Z. Raska M. IgA nephropathy enigma. Clin. Immunol. 2016 172 72 77 10.1016/j.clim.2016.07.011 27444044
    [Google Scholar]
  8. Bharati J. Jhaveri K.D. Prognosis of IgA nephropathy: A lifetime story. Clin. J. Am. Soc. Nephrol. 2023 18 6 699 701 10.2215/CJN.0000000000000171 37186555
    [Google Scholar]
  9. Rodrigues J.C. Haas M. Reich H.N. IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2017 12 4 677 686 10.2215/CJN.07420716 28159829
    [Google Scholar]
  10. El Karoui K. Fervenza F.C. De Vriese A.S. Treatment of IgA nephropathy: A rapidly evolving field. J. Am. Soc. Nephrol. 2024 35 1 103 116 10.1681/ASN.0000000000000242 37772889
    [Google Scholar]
  11. Gleeson P.J. O’Shaughnessy M.M. Barratt J. IgA nephropathy in adults—treatment standard. Nephrol. Dial. Transplant. 2023 38 11 2464 2473 10.1093/ndt/gfad146 37418237
    [Google Scholar]
  12. Lv J. Wong M.G. Hladunewich M.A. Jha V. Hooi L.S. Monaghan H. Zhao M. Barbour S. Jardine M.J. Reich H.N. Cattran D. Glassock R. Levin A. Wheeler D.C. Woodward M. Billot L. Stepien S. Rogers K. Chan T.M. Liu Z.H. Johnson D.W. Cass A. Feehally J. Floege J. Remuzzi G. Wu Y. Agarwal R. Zhang H. Perkovic V. Razavian M. Gallagher M. Daley F. Hand S. Knight H. Gallagher S. Bose B. Lawlor C. McCourt J. Peh C.A. Scott E. Carroll R. Coates T. Hockley B. Hockley M. Latte J. Nicholls K. Cai M. Champion de Crespigny P. Cronin T. Farrell M. Hughes P. Masterson R. Sepe G. Tan S-J. Toussaint N. Wollstencroft R. Cooper B. Chang M. Clayton H. Tan S. Tsang H. Sudak J. Laurin L.P. Pichette V. Chausse K. Comeau M. Lepine L. Soliel M. Beauchemin S. René E. Quach M. Daoust K. Lessard A. Bachand-Fournier M. Bétournay M. Paradis M-S. Mikye Castor M. Huang S. Moist L. Gallo K. VanWesenbeeck R. Longfield T. Norris F. Moyer A. Bailey Lozon Z. Miller M. Clase C. Rabbat C. Salisbury M. Mazzetti Vieira A. Lalji F. Moreau C. Pannu N. Hildebrand A. Ruholl N. Ahmad N. Muneer M. Girard L. Mann M.C. Hemmelgarn B. Manns B. Ravani P. Li S. Mackay J. Gulewich S. Sheriff Z. Ferera J. Vela K. Gonzalez A. Bhasin A. Lam P. Haji F. Shi S. Liu L. Bao Y. Sui G. Wang C. Li Z. Lv L. Yang L. Li H. Liu Z. Zhang J. Huang B. Yang Y. Fu S. Li S. Pei H. Zhang L. Lu N. Xu J. Xu L. Yang Q. Jin J. Chen N. Wang W. Xu Xia Z. Xu H. Huang W. Mo Y. Chen W. Wang L. Li R. Yao S. Li X. Ni Z. Wang L. Gu L. Pang H. Zhou Y. Jin Y. Zhang H. Wang X. Le W. Hou J. Song X. Zhu L. Zhao J. Hou W. Wu J. Shi Y. Liu J. Zhang C. Wan C. Chen S. Zhu H. Tang F. Li H. Jiang X. Wang M. Zuo L. Yan Y. Dong B. Wang Y. Zhang X. Bai L. Li P. Qi D. Cai Z. Li G. Wang L. Peng K. Hong D. Yao D. Jiang A. Luo Q. Hou S. Zhang F. Zheng L. Luo Y. Cai G. Duan S. Zhang Y. Liang S. Shao X. Wang R. Liu X. Xu Y. Zhang J. Chen J. Cheng J. Zhao L. Du X. Chen H. Zhu B. Pan W. Ma Y. Cui C. Zhang Q. Zhang J. Fu P. Tang X. Qin W. Liang Y. Li D. Sun G. Su X. Zhao B. He Q. Shen X. Zheng D. Sun Y. Zheng H. Zheng W. Lu F. Lai L. Zhang M. Xu N. Shi H. Chen W. Liang X. Ye Z. Xu L. Zhang R. Tao Y. Xu D. Tang L. Lian X. Ding G. Wang H. Yang L. Li Z. Hu Z. Jiang B. Guo Z. Chang J. Wang