Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
81 - 100 of 204 results
-
-
“Next-in-class” GLP-1R Danuglipron- and Lotiglipron-like Agonists: A Patent Review (2020-2024)
Available online: 26 August 2025More LessBackgroundGLP-1 receptor peptide agonists have revolutionized type 2 diabetes mellitus and obesity treatment, primarily through injection-based therapies. Small-molecule GLP-1 receptor agonists allow oral administration, but none are clinically established. Pfizer's danuglipron and lotiglipron, presented in 2018-2019, were “first-in-class” drug candidates, becoming prototypes for “next-in-class” drug development.
ObjectiveThis review summarizes “next-in-class” GLP-1 receptor agonists developed, identifying different relationships between the molecular structure and functional activity of agonists.
MethodsPatents containing danuglipron- and lotiglipron-like agonists from January 2021 to July 2024 were browsed in databases, such as Espacenet and Google Patents, using specified keywords. Over 5,000 compounds from 67 patent publications were analyzed.
ResultsOur analysis identified some key general SAR trends. The presence of a carboxyl group leads to highly active agonists, but replacing it with bioisosteric analogs may improve the ADME profile of the target compounds. The introduction of specific privileged fragments, as well as the replacement of 1H-benzo[d]imidazole nucleus or (S)-oxetan-2-ylmethyl substituent in the prototype structure with bioisosteric heterocycles, may be viable approaches. The replacement of 1,4-disubstituted piperidine linker with its (S)-2-methyl-substituted homologue or O, N-disubstituted piperidin-4-ol may also result in highly potent agonists. Additionally, the classic 2,4-EWG-disubstituted benzyl alcohol residue allows significant variability.
ConclusionDespite the limited clinical success of danuglipron and lotiglipron, as well as the inherent problems associated with the complex nature of GLP-1R signaling, the current state of research and the abundance of novel, promising chemotypes of highly potent compounds suggest that approved GLP-1R agonists may emerge in the coming years.
-
-
-
Beneficial Role of Zinc in Metabolic Syndrome: Understanding the Underlying Pathophysiological Mechanisms
Available online: 26 August 2025More LessMetabolic syndrome (MetS) is a complex disorder that comprises metabolic abnormalities such as central obesity, insulin resistance, dyslipidemia, and hypertension. Eventually, MetS leads to type 2 diabetes (T2DM) and increases the risk of other cardiovascular diseases. Patients with MetS are approximately five times more prone to develop T2DM. The increase in global prevalence of MetS is a major cause of concern. The microelement zinc is an essential trace element that plays a pivotal role in numerous biological processes occurring in the body. We carried out a thorough search of published studies in Scopus, PubMed, and Google Scholar databases. Zinc plays an important role in the functioning of the immune system, wound healing, protein synthesis, metabolism, inflammation, and different oxidative stress pathways. It is also vital for insulin homeostasis and signaling. The potential role of zinc in managing insulin resistance may be a key component in the treatment of MetS. Zinc acts via various signaling pathways, such as AMPK and mTOR, and influences lipid and glucose metabolism. The regulation of zinc metabolism at the cellular level is important for various biological processes, and disruption in zinc homeostasis results in the development of many diseases. The present review aims to discuss the role of zinc in MetS. It is concluded that zinc level modulation may be a key point in the prevention and treatment of MetS.
-
-
-
Expression of TCEAL2 is a Novel Prognostic Biomarker and Potential Therapeutic Target in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
Authors: Jinyuan Li, Zhen Ye, Yuhong Gan, Dongbing Li and Yibiao ChenAvailable online: 26 August 2025More LessBackgroundCervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are major gynecological malignancies, causing significant cancer-related deaths in women. Current treatments yield poor outcomes, with a 5-year survival rate of only 17%. Identifying new biomarkers and therapeutic targets is crucial for improving prognosis and guiding personalized treatments.
MethodsWe analyzed TCEAL2 expression using data from The Cancer Genome Atlas (TCGA) across various cancers, including CESC. We explored its correlation with clinical features, prognosis, immune infiltration, MSI, mRNAsi, and drug sensitivity. TCEAL2 expression was validated in GSE9750 datasets and CESC cell lines using qRT-PCR.
