Skip to content
2000
Volume 31, Issue 9
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network pharmacology was used to investigate the mechanism.

Methods

PubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cytoscape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.

Results

167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. At the same time, the molecular docking results showed that the core targets all combined with hydroxychloroquine closely.

Conclusion

This study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347345241028063515
2024-11-01
2025-03-07
Loading full text...

Full text loading...

/deliver/fulltext/cpd/31/9/CPD-31-9-06.html?itemId=/content/journals/cpd/10.2174/0113816128347345241028063515&mimeType=html&fmt=ahah

References

  1. StamellouE. SeikritC. TangS.C.W. IgA nephropathy.Nat. Rev. Dis. Primers2023916710.1038/s41572‑023‑00476‑9 38036542
    [Google Scholar]
  2. RajasekaranA. JulianB.A. RizkD.V. IgA nephropathy: An interesting autoimmune kidney disease.Am. J. Med. Sci.2021361217619410.1016/j.amjms.2020.10.003 33309134
    [Google Scholar]
  3. JashR. MaparuK. SeksariaS. DasS. Decrypting the pathological pathways in IgA nephropathy.Recent Adv Inflamm Allergy Drug Discov2024181435610.2174/0127722708275167231011102924 37870060
    [Google Scholar]
  4. LaiK.N. TangS.C.W. SchenaF.P. IgA nephropathy.Nat. Rev. Dis. Primers2016211600110.1038/nrdp.2016.1 27189177
    [Google Scholar]
  5. PattrapornpisutP. Avila-CasadoC. ReichH.N. IgA nephropathy: Core curriculum 2021.Am. J. Kidney Dis.202178342944110.1053/j.ajkd.2021.01.024 34247883
    [Google Scholar]
  6. CasterD.J. LafayetteR.A. The treatment of primary IgA nephropathy: Change, change, change.Am. J. Kidney Dis.202483222924010.1053/j.ajkd.2023.08.007 37742867
    [Google Scholar]
  7. MesteckyJ. NovakJ. MoldoveanuZ. RaskaM. IgA nephropathy enigma.Clin. Immunol.2016172727710.1016/j.clim.2016.07.011 27444044
    [Google Scholar]
  8. BharatiJ. JhaveriK.D. Prognosis of IgA nephropathy: A lifetime story.Clin. J. Am. Soc. Nephrol.202318669970110.2215/CJN.0000000000000171 37186555
    [Google Scholar]
  9. RodriguesJ.C. HaasM. ReichH.N. IgA nephropathy.Clin. J. Am. Soc. Nephrol.201712467768610.2215/CJN.07420716 28159829
    [Google Scholar]
  10. El KarouiK. FervenzaF.C. De VrieseA.S. Treatment of IgA nephropathy: A rapidly evolving field.J. Am. Soc. Nephrol.202435110311610.1681/ASN.0000000000000242 37772889
    [Google Scholar]
  11. GleesonP.J. O’ShaughnessyM.M. BarrattJ. IgA nephropathy in adults-treatment standard.Nephrol. Dial. Transplant.202338112464247310.1093/ndt/gfad146 37418237
    [Google Scholar]
  12. LvJ. WongM.G. HladunewichM.A. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy.JAMA2022327191888189810.1001/jama.2022.5368 35579642
    [Google Scholar]
  13. ChenQ. WangZ. LvJ. Efficacy and safety of artesunate for patients with IgA nephropathy: A study protocol for a multicenter, double-blind, randomized, placebo-controlled trial.Trials202223144410.1186/s13063‑022‑06336‑3 35614482
    [Google Scholar]
  14. XiongR. LiN. XiongJ. Oral hydroxychloroquine mitigates lipopolysaccharide-induced lung injury by inhibiting pyroptosis in mice.Curr. Mol. Pharmacol.202316336237310.2174/1874467215666220822110855 35996240
    [Google Scholar]
  15. RaoI.R. KolakemarA. ShenoyS.V. Hydroxychloroquine in nephrology: Current status and future directions.J. Nephrol.20233682191220810.1007/s40620‑023‑01733‑6 37530940
    [Google Scholar]
  16. DimaA JurcutC ChassetF FeltenR ArnaudL Hydroxychloroquine in systemic lupus erythematosus: Overview of current knowledge.Ther Adv Musculoskeletal Disease2022141759720X21107300110.1177/1759720X211073001
    [Google Scholar]