Q. Li N. Zhang A. Shi S. Li Z. Xu H. Bao B. Zhao Y. Nie Z. Liu T. Wang Y. Cui Z. Su C. Gong L. Liu G. Yu L. Wang B. Xu D. Li Y. Lin Q. Yu K. Shen Y. Cheng H. Xu X. Wang Y. Liu R. Xu G. Han M. Wang L. Xing C. Zhang C. Huang Z. Yang G. Xu X. Lv X. Hong H. Liu B. Tao L. Zhang X. Yang H. Yang X. Zhang X. Yang H. Mao Y. Wu H. Li T. Wang H. Zhao B. Lin H. Yang N. Fung K.S. Chan R. Law R. Melemadathil S. Pt H. Razak R. Sinta K.C. Natarajan G. Mohammed J. Thanigachalam D.K. Devaraju S.R. Alavala S.R. Golla A. Nagalla V. Nallagasu R. Sahay M. Borra S. Sahay R. Dasyam L.V.K.S. Kumbagiri M. Msln P. Nazneen A. Prathyusha K.V.L. Ramachandran R. Gupta K.L. Sain T. Prasad N. Bhaduria D.S. Pandy A.K. Singh P. Abdul Wahab M.Z. Che Rohani Z. Mohd Yassim H. Razali S.N.O. Saaidi N. Wan Hazlina W.M. Yahya R. Yee S.Y. Zaynah N. Azahar N.H. Tan H.F. Loh C.L. Hashim S. Lee Y.Y. Lim X.J. Mohd Khairi N. Ramanaidu S. Thong K.M. Liu W.J. Ee L.W. Mohd Yusoff Y. Ngu L.L.S. Chai N.S. Hii L.W.S. Tan C.H.H. Wan Japar S.H. Mushahar L. Md Yusuff S.H. Noor M. Ng K.P. Lim S.K. Razali W.A.F.A. Wan Md Adnan W.A.H. Jayne D. Greene T. Walsh M. Wang A.Y-M. Mather A. Wang A.Y. TESTING Study Group Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy. JAMA 2022 327 19 1888 1898 10.1001/jama.2022.5368 35579642
    [Google Scholar]
  13. Chen Q. Wang Z. Lv J. Liu L. Li H. Sun W. Huo Y. Guo Y. Shen C. Li S. Chen Z. Zhou J. Efficacy and safety of artesunate for patients with IgA nephropathy: A study protocol for a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2022 23 1 444 10.1186/s13063‑022‑06336‑3 35614482
    [Google Scholar]
  14. Xiong R. Li N. Xiong J. Liu B. He R. Wang B. Geng Q. Oral hydroxychloroquine mitigates lipopolysaccharide-induced lung injury by inhibiting pyroptosis in mice. Curr. Mol. Pharmacol. 2023 16 3 362 373 10.2174/1874467215666220822110855 35996240
    [Google Scholar]
  15. Rao I.R. Kolakemar A. Shenoy S.V. Prabhu R.A. Nagaraju S.P. Rangaswamy D. Bhojaraja M.V. Hydroxychloroquine in nephrology: Current status and future directions. J. Nephrol. 2023 36 8 2191 2208 10.1007/s40620‑023‑01733‑6 37530940
    [Google Scholar]
  16. Dima A Jurcut C Chasset F Felten R Arnaud L Hydroxychloroquine in systemic lupus erythematosus: Overview of current knowledge. 2022 10.1177/1759720X211073001
    [Google Scholar]
  17. Martinez G.P. Zabaleta M.E. Di Giulio C. Charris J.E. Mijares M.R. The role of chloroquine and hydroxychloroquine in immune regulation and diseases. Curr. Pharm. Des. 2020 26 35 4467 4485 10.2174/1381612826666200707132920 32634079
    [Google Scholar]
  18. Tang C. Lv J.C. Shi S.F. Chen Y.Q. Liu L.J. Zhang H. Effect of hydroxychloroquine in patients with IgA nephropathy with insufficient responses to immunosuppressive therapy: A retrospective case-control study. BMC Nephrol. 2020 21 1 469 10.1186/s12882‑020‑02141‑9 33172397
    [Google Scholar]
  19. Si F.L. Tang C. Lv J.C. Shi S.F. Zhou X.J. Liu L.J. Zhang H. Comparison between hydroxychloroquine and systemic corticosteroids in IgA nephropathy: A two-year follow-up study. BMC Nephrol. 2023 24 1 175 10.1186/s12882‑023‑03238‑7 37322444