ResultsTCEAL2 expression was significantly dysregulated in CESC. Elevated TCEAL2 levels correlated with poor clinical outcomes, including advanced pathological M stage (p = 0.009), initial treatment failure (p = 0.0098), and reduced overall survival (OS) (p = 0.013). TCEAL2 was an independent predictor of unfavorable OS (p = 0.032). It was associated with key pathways such as calcium signaling, oxidative phosphorylation, and Wnt signaling. TCEAL2 also correlated with immune cell infiltration, MSI, and mRNAsi. Notably, TCEAL2 levels inversely correlated with sensitivity to several drugs, including CAY10603 and SB-223133.
DiscussionThe results suggest that TCEAL2 plays a significant role in CESC progression and its tumor microenvironment. Its correlation with immune infiltration and drug sensitivity highlights its potential as a prognostic biomarker and therapeutic target. Future studies should focus on elucidating the molecular mechanisms and validating their clinical utility.
ConclusionTCEAL2 is a potential prognostic biomarker and therapeutic target in CESC. Further research is needed to explore its role and clinical applications.
-
-
-
Expression, Prognostic Value, and Biological Function of CENPM in Colon Adenocarcinoma
Authors: Zhiming Cai, Zhenrong Yang, Qian Yu, Tao Lin, Xincheng Su, Lv Lin and Yongjian ZhouAvailable online: 26 August 2025More LessIntroductionCentromere protein M (CENPM), a member of the CENP family, is correlated with several malignancies, but its role in colon adenocarcinoma (COAD) is unclear. This study aims to explore the expression, prognostic significance, and biological role of CENPM in COAD.
MethodsThe association of CENPM with the occurrence and progression of COAD was thoroughly analyzed via several bioinformatics databases. Furthermore, the correlation between CENPM expression and clinicopathological features and prognostic value was validated via immunohistochemistry (IHC) of tissue microarrays (TMAs) from 80 patients.
ResultsCENPM mRNA expression was significantly elevated in COAD samples compared with healthy tissues. As COAD progressed, CENPM expression decreased, and patients with lower CENPM transcript levels had a worse prognosis. IHC results further confirmed the overexpression of CENPM in COAD patients, identifying this gene as an independent prognostic factor. Additionally, high CENPM expression was linked to methylation in COAD patients, and the primary function of CENPM and its neighboring genes was determined to be cell cycle regulation. Immunological analysis demonstrated that CENPM expression was positively correlated with activated CD8+ T cells, CD4+ T cells, and dendritic cells (DCs) but negatively correlated with regulatory T cells (Tregs). CENPM expression was positively correlated with that of the immune checkpoint genes LAG3, CD244, LGALS9, PDCD1 (PD1), and PVRL2 but negatively correlated with the expression of BTLA, CSF1R, KDR, IL10RB, PDCD1LG2, and TGFBR1.
DiscussionThese findings collectively highlight a multifaceted role of CENPM in COAD, linking its overexpression to improved patient outcomes through mechanisms involving cell cycle control and immunomodulation. Its significant correlation with key immune infiltrates and checkpoint markers implies potential utility as a novel predictor for immunotherapy responsiveness.
ConclusionCENPM is an independent prognostic factor for COAD, with its overexpression associated with improved survival. It regulates the cell cycle and tumor microenvironment, making it a promising potential predictive biomarker for immune therapy response.
-
-
-
Decoding PRTFDC1's Role in Lung Adenocarcinoma: From Gene Expression to Clinical Implications
Authors: Jian Yao, Qiang Zhang, Chunhe Zhong, Haiyang Zhang, Xinchi Lei and Dongbing LiAvailable online: 22 August 2025More LessIntroductionThis study aims to elucidate the role of Phosphoribosyl Transferase Domain Containing 1 (PRTFDC1) in Lung Adenocarcinoma (LUAD) through bioinformatics analysis and experimental validation, exploring its potential as a biomarker for prognosis and treatment response.
MethodsWe analyzed PRTFDC1 gene expression patterns in 539 LUAD and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA). Using bioinformatics tools, we examined the correlation between PRTFDC1 expression and clinical characteristics, immune infiltration, Tumor Mutation Burden (TMB), and drug responsiveness. Experimental validation was conducted in LUAD cell lines (A549 and HCC-78) through the overexpression of PRTFDC1, followed by cell proliferation and cell cycle assays.