  17. MartinezG.P. ZabaletaM.E. Di GiulioC. CharrisJ.E. MijaresM.R. The role of chloroquine and hydroxychloroquine in immune regulation and diseases.Curr. Pharm. Des.202026354467448510.2174/1381612826666200707132920 32634079
    [Google Scholar]
  18. TangC. LvJ.C. ShiS.F. ChenY.Q. LiuL.J. ZhangH. Effect of hydroxychloroquine in patients with IgA nephropathy with insufficient responses to immunosuppressive therapy: A retrospective case-control study.BMC Nephrol.202021146910.1186/s12882‑020‑02141‑9 33172397
    [Google Scholar]
  19. SiF.L. TangC. LvJ.C. Comparison between hydroxychloroquine and systemic corticosteroids in IgA nephropathy: A two-year follow-up study.BMC Nephrol.202324117510.1186/s12882‑023‑03238‑7 37322444
    [Google Scholar]
  20. XieB. GengQ. XuJ. The multi-targets mechanism of hydroxychloroquine in the treatment of systemic lupus erythematosus based on network pharmacology.Lupus202029131704171110.1177/0961203320952541 32854577
    [Google Scholar]
  21. ZhaoL. ZhangH. LiN. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  22. HeL. ShenK. HeL. ChenY. TangZ. The mechanism of plantaginis semen in the treatment of diabetic nephropathy based on network pharmacology and molecular docking technology.Endocr. Metab. Immune Disord. Drug Targets202424336337910.2174/1871530323666230915100355 37718520
    [Google Scholar]
  23. XieB. LuH. XuJ. Targets of hydroxychloroquine in the treatment of rheumatoid arthritis. A network pharmacology study.Joint Bone Spine202188210509910.1016/j.jbspin.2020.105099 33160044
    [Google Scholar]
  24. SayersE.W. BeckJ. BoltonE.E. Database resources of the national center for biotechnology information.Nucleic Acids Res.202149D1D10D1710.1093/nar/gkaa892 33095870
    [Google Scholar]
  25. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz382 31106366
    [Google Scholar]
  26. WangX. ShenY. WangS. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356-6010.1093/nar/gkx374 28472422
    [Google Scholar]
  27. WishartD.S. FeunangY.D. GuoA.C. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  28. YaoZ.J. DongJ. CheY.J. TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models.J. Comput. Aided Mol. Des.201630541342410.1007/s10822‑016‑9915‑2 27167132
    [Google Scholar]
  29. LiuZ. GuoF. WangY. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine.Sci. Rep.2016612114610.1038/srep21146 26879404
    [Google Scholar]
  30. SafranM. DalahI. AlexanderJ. GeneCards Version 3: The human gene integrator.Database (Oxford)201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  31. BarbarinoJ.M. Whirl-CarrilloM. AltmanR.B. KleinT.E. PharmGKB: A worldwide resource for pharmacogenomic information.Wiley Interdiscip. Rev. Syst. Biol. Med.2018104e141710.1002/wsbm.1417 29474005
    [Google Scholar]
  32. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  33. PiñeroJ. BravoÀ. Queralt-RosinachN. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw943 27924018
    [Google Scholar]
  34. BatemanA. MartinM-J. OrchardS. UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa1100 33237286
    [Google Scholar]
  35. SzklarczykD. MorrisJ.H. CookH. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible.Nucleic Acids Res.201745D1D362D36810.1093/nar/gkw937 27924014
    [Google Scholar]
  36. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  37. ZhouY. ZhouB. PacheL. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  38. BermanH.M. KleywegtG.J. NakamuraH. MarkleyJ.L. The protein data bank archive as an open data resource.J. Comput. Aided Mol. Des.201428101009101410.1007/s10822‑014‑9770‑y 25062767
    [Google Scholar]
  39. ChenL. WeiW. SunJ. SunB. DengR. Cordycepin enhances anti-tumor immunity in breast cancer by enhanceing ALB expression.Heliyon2024109e2990310.1016/j.heliyon.2024.e29903 38720766
