Skip to content
2000
Volume 31, Issue 10
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.

Aim

This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.

Results and Discussion

Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.

Conclusion

Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, ., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128334441241108050528
2024-11-13
2025-04-02
Loading full text...

Full text loading...

References

  1. SharmaA. TiwariS. DebM.K. MartyJ.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies.Int. J. Antimicrob. Agents202056210605410.1016/j.ijantimicag.2020.106054 32534188
    [Google Scholar]
  2. AgarwalK.M. MohapatraS. SharmaP. SharmaS. BhatiaD. MishraA. Study and overview of the novel corona virus disease (COVID-19).Sens Int2020110003710.1016/j.sintl.2020.100037 34766042
    [Google Scholar]
  3. WangK. ChenW. ZhouY-S. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein.bioRxiv202010.1038/s41392‑020‑00426‑x
    [Google Scholar]
  4. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  5. da Rosa MesquitaR. Francelino SilvaJunior L.C. Santos SantanaF.M. Clinical manifestations of COVID-19 in the general population: Systematic review.Wien. Klin. Wochenschr.20211337-837738210.1007/s00508‑020‑01760‑4 33242148
    [Google Scholar]
  6. ShafferL. 15 drugs being tested to treat COVID-19 and how they would work.Nat. Med.202010.1038/d41591‑020‑00019‑9 32415251
    [Google Scholar]
  7. CosarB. KaragulleogluZ.Y. UnalS. SARS-CoV-2 mutations and their viral variants.Cytokine Growth Factor Rev.202263102210.1016/j.cytogfr.2021.06.001 34580015
    [Google Scholar]
  8. NageshaSN Ramesh Bn, Pradeep C, et al. SARS-CoV-2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study.Mater. Today Proc.20224990491210.1016/j.matpr.2021.07.163
    [Google Scholar]
  9. RidgwayH. MooreG.J. MavromoustakosT. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2.Comput. Struct. Biotechnol. J.2022202091211110.1016/j.csbj.2022.04.010 35432786
    [Google Scholar]
  10. DebP. MollaM.M.A. Saif-Ur-RahmanK.M. An update to monoclonal antibody as therapeutic option against COVID-19.Biosafety Health202132879110.1016/j.bsheal.2021.02.001 33585808
    [Google Scholar]
  11. WangP. NairM.S. LiuL. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.Nature2021593785713013510.1038/s41586‑021‑03398‑2 33684923
    [Google Scholar]
  12. AndewegS.P. VennemaH. VeldhuijzenI. Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals.Sci. Transl. Med.202315684eabn433810.1126/scitranslmed.abn4338 35862508
    [Google Scholar]
  13. BeklizM. AdeaK. VetterP. Neutralization of ancestral SARS-CoV-2 and variants Alpha, Beta, Gamma, Delta, Zeta and Omicron by mRNA vaccination and infection-derived immunity through homologous and heterologous variants.medRxiv202110.1038/s41467‑022‑31556‑1
    [Google Scholar]
  14. ChemaitellyH. YassineH.M. BenslimaneF.M. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar.Nat. Med.20212791614162110.1038/s41591‑021‑01446‑y 34244681
    [Google Scholar]
  15. HwangY.C. LuR.M. SuS.C. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection.J. Biomed. Sci.2022291110.1186/s12929‑021‑00784‑w 34983527
    [Google Scholar]
  16. TooveyO.T.R. HarveyK.N. BirdP.W. TangJ.W.T.W.T. Introduction of Brazilian SARS-CoV-2 484K.V2 related variants into the UK.J. Infect.2021825e23e2410.1016/j.jinf.2021.01.025 33548358
    [Google Scholar]
  17. MengB. KempS.A. PapaG. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7.Cell Rep.2021351310929210.1016/j.celrep.2021.109292 34166617
    [Google Scholar]