ResultsPRTFDC1 expression was significantly elevated in LUAD compared to normal tissues, correlating with poorer Progression-Free Survival (PFS) and Disease-Specific Survival (DSS). PRTFDC1 was associated with immune cell infiltration, TMB, and mRNA stemness index (mRNAsi). Overexpression of PRTFDC1 in LUAD cell lines promoted cell proliferation and cell cycle progression, mediated by Threonine Tyrosine Kinase (TTK).
DiscussionThe findings suggest that PRTFDC1 may serve as an independent prognostic marker for LUAD, influencing tumor progression and immune response. The correlation with TTK indicates a potential mechanism for PRTFDC1's impact on cell proliferation. However, further research is needed to validate these findings in larger cohorts and explore the underlying molecular mechanisms.
ConclusionPRTFDC1 is a promising biomarker for LUAD prognosis and treatment response, with potential implications for targeted therapies and personalized medicine.
-
-
-
Selenium Enhances Osteogenic Differentiation and Mineralization in Human Osteoblasts: Implications for Bone Health and Metabolism
Authors: Erhan Sahin, Mahmoud Arafat and Ayse Tansu KoparalAvailable online: 21 August 2025More LessIntroductionSodium Selenite (NaSe) is a molecule with various biological activities. Bone fractures and osteoporotic diseases are increasingly common health issues, prompting the search for alternative treatments. Therefore, the purpose of this study was to examine the antioxidant and osteogenic properties of NaSe.
MethodsThe experiments were conducted using the hFOB1.19 osteoblast cell line. The MTT assay was used to assess the effects of NaSe on cell viability, while cytotoxicity was evaluated with Lactate Dehydrogenase (LDH) assays. Osteogenic differentiation was assessed by alizarin red staining, and Alkaline Phosphatase (ALP) activity and intracellular Reactive Oxygen Species (ROS) levels were also analyzed.
ResultsThe results showed that NaSe significantly enhanced cell viability in a dose-dependent manner at low doses (0.01-1μM), with the most effective dose being 1μM (p<0.05). LDH activity remained similar to the control within the 0.01-1μM range but increased significantly at higher concentrations (5-50 μM) in both 24- and 48-hour experiments (p<0.05). NaSe reduced intracellular ROS levels significantly between 0.01-1 μM, with 1 μM being the most effective concentration (p<0.05). The highest ALP activity was observed at 0.1 μM NaSe (p < 0.05), and calcium deposition increased in a concentration-dependent manner (p<0.05). The most effective dose for enhancing mineralization was 0.1 μM (p<0.05).
ConclusionThis study demonstrates that NaSe has antioxidant and osteogenic effects at low doses in hFOB cells. These positive effects suggest that NaSe could be a promising candidate for in-vitro, in-vivo, and clinical trials, providing hope for new treatments for bone diseases.
-
-
-
Patents on Xylazine, a Drug Adulterant of Clinical Concern
Available online: 21 August 2025More Less
-
-
-
MiRNA Regulations in Cardiotoxicity Induced by Oncologic Therapies and Possible Immune Response
Available online: 19 August 2025More LessAnti-cancer therapy offers significant risks for cardiovascular diseases, including hypertension, thromboembolic ischaemia, arrhythmias, dyslipidaemia, hyperglycemia, obesity, and high cholesterol. Cardiotoxicity is a leading cause of elevated mortality rates among cancer patients, and anti-cancer drugs often contribute to this issue. Emerging research highlights the role of microRNA (miRNAs) in regulating drug-induced cardiotoxicity by influencing genetic, epigenetic, transcriptional, and translational processes. MiRNAs have potential as biomarkers for early detection and treatment. Moreover, novel diagnostic and therapeutic approaches targeting miRNAs could improve the clinical management of cardiotoxicity in cancer patients. This study is based on regulatory mechanisms behind cardiotoxicity, including oxidative stress, vascular homeostasis, mitochondrial damage, apoptosis, and inflammation, and explores strategies for managing these complications in cancer therapy.