    [Google Scholar]
  40. YuanY. LiangX. HeM. WuY. JiangX. Haemoglobin, albumin, lymphocyte, and platelet score as an independent predictor for renal prognosis in IgA nephropathy.Front. Endocrinol. (Lausanne)202415133992110.3389/fendo.2024.1339921 38737556
    [Google Scholar]
  41. van LooG. BertrandM.J.M. Death by TNF: A road to inflammation.Nat. Rev. Immunol.202323528930310.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  42. SiegmundD. WajantH. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond.Nat. Rev. Rheumatol.202319957659110.1038/s41584‑023‑01002‑7 37542139
    [Google Scholar]
  43. WanQ. ZhouJ. WuY. TNF-α-mediated podocyte injury via the apoptotic death receptor pathway in a mouse model of IgA nephropathy.Ren. Fail.20224411217122710.1080/0886022X.2022.2079527 35837694
    [Google Scholar]
  44. TziastoudiM. ChronopoulouI. PissasG. CholevasC. EleftheriadisT. StefanidisI. Tumor necrosis factor-α G-308A polymorphism and sporadic IgA nephropathy: A meta-analysis using a genetic model-free approach.Genes (Basel)2023147148810.3390/genes14071488 37510392
    [Google Scholar]
  45. ChoiM. SchreiberA. Eulenberg-GustavusC. ScheidereitC. KampsJ. KettritzR. Endothelial NF-κB blockade abrogates ANCA-induced GN.J. Am. Soc. Nephrol.201728113191320410.1681/ASN.2016060690 28687535
    [Google Scholar]
  46. RahmanR. MurthiP. SinghH. The effects of hydroxychloroquine on endothelial dysfunction.Pregnancy Hypertens.20166425926210.1016/j.preghy.2016.09.001 27939463
    [Google Scholar]
  47. MaculewiczE. AntkowiakB. AntkowiakO. The interactions between interleukin-1 family genes: IL1A, IL1B, IL1RN, and obesity parameters.BMC Genomics202223111210.1186/s12864‑021‑08258‑x 35139823
    [Google Scholar]
  48. ChenK. ShangS. YuS. CuiL. LiS. HeN. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis.Front. Immunol.20221399847010.3389/fimmu.2022.998470 36311726
    [Google Scholar]
  49. PanS. LiY. HeH. ChengS. LiJ. PathakJ.L. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis.Front. Pharmacol.202313109885110.3389/fphar.2022.1098851 36686646
    [Google Scholar]
  50. PawluczykI.Z.A. SoaresM.S.F. BarrattW.A. Macrophage interactions with collecting duct epithelial cells are capable of driving tubulointerstitial inflammation and fibrosis in immunoglobulin a nephropathy.Nephrol. Dial. Transplant.202035111865187710.1093/ndt/gfaa079 32830258
    [Google Scholar]
  51. ZhangD. XieM. YangX. Determination of IL-1B (rs16944) and IL-6 (rs1800796) genetic polymorphisms in IgA nephropathy in a northwest Chinese Han population.Oncotarget2017842717507175810.18632/oncotarget.17603 29069743
    [Google Scholar]
  52. LiangY. ZhaoG. TangL. ZhangJ. LiT. LiuZ. MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients.Exp. Cell Res.2016347231232110.1016/j.yexcr.2016.08.011 27542871
    [Google Scholar]
  53. ZhouX. WangN. ZhangY. YuP. Expression of CCL2, FOS, and JUN may help to distinguish patients with iga nephropathy from healthy controls.Front. Physiol.20221384089010.3389/fphys.2022.840890 35464092
    [Google Scholar]
  54. SongD. LianY. ZhangL. The potential of activator protein 1 (AP-1) in cancer targeted therapy.Front. Immunol.202314122489210.3389/fimmu.2023.1224892 37483616
    [Google Scholar]
  55. JiangH. LiangL. QinJ. Functional networks of aging markers in the glomeruli of IgA nephropathy: A new therapeutic opportunity.Oncotarget2016723336163362610.18632/oncotarget.9033 27127888
    [Google Scholar]
  56. LiN. LinG. ZhangH. Src family kinases: A potential therapeutic target for acute kidney injury.Biomolecules202212798410.3390/biom12070984 35883540
    [Google Scholar]
  57. BerndtS. LiebscherI. New structural perspectives in G protein-coupled receptor-mediated Src family kinase activation.Int. J. Mol. Sci.20212212648910.3390/ijms22126489 34204297