  18. SaitoA. IrieT. SuzukiR. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation.Nature2022602789630030610.1038/s41586‑021‑04266‑9 34823256
    [Google Scholar]
  19. SarkarJ.P. SahaI. SealA. MaityD. MaulikU. Topological analysis for sequence variability: Case study on more than 2K SARS-CoV-2 sequences of COVID-19 infected 54 countries in comparison with SARS-CoV-1 and MERS-CoV.Infect. Genet. Evol.20218810470810.1016/j.meegid.2021.104708 33421654
    [Google Scholar]
  20. DiakI.L. SwankK. McCartanK. The Food and Drug Administration’s (FDA’s) drug safety surveillance during the COVID-19 pandemic.Drug Saf.202346214515510.1007/s40264‑022‑01256‑2 36460854
    [Google Scholar]
  21. UverskyV.N. Computational biology and bioinformatics in anti-SARS-CoV-2 drug development.In: COVID-19. 1st ed. CRC Press202210.1201/9781003190394‑11
    [Google Scholar]
  22. AsdaqS.M.B. RabbaniS.I. AlkahtaniM. A patent review on the therapeutic application of monoclonal antibodies in COVID-19.Int. J. Mol. Sci.202122211195310.3390/ijms222111953 34769383
    [Google Scholar]
  23. ChatterjeeS. BhattacharyaM. NagS. DhamaK. ChakrabortyC. A Detailed overview of SARS-CoV-2 Omicron: Its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies.Viruses202315116710.3390/v15010167 36680207
    [Google Scholar]
  24. MizoueT. YamamotoS. KonishiM. Sensitivity of anti-SARS-CoV-2 nucleocapsid protein antibody for breakthrough infections during the epidemic of the Omicron variants.J. Infect.202285557360710.1016/j.jinf.2022.08.015 35995310
    [Google Scholar]
  25. HemoM.K. IslamM.A.J.N. 1 as a new variant of COVID-19 - editorial.Ann. Med. Surg. (Lond.)20248641833183510.1097/MS9.0000000000001876 38576941
    [Google Scholar]
  26. KumarP. JayanJ. SharmaR.K. The emerging challenge of FLiRT variants: KP.1.1 and KP.2 in the global pandemic landscape.QJM2024117748548710.1093/qjmed/hcae102 38867702
    [Google Scholar]
  27. DavisJ.J. LongS.W. ChristensenP.A. Analysis of the ARTIC version 3 and version 4 SARS-CoV-2 primers and their impact on the detection of the G142D amino acid substitution in the spike protein.Microbiol. Spectr.202193e01803e0182110.1128/Spectrum.01803‑21 34878296
    [Google Scholar]
  28. JungC. KmiecD. KoepkeL. Omicron: What makes the latest SARS-CoV-2 variant of concern so concerning?J. Virol.2022966e02077e2110.1128/jvi.02077‑21 35225672
    [Google Scholar]
  29. ShresthaL.B. FosterC. RawlinsonW. TedlaN. BullR.A. Evolution of the SARS‐CoV‐2 Omicron variants BA.1 to BA.5: Implications for immune escape and transmission.Rev. Med. Virol.2022325e238110.1002/rmv.2381 35856385
    [Google Scholar]
  30. DhawanM. SaiedA.A. MitraS. AlhumaydhiF.A. EmranT.B. WilairatanaP. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2?Biomed. Pharmacother.202215411352210.1016/j.biopha.2022.113522 36030585
    [Google Scholar]
  31. KumarS. KaruppananK. SubramaniamG. Omicron (BA.1) and sub‐variants (BA.1.1, BA.2, and BA.3) of SARS‐CoV‐2 spike infectivity and pathogenicity: A comparative sequence and structural‐based computational assessment.J. Med. Virol.202294104780479110.1002/jmv.27927 35680610
    [Google Scholar]
  32. TiwariA. AdhikariS. ZhangS. Tracing COVID-19 trails in wastewater: A systematic review of SARS-CoV-2 surveillance with viral variants.Water2023156101810.3390/w15061018
    [Google Scholar]
  33. RahmanS. HossainM.J. NaharZ. ShahriarM. BhuiyanM.A. IslamM.R. Emerging SARS-CoV-2 variants and subvariants: Challenges and opportunities in the context of COVID-19 pandemic.Environ. Health Insights2022161178630222112939610.1177/11786302221129396
    [Google Scholar]