-
-
-
Medical Artificial Intelligence: Opportunities and Challenges In Infectious Disease Management
Available online: 19 August 2025More LessGlobally, millions of individuals suffer from infectious diseases, which are major public health concerns caused by bacteria, fungi, viruses, or parasites. These diseases can be transmitted directly or indirectly from person to person, potentially leading to a pandemic or epidemic. Several advancements have been made in molecular genetics for infectious disease management, which include pharmaceutical chemistry, medicine, and infection tracking; however, these advancements still lack control over human infections. Multidisciplinary cooperation is needed to address and control human infections. Advancements in scientific tools have empowered scientists to enhance epidemic prediction, gain insights into pathogen specificity, and pinpoint potential targets for drug development. Artificial intelligence (AI)-based methodologies demonstrate significant potential for integrating large-scale quantitative and omics data, enabling effective handling of biological complexity. Machine Learning (ML) plays a crucial role in AI by leveraging data to train predictive models. AI can enhance diagnostic accuracy through objective pattern recognition, standardize infection diagnoses with implications for Infection Prevention and Control (IPC), and aid in generalizing IPC knowledge. Additionally, AI-powered hand hygiene applications have the potential to drive behavioral change, although further evaluation in diverse clinical contexts is necessary. This review article highlights AI's potential in improving the healthcare system in different aspects of infectious diseases management, such as monitoring disease growth, using a real-time chatbot for patient assistance, using image processing for diagnosis, and developing new treatment algorithms. The study also discusses future directions for novel vaccine and drug development, as well as other aspects, such as the need for physicians and healthcare professionals to receive AI system training for their correct use and the ability of doctors to identify and resolve any problems that may arise with AI.
-
-
-
Uridines Modified with Sulfur or Selenium in U-G Wobble Pairs Matter for tRNA Function
Authors: Katarzyna Kulik and Barbara NawrotAvailable online: 18 August 2025More LessTransfer RNAs (tRNAs) are ubiquitous in cells and are essential for the translation of genetic information from messenger RNA (mRNA) into proteins in all three domains of life. They act as adaptors that decode mRNA codons via their anticodons and deliver the corresponding amino acids to the growing polypeptide chain. Currently, over 100 modified nucleosides have been found in tRNA that are crucial for the integrity and functionality of this molecule. Almost half of them are located at position 34 of the anticodon, which is commonly referred to as the “wobble” position. In this review, we highlight the sulfur- and selenium-modified uridines at this position and discuss their physicochemical properties and regulatory functions in gene expression. We examine how the tRNA anticodons accomplish the decoding of synonymous codons, particularly 5'-NNA-3' and 5'-NNG-3', and provide efficient uridine-adenosine and uridine - guanosine base pairing. We also analyze the effects of C5 substituents on the tautomeric behavior and ionization properties of 2-thiouridines and 2-selenouridines. Theoretical calculations on the stability of 5-substituted uracil - guanine base pairs and their structural representation in crystal complexes of tRNA-mRNA-ribosomes emphasize the importance of these modifications in fine-tuning translation fidelity and efficiency.
-
-
-
Diverse Development Approaches for Xanthine Oxidase Inhibitors: Synthetic Chemistry, Natural Product Chemistry, and Drug Repositioning
Authors: Zhihua Xing, Wen Jiang, Yue Xu, Mingyu Gao, Guanghuan Shen, Yingjie Liu, Na Ling and Linlin CuiAvailable online: 15 August 2025More LessXanthine oxidase (XOD) plays a crucial role in the biosynthesis of uric acid, and inhibiting its activity can effectively reduce the production of uric acid at its source. Currently, clinically used xanthine oxidase inhibitors (XODIs), such as allopurinol and febuxostat, are effective but associated with notable side effects. Allopurinol may induce hypersensitivity reactions, while febuxostat has been reported to potentially increase the risk of severe cardiovascular events. Therefore, the development of Xanthine oxidase inhibitors(XODIs) that lower serum uric acid levels through the inhibition of uric acid production has been a key focus in the research and development of anti-gout medications. This review is based on research literature from 2014 to 2025, sourced from multiple authoritative databases both domestically and internationally, including international databases such as Google Scholar, PubMed, Web of Science, Baidu Scholar, CNKI, Wanfang database. This review systematically summarizes 109 XODIs with urate-lowering or anti-gout pharmacological activities, categorized into chemical synthetic compounds, natural products and their derivatives, and repurposed drugs. The aim is to provide meaningful insights for the development of new therapeutic agents for gout and hyperuricemia. Notably, amides and carboxylic acids among chemically synthesized compounds exhibit promising prospects, while natural products with multiple mechanisms of uric acid reduction hold significant potential for the treatment of hyperuricemia.