    [Google Scholar]
  58. KimD.H. ChoiH.I. ParkJ.S. Src‐mediated crosstalk between FXR and YAP protects against renal fibrosis.FASEB J.20193310111091112210.1096/fj.201900325R 31298930
    [Google Scholar]
  59. PangG. YeL. JiangY. Unveiling the bidirectional role of MMP9: A key player in kidney injury.Cell. Signal.202412211131210.1016/j.cellsig.2024.111312 39074714
    [Google Scholar]
  60. GilbertA. ChangjuanA. GuixueC. JianhuaL. XiaosongQ. Urinary matrix metalloproteinase-9 and nephrin in idiopathic membranous nephropathy: A cross-sectional study.Dis. Markers202120211610.1155/2021/1620545 34707724
    [Google Scholar]
  61. XiaM. LiuD. LiuH. Based on network pharmacology tools to investigate the mechanism of Tripterygium wilfordii against IgA nephropathy.Front. Med. (Lausanne)2021879496210.3389/fmed.2021.794962 34977095
    [Google Scholar]
  62. DengX. LuoY. LuM. GuanT. LiY. GuoX. Unraveling the mechanism of Zhibaidihuang decoction against IgA nephropathy using network pharmacology and molecular docking analyses.Tohoku J. Exp. Med.20232591374710.1620/tjem.2022.J088 36288951
    [Google Scholar]
  63. MantovaniS. OlivieroB. VarchettaS. RenieriA. MondelliM.U. TLRs: Innate immune sentries against SARS-CoV-2 infection.Int. J. Mol. Sci.2023249806510.3390/ijms24098065 37175768
    [Google Scholar]
  64. DuanT. DuY. XingC. WangH.Y. WangR.F. Toll-like receptor signaling and its role in cell-mediated immunity.Front. Immunol.20221381277410.3389/fimmu.2022.812774 35309296
    [Google Scholar]
  65. LiuF. ChenH. CaoC. LiangY. ZhouY. The role of toll-like receptors (TLRs) and their therapeutic applications in glomerulonephritis.Int. Urol. Nephrol.202355112845285610.1007/s11255‑023‑03592‑3 37060433
    [Google Scholar]
  66. LiuM. ZenK. Toll-like receptors regulate the development and progression of renal diseases.Kidney Dis.202171142310.1159/000511947 33614730
    [Google Scholar]
  67. DingL.H. LiuD. XuM. TLR2–MyD88–NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria.Int. J. Biochem. Cell Biol.20156911412010.1016/j.biocel.2015.10.014 26485683
    [Google Scholar]
  68. LiuC. YeM.Y. YanW.Z. PengX.F. HeL.Y. PengY.M. microRNA-630 regulates underglycosylated IgA1 production in the tonsils by targeting TLR4 in IgA nephropathy.Front. Immunol.20201156369910.3389/fimmu.2020.563699 33324395
    [Google Scholar]
  69. YuT. XiaojuanF. JinxiL. Extracellular HMGB1 induced glomerular endothelial cell injury via TLR4/MyD88 signaling pathway in lupus nephritis.Mediators Inflamm.2021202111510.1155/2021/9993971 34970076
    [Google Scholar]
  70. ZouJ.N. XiaoJ. HuS.S. Toll-like receptor 4 signaling pathway in the protective effect of pioglitazone on experimental immunoglobulin a nephropathy.Chin. Med. J. (Engl.)2017130890691310.4103/0366‑6999.204101 28397719
    [Google Scholar]
  71. ZhangJ. MiY. ZhouR. The TLR4-MyD88-NF-κB pathway is involved in sIgA-mediated IgA nephropathy.J. Nephrol.20203361251126110.1007/s40620‑020‑00722‑3 32388684
    [Google Scholar]
  72. HanJ. LiX. LuoX. The mechanisms of hydroxychloroquine in rheumatoid arthritis treatment: Inhibition of dendritic cell functions via Toll like receptor 9 signaling.Biomed. Pharmacother.202013211084810.1016/j.biopha.2020.110848 33049581
    [Google Scholar]
  73. SatoR. ImaizumiT. AizawaT. Inhibitory effect of anti-malarial agents on the expression of proinflammatory chemokines via Toll-like receptor 3 signaling in human glomerular endothelial cells.Ren. Fail.202143164365010.1080/0886022X.2021.1908901 33820486
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347345241028063515
Loading
/content/journals/cpd/10.2174/0113816128347345241028063515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test