  34. AndreM. LauL.S. PokharelM.D. From Alpha to Omicron: How different variants of concern of the SARS-coronavirus-2 impacted the world.Biology (Basel)2023129126710.3390/biology12091267 37759666
    [Google Scholar]
  35. LyngseF.P. KirkebyC.T. DenwoodM. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: Evidence from Danish households.medRxiv202210.1038/s41467‑022‑33498‑0
    [Google Scholar]
  36. ValérioM. Borges-AraújoL. MeloM.N. LousaD. SoaresC.M. SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility.Front Med Technol20224100945110.3389/fmedt.2022.1009451 36277437
    [Google Scholar]
  37. KannanS.R. SprattA.N. SharmaK. Complex mutation pattern of Omicron BA.2: Evading antibodies without losing receptor interactions.Int. J. Mol. Sci.20222310553410.3390/ijms23105534 35628343
    [Google Scholar]
  38. WangQ. YeS.B. ZhouZ.J. Key mutations in the spike protein of SARS‐CoV‐2 affecting neutralization resistance and viral internalization.J. Med. Virol.2023951e2840710.1002/jmv.28407 36519597
    [Google Scholar]
  39. StiasnyK. MeditsI. SpringerD. Human primary Omicron BA.1 and BA.2 infections result in sub-lineage-specific neutralization.Res Sq202210.21203/rs.3.rs‑1536794/v1
    [Google Scholar]
  40. BellusciL. GrubbsG. ZahraF.T. Antibody affinity and cross-variant neutralization of SARS-CoV-2 Omicron BA.1, BA.2 and BA.3 following third mRNA vaccination.Nat. Commun.2022131461710.1038/s41467‑022‑32298‑w 35941152
    [Google Scholar]
  41. TalleiT.E. AlhumaidS. AlMusaZ. Update on the Omicron sub‐variants BA.4 and BA.5.Rev. Med. Virol.2023331e239110.1002/rmv.2391 36017597
    [Google Scholar]
  42. HassanA.O. ObeaguE.I. AjayiD.T. COVID 19 Omicron: The origin, presentation, diagnosis, prevention and control.Asian J. Infect. Dis.2022111253310.9734/AJRID/2022/v11i130303
    [Google Scholar]
  43. CaoY. YisimayiA. JianF. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.Nature2022608792359360210.1038/s41586‑022‑04980‑y 35714668
    [Google Scholar]
  44. SabbatucciM. VitielloA. ClementeS. Omicron variant evolution on vaccines and monoclonal antibodies.Inflammopharmacology20233141779178810.1007/s10787‑023‑01253‑6 37204696
    [Google Scholar]
  45. HachmannN.P. MillerJ. CollierA.Y. Neutralization escape by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, and BA.5.N. Engl. J. Med.20223871868810.1056/NEJMc2206576 35731894
    [Google Scholar]
  46. ChalkiasS. HarperC. VrbickyK. A Bivalent omicron-containing booster vaccine against COVID-19.N. Engl. J. Med.2022387141279129110.1056/NEJMoa2208343 36112399
    [Google Scholar]
  47. ChavdaV. BalarP. VaghelaD. Omicron variant of SARS-CoV-2: An indian perspective of vaccination and management.Vaccines (Basel)202311116010.3390/vaccines11010160 36680006
    [Google Scholar]
  48. ParumsD.V. Editorial: The XBB.1.5 (‘Kraken’) subvariant of omicron SARS-CoV-2 and its rapid global spread.Med. Sci. Monit.202329e939580e93958110.12659/MSM.939580 36722047
    [Google Scholar]
  49. UrakiR. ItoM. KisoM. Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate.Lancet Infect. Dis.202323440240310.1016/S1473‑3099(23)00070‑1 36773622
    [Google Scholar]
  50. ChannabasappaN.K. NiranjanA.K. EmranT.B. SARS-CoV-2 variant omicron XBB.1.5: Challenges and prospects – correspondence.Int. J. Surg.202310941054105510.1097/JS9.0000000000000276 36912769
    [Google Scholar]
  51. AoD. HeX. HongW. WeiX. The rapid rise of SARS‐CoV‐2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants.MedComm202342e23910.1002/mco2.239 36938325
    [Google Scholar]