-
-
-
Romosozumab's Effect on Bone Mineral Density in Patients with Osteoporosis: A Systematic Review and Meta-Analysis
Available online: 14 August 2025More LessIntroductionOne of the most effective osteoanabolic drugs for treating osteoporosis is romosozumab, which was developed as a consequence of growing knowledge of the Wnt signaling system. This review explored how romosozumab affects the bone mineral density (BMD) in osteoporotic patients.
MethodsUp until January 2024, PubMed, Web of Science, and Scopus were reviewed for any randomized controlled trials (RCTs) evaluating the impact of osteoporotic treatment with romosozumab on BMD changes and bone metabolism markers in primary osteoporosis patients. Pooled Hedges’ g indices, which were consistently used across all included studies to measure standardized mean differences, were computed along with their corresponding 95% confidence intervals using either a random-effects or fixed-effects model.
ResultsOut of the 1855 papers, 24 RCTs met the inclusion criteria. Patients with osteoporosis who received romosozumab for a period of time demonstrated an augmentation in their lumbar spine BMD. The study findings indicated that the total hip and femoral neck BMD demonstrated significant enhancement in 22 (out of 23) and 19 (out of 21) studies, respectively.
ConclusionIn patients with osteoporosis, romosozumab could markedly increase the total hip, lumbar spine, and femoral neck BMD. This finding could be verified by measuring bone turnover indicators such as PINP, TRACP-5b, and CTX.
-
-
-
Single-Cell Maps Reveal Novel Mechanisms of Ferroptosis and Biomarkers in Diabetic Nephropathy
Authors: Yueyi Zhou, Weilin Chen, Dan Li, Li Chen and Bin YiAvailable online: 12 August 2025More LessObjectiveDiabetic nephropathy (DN) is the main cause of renal failure due to its complexity and difficulty in prevention. The purpose of our study is to screen potential biomarkers of DN at the single-cell level and reveal its new molecular pathogenesis by single-cell RNA sequencing (scRNA-seq).
MethodsIn this study, scRNA-seq was performed on kidney tissue of control and DN mice. Through multiple analyses of the data, biomarkers in DN that contribute to early diagnosis were screened, and the complex pathogenesis associated with ferroptosis was revealed and verified by experiments at the animal and cellular levels.
ResultsThrough customized analysis of scRNA-seq results, we found for the first time increased intercellular communication between mesangial epithelial cells and transitional epithelial cells in the pathological state of DN. In addition, two sets of differential protein interaction analysis networks showed that Eno1, Hspa8, FLT1, Hspa1a, and Gsta2 could be used as predictive biomarkers of DN. Finally, the promoting effects of ferroptosis, heat shock protein and their interactions in the development of DN are discussed. In particular, the regulation of GPX4 by members of the heat shock family, Dnaja1 and Hspa1a, promotes lipid peroxidation (the classic phenotype of ferroptosis).
DiscussionWe identified disruption of iron homeostasis and activation of the ferroptosis pathway, alongside differential expression of oxidative stress-related genes, including PGAM2. Heat shock proteins (e.g., Hspa1a, Dnaja1) were found to interact with ferroptosis markers (e.g., GPX4), suggesting a chaperone-mediated protective mechanism under diabetic stress. Analogous to the Flory–Huggins solution theory, HSPs may enhance misfolded protein compatibility in the cytosol, reducing aggregation. This study provides insight into HSP-regulated ferroptosis in DN, though further validation is required for clinical translation.
ConclusionIn conclusion, we comprehensively analyzed the relevant biomarkers and pathogenesis of DN at single-cell resolution, providing new strategies for therapeutic targets of the disease.