    [Google Scholar]
  20. Xie B. Geng Q. Xu J. Lu H. Luo H. Hu Y. Song X. The multi-targets mechanism of hydroxychloroquine in the treatment of systemic lupus erythematosus based on network pharmacology. Lupus 2020 29 13 1704 1711 10.1177/0961203320952541 32854577
    [Google Scholar]
  21. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  22. He L. Shen K. He L. Chen Y. Tang Z. The mechanism of plantaginis semen in the treatment of diabetic nephropathy based on network pharmacology and molecular docking technology. Endocr. Metab. Immune Disord. Drug Targets 2024 24 3 363 379 10.2174/1871530323666230915100355 37718520
    [Google Scholar]
  23. Xie B. Lu H. Xu J. Luo H. Hu Y. Chen Y. Geng Q. Song X. Targets of hydroxychloroquine in the treatment of rheumatoid arthritis. A network pharmacology study. Joint Bone Spine 2021 88 2 105099 10.1016/j.jbspin.2020.105099 33160044
    [Google Scholar]
  24. Sayers E.W. Beck J. Bolton E.E. Bourexis D. Brister J.R. Canese K. Comeau D.C. Funk K. Kim S. Klimke W. Marchler-Bauer A. Landrum M. Lathrop S. Lu Z. Madden T.L. O’Leary N. Phan L. Rangwala S.H. Schneider V.A. Skripchenko Y. Wang J. Ye J. Trawick B.W. Pruitt K.D. Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2021 49 D1 D10 D17 10.1093/nar/gkaa892 33095870
    [Google Scholar]
  25. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  26. Wang X. Shen Y. Wang S. Li S. Zhang W. Liu X. Lai L. Pei J. Li H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356 W360 10.1093/nar/gkx374 28472422
    [Google Scholar]
  27. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  28. Yao Z.J. Dong J. Che Y.J. Zhu M.F. Wen M. Wang N.N. Wang S. Lu A.P. Cao D.S. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des. 2016 30 5 413 424 10.1007/s10822‑016‑9915‑2 27167132
    [Google Scholar]
  29. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechANism of Traditional Chinese Medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  30. Safran M. Dalah I. Alexander J. Rosen N. Iny Stein T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Sirota-Madi A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010 2010 0 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  31. Barbarino J.M. Whirl-Carrillo M. Altman R.B. Klein T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018 10 4 e1417 10.1002/wsbm.1417 29474005
    [Google Scholar]
  32. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  33. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  34. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt Consortium UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  35. Szklarczyk D. Morris J.H. Cook H. Kuhn M. Wyder S. Simonovic M. Santos A. Doncheva N.T. Roth A. Bork P. Jensen L.J. von Mering C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017 45 D1 D362 D368 10.1093/nar/gkw937 27924014
    [Google Scholar]