  52. CaoY. JianF. WangJ. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution.Nature202210.1038/s41586‑022‑05644‑7 36535326
    [Google Scholar]
  53. DhamaK. ChandranD. ChopraH. SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic.J. Exp. Biol. Agric. Sci.20221061215122110.18006/2022.10(6).1215.1221
    [Google Scholar]
  54. WratilP.R. SternM. PrillerA. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern.Nat. Med.202228349650310.1038/s41591‑022‑01715‑4 35090165
    [Google Scholar]
  55. KausarS. Said KhanF. Ishaq Mujeeb Ur RehmanM. A review: Mechanism of action of antiviral drugs.Int. J. Immunopathol. Pharmacol.2021352058738421100262110.1177/20587384211002621 33726557
    [Google Scholar]
  56. CallawayE. Omicron likely to weaken COVID vaccine protection.Nature2021600788936736810.1038/d41586‑021‑03672‑3 34880488
    [Google Scholar]
  57. KhouryD.S. CromerD. ReynaldiA. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection.Nat. Med.20212771205121110.1038/s41591‑021‑01377‑8 34002089
    [Google Scholar]
  58. DevauxC.A. RolainJ.M. ColsonP. RaoultD. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?Int. J. Antimicrob. Agents202055510593810.1016/j.ijantimicag.2020.105938 32171740
    [Google Scholar]
  59. Al-kuraishyH.M. Al-GareebA.I. ElekhnawyE. BatihaG.E.S. Nitazoxanide and COVID-19: A review.Mol. Biol. Rep.20224911111691117610.1007/s11033‑022‑07822‑2 36094778
    [Google Scholar]
  60. GuoK. BarrettB.S. MorrisonJ.H. Interferon resistance of emerging SARS-CoV-2 variants.Proc. Natl. Acad. Sci. USA202211932e220376011910.1073/pnas.2203760119 35867811
    [Google Scholar]
  61. LokugamageK.G. HageA. de VriesM. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV.J. Virol.20209423e01410e0142010.1128/JVI.01410‑20 32938761
    [Google Scholar]
  62. da SilvaM.K. FulcoU.L. JúniorE.D.S. OliveiraJ.I.N. Moving targets: COVID-19 vaccine efficacy against Omicron subvariants.Mol. Ther.20223082644264510.1016/j.ymthe.2022.07.004 35914527
    [Google Scholar]
  63. JiangM. VäisänenE. KolehmainenP. COVID-19 adenovirus vector vaccine induces higher interferon and pro-inflammatory responses than mRNA vaccines in human PBMCs, macrophages and moDCs.Vaccine202341263813382310.1016/j.vaccine.2023.04.049 37142461
    [Google Scholar]
  64. IkegameS. SiddiqueyM.N.A. HungC-T. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants.Nat. Commun.2021121459810.1038/s41467‑021‑24909‑9 34312390
    [Google Scholar]
  65. ZhouH. MøhlenbergM. ThakorJ.C. Sensitivity to vaccines, therapeutic antibodies, and viral entry inhibitors and advances to counter the SARS-CoV-2 Omicron variant.Clin. Microbiol. Rev.2022353e00014e0002210.1128/cmr.00014‑22 35862736
    [Google Scholar]
  66. KhaireN.S. JindalN. YaddanapudiL.N. Use of convalescent plasma for COVID-19 in India: A review & practical guidelines.Indian J. Med. Res.20211531 & 26485 33818467
    [Google Scholar]
  67. KlassenS.A. SenefeldJ.W. SeneseK.A. Convalescent plasma therapy for COVID-19: A graphical mosaic of the worldwide evidence.Front. Med. (Lausanne)2021868415110.3389/fmed.2021.684151 34164419
    [Google Scholar]
  68. MihalekN. RadovanovićD. BarakO. ČolovićP. HuberM. ErdoesG. Convalescent plasma and all-cause mortality of COVID-19 patients: Systematic review and meta-analysis.Sci. Rep.20231311290410.1038/s41598‑023‑40009‑8 37558729
    [Google Scholar]
  69. SenefeldJ.W. FranchiniM. MengoliC. COVID-19 convalescent plasma for the treatment of immunocompromised patients: A systematic review and meta-analysis.JAMA Netw. Open202361e225064710.1001/jamanetworkopen.2022.50647 36633846
    [Google Scholar]