-
-
-
Investigating the Causal Role of Neurotrophic Factors in Low Back Pain and Sciatica: A Mendelian Randomization Study
Authors: Feixiang Lin and Wei HeAvailable online: 12 August 2025More LessBackgroundLow back pain (LBP) and sciatica are among the most prevalent musculoskeletal disorders, leading to significant disability and an economic burden. Neurotrophic factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), play critical roles in pain modulation and neuronal function. While NGF-targeting monoclonal antibodies have shown potential in treating chronic pain, their efficacy and safety remain under debate. This study employs Mendelian Randomization (MR) to assess the causal relationships between NGF, BDNF, GDNF, and the risk of LBP and sciatica.
MethodsWe conducted a two-sample MR analysis using genetic instruments for NGF, BDNF, and GDNF. LBP and sciatica data were obtained from FinnGen. The inverse variance weighted (IVW) method was applied as the primary causal estimation, with the weighted median (WM) and MR-Egger regression used for sensitivity analyses. Reverse MR was performed to evaluate bidirectional causality. Furthermore, we used expression quantitative trait loci (eQTLs) within 50 kb of each gene locus as genetic instruments for NGF regulation, ensuring that the genetic variants used directly influence neurotrophic factor expression.
ResultsMR analysis revealed a significant causal association between NGF and an increased risk of LBP (OR = 1.121, 95% CI 1.021-1.230, p = 0.016) and sciatica (OR = 1.158, 95% CI 1.034-1.296, p = 0.010), while BDNF and GDNF showed no significant associations with pain outcomes. Sensitivity analyses confirmed the robustness of the NGF findings, with no evidence of horizontal pleiotropy or heterogeneity. Reverse MR analysis showed no significant causal effect of LBP or sciatica on NGF levels (p > 0.05), ruling out reverse causality. Additionally, we investigated the NGF-eQTL, which captures genetically regulated NGF expression, and found a significant association between the NGF-eQTL and LBP (OR = 1.040, 95% CI 1.010-1.070, p = 0.007). Unlike external NGF measurements, the NGF-eQTL minimizes environmental confounding and reverse causation, providing stronger genetic evidence supporting NGF as a therapeutic target for LBP.
DiscussionOur findings provide strong genetic evidence that nerve growth factor (NGF) plays a causal role in the development of low back pain and sciatica, supporting NGF inhibition as a promising therapeutic strategy. These results align with clinical observations where anti-NGF monoclonal antibodies demonstrated pain-relieving effects, though safety concerns remain. In contrast, no causal associations were observed for BDNF or GDNF, underscoring the specificity of NGF in peripheral pain sensitization. The study demonstrates the value of Mendelian Randomization in minimizing confounding and reverse causation, thereby strengthening causal inference. Future work should focus on pharmacogenomic predictors to identify patients most likely to benefit from NGF-targeted interventions while minimizing adverse effects.
ConclusionThis study provides genetic evidence that NGF plays a causal role in LBP and sciatica, reinforcing its potential as a therapeutic target. However, BDNF and GDNF were not significantly associated with pain outcomes, suggesting distinct mechanisms of pain modulation. While clinical trials of anti-NGF monoclonal antibodies have demonstrated efficacy in pain reduction, concerns about adverse effects, such as joint degeneration, habe limited their widespread clinical use. Future research should explore genetic predictors of anti-NGF therapy response to optimize treatment strategies for LBP and related musculoskeletal pain disorders.
-
-
-
A Comprehensive Analysis of the ITIH Family Across Multiple Cancer Types and an Initial Investigation of ITIH1 in Gastric Cancer
Authors: Qiangqiang Zhong, Baokang Zhao, Xiao She and Xiangjie LiuAvailable online: 12 August 2025More LessIntroductionThe ITIH family, crucial for extracellular matrix stability and cancer progression, is underexplored in multi-omic profiles and immune microenvironments; this study analyzes their roles across cancers and ITIH1’s function in gastric cancer to reveal diagnostic, prognostic, and therapeutic potential.