  36. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  37. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  38. Berman H.M. Kleywegt G.J. Nakamura H. Markley J.L. The protein data bank archive as an open data resource. J. Comput. Aided Mol. Des. 2014 28 10 1009 1014 10.1007/s10822‑014‑9770‑y 25062767
    [Google Scholar]
  39. Chen L. Wei W. Sun J. Sun B. Deng R. Cordycepin enhances anti-tumor immunity in breast cancer by enhanceing ALB expression. Heliyon 2024 10 9 e29903 10.1016/j.heliyon.2024.e29903 38720766
    [Google Scholar]
  40. Yuan Y. Liang X. He M. Wu Y. Jiang X. Haemoglobin, albumin, lymphocyte, and platelet score as an independent predictor for renal prognosis in IgA nephropathy. Front. Endocrinol. (Lausanne) 2024 15 1339921 10.3389/fendo.2024.1339921 38737556
    [Google Scholar]
  41. van Loo G. Bertrand M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023 23 5 289 303 10.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  42. Siegmund D. Wajant H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 2023 19 9 576 591 10.1038/s41584‑023‑01002‑7 37542139
    [Google Scholar]
  43. Wan Q. Zhou J. Wu Y. Shi L. Liu W. Ou J. Gao J. TNF-α-mediated podocyte injury via the apoptotic death receptor pathway in a mouse model of IgA nephropathy. Ren. Fail. 2022 44 1 1217 1227 10.1080/0886022X.2022.2079527 35837694
    [Google Scholar]
  44. Tziastoudi M. Chronopoulou I. Pissas G. Cholevas C. Eleftheriadis T. Stefanidis I. Tumor necrosis factor-α G-308A polymorphism and sporadic IgA nephropathy: A meta-analysis using a genetic model-free approach. Genes (Basel) 2023 14 7 1488 10.3390/genes14071488 37510392
    [Google Scholar]
  45. Choi M. Schreiber A. Eulenberg-Gustavus C. Scheidereit C. Kamps J. Kettritz R. Endothelial NF-κB blockade abrogates ANCA-induced GN. J. Am. Soc. Nephrol. 2017 28 11 3191 3204 10.1681/ASN.2016060690 28687535
    [Google Scholar]
  46. Rahman R. Murthi P. Singh H. Gurusinghe S. Mockler J.C. Lim R. Wallace E.M. The effects of hydroxychloroquine on endothelial dysfunction. Pregnancy Hypertens. 2016 6 4 259 262 10.1016/j.preghy.2016.09.001 27939463
    [Google Scholar]
  47. Maculewicz E. Antkowiak B. Antkowiak O. Borecka A. Mastalerz A. Leońska-Duniec A. Humińska-Lisowska K. Michałowska-Sawczyn M. Garbacz A. Lorenz K. Szarska E. Dziuda Ł. Cywińska A. Cięszczyk P. The interactions between interleukin-1 family genes: IL1A, IL1B, IL1RN, and obesity parameters. BMC Genomics 2022 23 1 112 10.1186/s12864‑021‑08258‑x 35139823
    [Google Scholar]
  48. Chen K. Shang S. Yu S. Cui L. Li S. He N. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Front. Immunol. 2022 13 998470 10.3389/fimmu.2022.998470 36311726
    [Google Scholar]
  49. Pan S. Li Y. He H. Cheng S. Li J. Pathak J.L. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front. Pharmacol. 2023 13 1098851 10.3389/fphar.2022.1098851 36686646
    [Google Scholar]
  50. Pawluczyk I.Z.A. Soares M.S.F. Barratt W.A. Brown J.R. Bhachu J.S. Selvaskandan H. Zeng Y. Sarania R. Molyneux K. Roberts I.S.D. Barratt J. Macrophage interactions with collecting duct epithelial cells are capable of driving tubulointerstitial inflammation and fibrosis in immunoglobulin a nephropathy. Nephrol. Dial. Transplant. 2020 35 11 1865 1877 10.1093/ndt/gfaa079 32830258