  70. LiuJ. CaoR. XuM. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.Cell Discov.2020611610.1038/s41421‑020‑0156‑0 32194981
    [Google Scholar]
  71. NirajN. MahajanS.S. PrakashA. SarmaP. MedhiB. Paxlovid.Indian J. Pharmacol.202254645245810.4103/ijp.ijp_291_22 36722557
    [Google Scholar]
  72. SandersJ.M. MonogueM.L. JodlowskiT.Z. CutrellJ.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19).JAMA2020323181824183610.1001/jama.2020.6019 32282022
    [Google Scholar]
  73. ZhouD. DaiS.M. TongQ. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression.J. Antimicrob. Chemother.20207571667167010.1093/jac/dkaa114 32196083
    [Google Scholar]
  74. ReisG. Moreira SilvaE.A.S. Medeiros SilvaD.C. Early treatment with pegylated interferon lambda for COVID-19.N. Engl. J. Med.2023388651852810.1056/NEJMoa2209760 36780676
    [Google Scholar]
  75. EchaideM. Chocarro de ErausoL. BocanegraA. BlancoE. KochanG. EscorsD. mRNA vaccines against SARS-CoV-2: Advantages and caveats.Int. J. Mol. Sci.2023246594410.3390/ijms24065944 36983017
    [Google Scholar]
  76. VogelA.B. KanevskyI. CheY. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates.bioRxiv202010.1101/2020.09.08.280818
    [Google Scholar]
  77. DevasenapathyN. YeZ. LoebM. Efficacy and safety of convalescent plasma for severe COVID-19 based on evidence in other severe respiratory viral infections: A systematic review and meta-analysis.CMAJ202019227E745E75510.1503/cmaj.200642 32444482
    [Google Scholar]
  78. ShaoW. ZhangW. FangX. YuD. WangX. Challenges of SARS-CoV-2 Omicron variant and appropriate countermeasures.J. Microbiol. Immunol. Infect.202255338739410.1016/j.jmii.2022.03.007 35501267
    [Google Scholar]
  79. SongY. MasakiF. Preparation for the challenge of heavily mutated Omicron variant.Clin. Transl. Med.20211112e67910.1002/ctm2.679 34898041
    [Google Scholar]
  80. DhamaK. NainuF. FrediansyahA. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies.J. Infect. Public Health202316141410.1016/j.jiph.2022.11.024 36446204
    [Google Scholar]
  81. MohapatraR.K. KandiV. VermaS. DhamaK. Challenges of the omicron (B.1.1.529) variant and its lineages: A global perspective.ChemBioChem2022239e20220005910.1002/cbic.202200059 35322516
    [Google Scholar]
  82. RabaanA.A. Al-AhmedS.H. AlbayatH. Variants of SARS-CoV-2: Influences on the vaccines’ effectiveness and possible strategies to overcome their consequences.Medicina (Kaunas)202359350710.3390/medicina59030507 36984508
    [Google Scholar]
  83. MehtaD.K. DasR. YadavS. SharmaV. GuptaS. GoyalA. SARS CoV-2 Omicron (B. 1.1. 529) recent updates and challenges worldwide.Infect. Disord. Drug Targets2023235e24032321495010.2174/1871526523666230324113146 36967463
    [Google Scholar]
  84. LiG. HilgenfeldR. WhitleyR. De ClercqE. Therapeutic strategies for COVID-19: Progress and lessons learned.Nat. Rev. Drug Discov.202322644947510.1038/s41573‑023‑00672‑y 37076602
    [Google Scholar]
  85. HeB. LiuS. WangY. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq.Signal Transduct. Target. Ther.20216119510.1038/s41392‑021‑00610‑7 34001847
    [Google Scholar]
  86. ChiuM.L. GouletD.R. TeplyakovA. GillilandG.L. Antibody structure and function: The basis for engineering therapeutics.Antibodies (Basel)2019845510.3390/antib8040055 31816964
    [Google Scholar]
  87. van der HorstH.J. NijhofI.S. MutisT. ChamuleauM.E.D. Fc-engineered antibodies with enhanced Fc-effector function for the treatment of B-cell malignancies.Cancers (Basel)20201210304110.3390/cancers12103041 33086644
    [Google Scholar]
  88. LiuH. SaxenaA. SidhuS.S. WuD. Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds.Front. Immunol.201783810.3389/fimmu.2017.00038 28184223