MethodsWe analyzed RNA-seq, protein expr ession, and clinical data from 33 cancer types and 24 non-cancerous conditions using TCGA, GTEx, GEO, CPTAC, and IMvigor210 datasets. Methods included differential expression analysis, ROC curve assessment for diagnostic potential, Cox regression and Kaplan-Meier survival analyses for prognostic value, GSEA for pathway enrichment, and molecular docking for ITIH1-targeted small molecule screening. Immune microenvironment interactions, tumor mutational burden (TMB), microsatellite instability (MSI), and immunotherapy response were evaluated. in vitro experiments validated ITIH1’s role in gastric cancer using qRT-PCR, Western blotting, siRNA knockdown, and functional assays.
ResultsITIH family genes exhibited differential expression across cancers and non-cancerous conditions, with ITIH1, ITIH4, and ITIH5 showing high diagnostic potential (AUC > 0.90 in multiple cancers). ITIH1 was a risk factor for poor survival in gastric cancer (p < 0.05). Lower ITIH scores correlated with improved survival in patients receiving immune checkpoint inhibitors (p < 0.05). ITIH genes showed strong correlations with immune checkpoints (PD-1, CTLA-4), TMB, and MSI. Molecular docking identified six small molecules, including Entinostat, with high binding affinity for ITIH1 (-8.4 kcal/mol). ITIH1 knockdown in gastric cancer cell lines (HGC-27, AGS) significantly reduced proliferation, migration, and invasion (p < 0.01).
DiscussionThis study underscores the ITIH family's critical role as diagnostic and prognostic biomarkers across various cancers and non-cancerous conditions, with ITIH1's therapeutic potential in gastric cancer highlighted through its impact on tumor progression, though limitations include discrepancies in some ITIH gene expressions between in vitro and in vivo settings, necessitating further validation.
ConclusionOur findings highlight the ITIH family's potential as diagnostic biomarkers, prognostic indicators, and therapeutic targets, particularly in gastric cancer. The identification of ITIH1 inhibitors and their association with immune checkpoints, TMB, and MSI paves the way for improved diagnostics, targeted therapies, and immunotherapy predictions, enhancing patient outcomes across diseases.
-
-
-
Post-marketing Safety Surveillance of Drug-induced Dementia: Utilizing Signal Detection and Mendelian Randomization in Spontaneous Reports
Authors: Yan Chen, Chen Li, Yinhui Yao and Yazhen ShangAvailable online: 12 August 2025More LessObjectiveMany medications associated with an increased risk of dementia do not have adequate warning labels, leading to a significant underestimation of their potential dangers. This study aims to leverage the FAERS database to identify drugs strongly linked to dementia and to examine the relationship between these drugs using Mendelian randomization techniques. The ultimate goal is to mitigate the risk of developing dementia.
MethodsWe utilized the FAERS database to identify medications significantly associated with dementia cases. The DrugBank, OpenTargets, and STITCH databases were employed to pinpoint the target genes of these drugs. We then conducted Mendelian randomization analysis to explore the correlation between the expression of drug target genes and the incidence of dementia. Additionally, a time-to-onset analysis assessed the temporal relationships of drug ingestions. Furthermore, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction Network (PPI) analyses were performed to investigate the molecular pathways linked to target genes related to drugs associated with dementia.
ResultsA total of 28,139 dementia events were recorded in the FAERS database. Our Mendelian randomization analysis revealed a significant association between the expression of all identified drug target genes and dementia in both blood and brain tissues. Specifically, we identified nine drug target genes with significant correlations, implicating quetiapine, clozapine, valproic acid, alendronate, and digoxin as being strongly associated with dementia, which could provide insight into areas of clinical concern regarding dementia occurrence.
ConclusionThe adverse event data sourced from the FAERS database indicate that certain medications are associated with an increased risk of developing dementia, a finding corroborated by our Mendelian randomization analysis. Establishing a comprehensive monitoring and risk assessment program is crucial for identifying high-risk individuals and facilitating informed medication choices, thereby potentially reducing the incidence of dementia.