    [Google Scholar]
  51. Zhang D. Xie M. Yang X. Zhang Y. Su Y. Wang Y. Huang H. Han H. Li W. Fu K. Su H. Xu W. Han Y. Wang R. Zhang P. Wu W. Huang Y. Chen D. Jin T. Wei J. Determination of IL-1B (rs16944) and IL-6 (rs1800796) genetic polymorphisms in IgA nephropathy in a northwest Chinese Han population. Oncotarget 2017 8 42 71750 71758 10.18632/oncotarget.17603 29069743
    [Google Scholar]
  52. Liang Y. Zhao G. Tang L. Zhang J. Li T. Liu Z. MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp. Cell Res. 2016 347 2 312 321 10.1016/j.yexcr.2016.08.011 27542871
    [Google Scholar]
  53. Zhou X. Wang N. Zhang Y. Yu P. Expression of CCL2, FOS, and JUN may help to distinguish patients with iga nephropathy from healthy controls. Front. Physiol. 2022 13 840890 10.3389/fphys.2022.840890 35464092
    [Google Scholar]
  54. Song D. Lian Y. Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front. Immunol. 2023 14 1224892 10.3389/fimmu.2023.1224892 37483616
    [Google Scholar]
  55. Jiang H. Liang L. Qin J. Lu Y. Li B. Wang Y. Lin C. Zhou Q. Feng S. Yip S.H. Xu F. Lai E. Wang J. Chen J. Functional networks of aging markers in the glomeruli of IgA nephropathy: A new therapeutic opportunity. Oncotarget 2016 7 23 33616 33626 10.18632/oncotarget.9033 27127888
    [Google Scholar]
  56. Li N. Lin G. Zhang H. Sun J. Gui M. Liu Y. Li W. Liu J. Tang J. Src family kinases: A potential therapeutic target for acute kidney injury. Biomolecules 2022 12 7 984 10.3390/biom12070984 35883540
    [Google Scholar]
  57. Berndt S. Liebscher I. New structural perspectives in G protein-coupled receptor-mediated Src family kinase activation. Int. J. Mol. Sci. 2021 22 12 6489 10.3390/ijms22126489 34204297
    [Google Scholar]
  58. Kim D.H. Choi H.I. Park J.S. Kim C.S. Bae E.H. Ma S.K. Kim S.W. Src‐mediated crosstalk between FXR and YAP protects against renal fibrosis. FASEB J. 2019 33 10 11109 11122 10.1096/fj.201900325R 31298930
    [Google Scholar]
  59. Pang G. Ye L. Jiang Y. Wu Y. Zhang R. Yang H. Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell. Signal. 2024 122 111312 10.1016/j.cellsig.2024.111312 39074714
    [Google Scholar]
  60. Gilbert A. Changjuan A. Guixue C. Jianhua L. Xiaosong Q. Urinary matrix metalloproteinase-9 and nephrin in idiopathic membranous nephropathy: A cross-sectional study. Dis. Markers 2021 2021 1 6 10.1155/2021/1620545 34707724
    [Google Scholar]
  61. Xia M. Liu D. Liu H. Zhao J. Tang C. Chen G. Liu Y. Liu H. Based on network pharmacology tools to investigate the mechanism of Tripterygium wilfordii against IgA nephropathy. Front. Med. (Lausanne) 2021 8 794962 10.3389/fmed.2021.794962 34977095
    [Google Scholar]
  62. Deng X. Luo Y. Lu M. Guan T. Li Y. Guo X. Unraveling the mechanism of zhibaidihuang decoction against IgA nephropathy using network pharmacology and molecular docking analyses. Tohoku J. Exp. Med. 2023 259 1 37 47 10.1620/tjem.2022.J088 36288951
    [Google Scholar]