    [Google Scholar]
  89. ZhouD. RenJ. FryE.E. StuartD.I. Broadly neutralizing antibodies against COVID-19.Curr. Opin. Virol.20236110133210.1016/j.coviro.2023.101332 37285620
    [Google Scholar]
  90. ChenZ. ZhangP. MatsuokaY. Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants.Cell Rep.202241511152810.1016/j.celrep.2022.111528 36302375
    [Google Scholar]
  91. YangH. RaoZ. Structural biology of SARS-CoV-2 and implications for therapeutic development.Nat. Rev. Microbiol.2021191168570010.1038/s41579‑021‑00630‑8 34535791
    [Google Scholar]
  92. ZhaoP. PraissmanJ.L. GrantO.C. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor.Cell Host Microbe2020284586601.e610.1016/j.chom.2020.08.004 32841605
    [Google Scholar]
  93. ZhouT. TsybovskyY. GormanJ. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains.Cell Host Microbe2020286867879.e510.1016/j.chom.2020.11.004 33271067
    [Google Scholar]
  94. PantaleoG. CorreiaB. FenwickC. JooV.S. PerezL. Antibodies to combat viral infections: Development strategies and progress.Nat. Rev. Drug Discov.202221967669610.1038/s41573‑022‑00495‑3 35725925
    [Google Scholar]
  95. BhimrajA. MorganR.L. ShumakerA.H. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19.Clin. Infect. Dis.2022787e250e34910.1093/cid/ciac724
    [Google Scholar]
  96. BarnesC.O. JetteC.A. AbernathyM.E. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies.Nature2020588783968268710.1038/s41586‑020‑2852‑1 33045718
    [Google Scholar]
  97. PiccoliL. ParkY.J. TortoriciM.A. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology.Cell2020183410241042.e2110.1016/j.cell.2020.09.037 32991844
    [Google Scholar]
  98. TaylorP.C. AdamsA.C. HuffordM.M. de la TorreI. WinthropK. GottliebR.L. Neutralizing monoclonal antibodies for treatment of COVID-19.Nat. Rev. Immunol.202121638239310.1038/s41577‑021‑00542‑x 33875867
    [Google Scholar]
  99. CoxM. PeacockT.P. HarveyW.T. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies.Nat. Rev. Microbiol.202321211212410.1038/s41579‑022‑00809‑7 36307535
    [Google Scholar]
  100. CaoY. WangJ. JianF. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.Nature2022602789865766310.1038/s41586‑021‑04385‑3 35016194
    [Google Scholar]
  101. LiuL. IketaniS. GuoY. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.Nature2022602789867668110.1038/s41586‑021‑04388‑0 35016198
    [Google Scholar]
  102. AbaniO. AbbasA. AbbasF. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial.Lancet20223991032566567610.1016/S0140‑6736(22)00163‑5 35151397
    [Google Scholar]
  103. LundgrenJ.D. GrundB. BarkauskasC.E. Responses to a neutralizing monoclonal antibody for hospitalized patients with COVID-19 according to baseline antibody and antigen levels.Ann. Intern. Med.2022175223424310.7326/M21‑3507 34928698
    [Google Scholar]
  104. BenotmaneI. VelayA. Gautier-VargasG. Breakthrough COVID-19 cases despite prophylaxis with 150 mg of tixagevimab and 150 mg of cilgavimab in kidney transplant recipients.Am. J. Transplant.202222112675268110.1111/ajt.17121 35713984
    [Google Scholar]
  105. KaminskiH. GiganM. VermorelA. COVID-19 morbidity decreases with tixagevimab–cilgavimab preexposure prophylaxis in kidney transplant recipient nonresponders or low-vaccine responders.Kidney Int.2022102493693810.1016/j.kint.2022.07.008 35870641
    [Google Scholar]
  106. YetmarZ.A. BeamE. O’HoroJ.C. Outcomes of bebtelovimab and sotrovimab treatment of solid organ transplant recipients with mild‐to‐moderate coronavirus disease 2019 during the Omicron epoch.Transpl. Infect. Dis.2022244e1390110.1111/tid.13901 35848574
    [Google Scholar]
  107. DouganM. AzizadM. ChenP. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19.medRxiv202210.1101/2022.03.10.22272100
    [Google Scholar]
  108. LusvarghiS. PollettS.D. NeerukondaS.N. SARS-CoV-2 BA.1 variant is neutralized by vaccine booster–elicited serum but evades most convalescent serum and therapeutic antibodies.Sci. Transl. Med.202214645eabn854310.1126/scitranslmed.abn8543 35380448
    [Google Scholar]
  109. TakashitaE. YamayoshiS. SimonV. Efficacy of antibodies and antiviral drugs against omicron BA.2.12.1, BA.4, and BA.5 subvariants.N. Engl. J. Med.2022387546847010.1056/NEJMc2207519 35857646
    [Google Scholar]
  110. TakashitaE. KinoshitaN. YamayoshiS. Efficacy of antibodies and antiviral drugs against COVID-19 omicron variant.N. Engl. J. Med.20223861099599810.1056/NEJMc2119407 35081300
    [Google Scholar]
  111. NutalaiR. ZhouD. TuekprakhonA. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees.Cell20221851221162131.e1810.1016/j.cell.2022.05.014 35662412
    [Google Scholar]
  112. ChenY. ZhaoX. ZhouH. ZhuH. JiangS. WangP. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses.Nat. Rev. Immunol.202323318919910.1038/s41577‑022‑00784‑3 36168054
    [Google Scholar]
  113. ZamanK. SheteA.M. MishraS.K. Omicron BA.2 lineage predominance in severe acute respiratory syndrome coronavirus 2 positive cases during the third wave in North India.Front. Med. (Lausanne)2022995593010.3389/fmed.2022.955930 36405589
    [Google Scholar]
  114. DasN.C. ChakrabortyP. BayryJ. MukherjeeS. Comparative binding ability of human monoclonal antibodies against omicron variants of SARS-CoV-2: An in silico investigation.Antibodies (Basel)20231211710.3390/antib12010017 36975364
    [Google Scholar]
  115. DasN.C. ChakrabortyP. BayryJ. MukherjeeS. In silico analyses on the comparative potential of therapeutic human monoclonal antibodies against newly emerged SARS-CoV-2 variants bearing mutant spike protein.Front. Immunol.20221278250610.3389/fimmu.2021.782506 35082779
    [Google Scholar]
  116. SuH ZhangJ YiZ A human monoclonal antibody neutralizes SARS-CoV-2 Omicron variants by targeting the upstream region of spike protein HR2 motif. hLife20242312614010.1016/j.hlife.2024.02.001
    [Google Scholar]
  117. D’AcuntoE. MuziA. MarcheseS. Isolation and characterization of neutralizing monoclonal antibodies from a large panel of murine antibodies against RBD of the SARS-CoV-2 spike protein.Antibodies (Basel)2024131510.3390/antib13010005 38247569
    [Google Scholar]
  118. YuP. RanJ. YangR. Rapid isolation of pan-neutralizing antibodies against Omicron variants from convalescent individuals infected with SARS-CoV-2.Front. Immunol.202415137491310.3389/fimmu.2024.1374913 38510237
    [Google Scholar]
  119. WenK. CaiJ.P. FanX. Broad-spectrum humanized monoclonal neutralizing antibody against SARS-CoV-2 variants, including the Omicron variant.Front. Cell. Infect. Microbiol.202313121380610.3389/fcimb.2023.1213806 37645378
    [Google Scholar]
  120. BruelT. HadjadjJ. MaesP. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies.Nat. Med.20222861297130210.1038/s41591‑022‑01792‑5 35322239
    [Google Scholar]
  121. AroraP. KempfA. NehlmeierI. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies.Lancet Infect. Dis.2023231222310.1016/S1473‑3099(22)00733‑2 36410372
    [Google Scholar]
  122. García-VegaM. Melgoza-GonzálezE.A. Hernández-ValenzuelaS. 19n01, a broadly neutralizing antibody against omicron BA.1, BA.2, BA.4/5, and other SARS-CoV-2 variants of concern.iScience202326410656210.1016/j.isci.2023.106562 37063467