  63. Mantovani S. Oliviero B. Varchetta S. Renieri A. Mondelli M.U. TLRs: Innate immune sentries against SARS-CoV-2 infection. Int. J. Mol. Sci. 2023 24 9 8065 10.3390/ijms24098065 37175768
    [Google Scholar]
  64. Duan T. Du Y. Xing C. Wang H.Y. Wang R.F. Toll-like receptor signaling and its role in cell-mediated immunity. Front. Immunol. 2022 13 812774 10.3389/fimmu.2022.812774 35309296
    [Google Scholar]
  65. Liu F. Chen H. Cao C. Liang Y. Zhou Y. The role of toll-like receptors (TLRs) and their therapeutic applications in glomerulonephritis. Int. Urol. Nephrol. 2023 55 11 2845 2856 10.1007/s11255‑023‑03592‑3 37060433
    [Google Scholar]
  66. Liu M. Zen K. Toll-like receptors regulate the development and progression of renal diseases. Kidney Dis. 2021 7 1 14 23 10.1159/000511947 33614730
    [Google Scholar]
  67. Ding L.H. Liu D. Xu M. Wu M. Liu H. Tang R.N. Ma K.L. Chen P.S. Liu B.C. TLR2–MyD88–NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int. J. Biochem. Cell Biol. 2015 69 114 120 10.1016/j.biocel.2015.10.014 26485683
    [Google Scholar]
  68. Liu C. Ye M.Y. Yan W.Z. Peng X.F. He L.Y. Peng Y.M. microRNA-630 regulates underglycosylated IgA1 production in the tonsils by targeting TLR4 in IgA nephropathy. Front. Immunol. 2020 11 563699 10.3389/fimmu.2020.563699 33324395
    [Google Scholar]
  69. Yu T. Xiaojuan F. Jinxi L. Xinyan M. Jie X. Yuexin T. Qingjuan L. Wei Z. Cunyang G. Jie H. Lunbi W. Hang Z. Shuxia L. Huifang G. Extracellular HMGB1 induced glomerular endothelial cell injury via TLR4/MyD88 signaling pathway in lupus nephritis. Mediators Inflamm. 2021 2021 1 15 10.1155/2021/9993971 34970076
    [Google Scholar]
  70. Zou J.N. Xiao J. Hu S.S. Fu C.S. Zhang X.L. Zhang Z.X. Lu Y.J. Chen W.J. Ye Z.B. Toll-like receptor 4 signaling pathway in the protective effect of pioglitazone on experimental immunoglobulin a nephropathy. Chin. Med. J. (Engl.) 2017 130 8 906 913 10.4103/0366‑6999.204101 28397719
    [Google Scholar]
  71. Zhang J. Mi Y. Zhou R. Liu Z. Huang B. Guo R. Wang P. Lu Y. Zhou Y. Quan S. The TLR4-MyD88-NF-κB pathway is involved in sIgA-mediated IgA nephropathy. J. Nephrol. 2020 33 6 1251 1261 10.1007/s40620‑020‑00722‑3 32388684
    [Google Scholar]
  72. Han J. Li X. Luo X. He J. Huang X. Zhou Q. Han Y. Jie H. Zhuang J. Li Y. Yang F. Zhai Z. Wu S. He Y. Yang B. Sun E. The mechanisms of hydroxychloroquine in rheumatoid arthritis treatment: Inhibition of dendritic cell functions via Toll like receptor 9 signaling. Biomed. Pharmacother. 2020 132 110848 10.1016/j.biopha.2020.110848 33049581
    [Google Scholar]
  73. Sato R. Imaizumi T. Aizawa T. Watanabe S. Tsugawa K. Kawaguchi S. Seya K. Matsumiya T. Tanaka H. Inhibitory effect of anti-malarial agents on the expression of proinflammatory chemokines via Toll-like receptor 3 signaling in human glomerular endothelial cells. Ren. Fail. 2021 43 1 643 650 10.1080/0886022X.2021.1908901 33820486
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347345241028063515
Loading
/content/journals/cpd/10.2174/0113816128347345241028063515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test