    [Google Scholar]
  123. LiX. PanY. YinQ. Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages.Cell Discov.2022818710.1038/s41421‑022‑00449‑4 36075908
    [Google Scholar]
  124. WangY. ZhangX. MaY. Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies.Cell Discov.20228110410.1038/s41421‑022‑00463‑6 36207299
    [Google Scholar]
  125. YuanM. ZhuY. LiuG. An RBD bispecific antibody effectively neutralizes a SARS-CoV-2 Omicron variant.One Health Advances2023111210.1186/s44280‑023‑00012‑0 37521533
    [Google Scholar]
  126. WangY. ZhanW. LiuJ. A broadly neutralizing antibody against SARS-CoV-2 Omicron variant infection exhibiting a novel trimer dimer conformation in spike protein binding.Cell Res.202232986286510.1038/s41422‑022‑00684‑0 35768499
    [Google Scholar]
  127. ZhouT. WangL. MisasiJ. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529.Science20223766591eabn889710.1126/science.abn8897 35324257
    [Google Scholar]
  128. KaiserF.K. HernandezM.G. KrügerN. Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models.Nat. Commun.2024151231910.1038/s41467‑024‑46443‑0 38485931
    [Google Scholar]
  129. CameroniE. BowenJ.E. RosenL.E. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift.Nature2022602789866467010.1038/s41586‑021‑04386‑2 35016195
    [Google Scholar]
  130. TaiY.L. LeeM.D. ChiH. Effects of bamlanivimab alone or in combination with etesevimab on subsequent hospitalization and mortality in outpatients with COVID-19: A systematic review and meta-analysis.PeerJ202311e1534410.7717/peerj.15344 37180576
    [Google Scholar]
  131. RanaR. KantR. HuiremR.S. BohraD. GangulyN.K. Omicron variant: Current insights and future directions.Microbiol. Res.202226512720410.1016/j.micres.2022.127204 36152612
    [Google Scholar]
  132. LinJ. FredianiJ.K. DamhorstG.L. Where is Omicron? Comparison of SARS-CoV-2 RT-PCR and antigen test sensitivity at commonly sampled anatomic sites over the course of disease.medRxiv202210.1101/2022.02.08.22270685
    [Google Scholar]
  133. WangJ. ChavdaV. PrajapatiR. An amalgamation of bioinformatics and artificial intelligence for COVID-19 management: From discovery to clinic.Curr Res Biotechnol2023610015910.1016/j.crbiot.2023.100159
    [Google Scholar]
  134. RenZ. ShenC. PengJ. Status and developing strategies for neutralizing monoclonal antibody therapy in the omicron era of COVID-19.Viruses2023156129710.3390/v15061297 37376597
    [Google Scholar]
  135. Mohseni AfsharZ. Tavakoli PirzamanA. KarimB. SARS-CoV-2 Omicron (B.1.1.529) variant: A challenge with COVID-19.Diagnostics (Basel)202313355910.3390/diagnostics13030559 36766664
    [Google Scholar]
  136. LuoS. XiongD. TangB. LiuB. ZhaoX. DuanL. Evaluating mAbs binding abilities to Omicron subvariant RBDs: Implications for selecting effective mAb therapies.Phys. Chem. Chem. Phys.20242615114141142810.1039/D3CP05893J 38591159
    [Google Scholar]
  137. Arevalo-RomeroJ.A. Chingaté-LópezS.M. CamachoB.A. Alméciga-DíazC.J. Ramirez-SeguraC.A. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19.Heliyon2024105e2642310.1016/j.heliyon.2024.e26423 38434363
    [Google Scholar]
  138. KumarA. TripathiP. KumarP. ShekharR. PathakR. From detection to protection: Antibodies and their crucial role in diagnosing and combatting SARS-CoV-2.Vaccines (Basel)202412545910.3390/vaccines12050459 38793710
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128334441241108050528
Loading
/content/journals/cpd/10.2174/0113816128334441241108050528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test