-
-
-
An Advanced Network Pharmacology Study Reveals the Multi-Pathway and Multi-Gene Regulatory Mechanism of Jinbai Heat-clearing Prescription in HPV-induced Cervical Cancer via Molecular Docking and Microarray Data Analysis
Authors: Sui Liu, Zixiao Jiang, Junlei He, Xiangxin Niu, Changhua Yue, Shiou Yih Lee, Zhangxin Yu and Yangyang LiuAvailable online: 08 August 2025More LessIntroductionCervical cancer, primarily driven by high-risk human papillomavirus (HPV) infection, remains a global health challenge due to limited therapeutic efficacy and adverse effects of conventional treatments. Jinbai Heat-Clearing Prescription (JBHCP), a Traditional Chinese Medicine (TCM), exhibits potential against HPV-associated cervical cancer, yet its molecular mechanisms are unclear. This study aimed to elucidate JBHCP’s multitarget regulatory mechanisms in HPV-induced cervical carcinogenesis.
MethodsNetwork pharmacology, UHPLC-Q-TOF-MS-based metabolomics, and microarray data analysis were integrated to identify the bioactive components and therapeutic targets of JBHCP. Molecular docking and 60 ns Molecular Dynamics (MD) simulations were used to assess the interactions between key compounds (JBHCP673, JBHCP727) and cyclin-dependent kinases (CDK1/CDK2). Gene Ontology (GO), KEGG pathway enrichment, and Protein-Protein Interaction (PPI) network analyses were performed to explore biological functions and signaling pathways.
ResultsUHPLC-Q-TOF-MS identified 816 compounds in JBHCP, with 86 meeting drug-likeness criteria. Network analysis revealed 215 shared targets between JBHCP and HPV-induced cervical cancer, including CDK1 and CDK2 as core regulators. Enrichment analysis highlighted JBHCP’s involvement in cell cycle regulation, PI3K/AKT, and STAT3 signaling pathways. Molecular docking demonstrated strong binding affinities of JBHCP727 with CDK1 (-7.36 kcal/mol) and CDK2 (-6.13 kcal/mol). MD simulations confirmed stable binding of JBHCP727 to CDK1/2, while JBHCP673 exhibited instability. ADMET predictions supported JBHCP727’s drug-like properties.
DiscussionJBHCP exerts anticancer effects by targeting CDK1/2, disrupting cell cycle progression, and modulating oncogenic pathways (PI3K/AKT, STAT3). The stability of JBHCP727-CDK complexes suggests its role in inhibiting HPV-driven proliferation. Multi-component synergy enables JBHCP to act on diverse pathways, aligning with TCM’s “multitarget” paradigm.
ConclusionThis study provides the first systematic evidence of JBHCP’s multi-pathway mechanism against HPV-associated cervical cancer, emphasizing CDK1/2 inhibition as a key therapeutic strategy. JBHCP727 emerges as a promising lead compound. Further in vivo and clinical validation is warranted to translate these findings into clinical applications.
-
-
-
Discovery of Furan-tethered Triazolothiadiazoles and Triazolothia- diazines as Potent Tyrosinase Inhibitors for the Treatment of Skin Diseases: Insights from Kinetics Data and Computational Modeling
Available online: 06 August 2025More LessIntroductionTyrosinase, a copper-containing enzyme, is responsible for melanin production, and its overactivity can lead to hyperpigmentation.
MethodsThis study aimed to evaluate triazolothiadiazoles (3a-h, 4a-f) and triazolothiadiazines (5a-h) against human and mushroom tyrosinase isozymes.
ResultsSeveral derivatives, such as 3a-3b, 3d, 4c-4f, 5d, and 5e, were identified as potent and selective inhibitors of mushroom tyrosinase, with IC50 values ranging from 1.9 to 15.2 µM. Similarly, compounds 3f, 4b, 5a, and 5b effectively inhibited human tyrosinase, with IC50 values between 12.6 and 18.5 µM. Mechanism-based studies revealed that these active compounds exhibited competitive inhibition against both isozymes without any cytotoxic effects. In-silico analysis further demonstrated that these compounds fit well into the active site of both tyrosinase isozymes.
ConclusionAdditionally, the pharmacokinetic profile of these compounds highlighted promising drug-like properties, making them potential candidates for the development of effective therapeutics for skin disorders.
-
-
-
Recent Advancement of Fecal Microbiota Transplantation in the Treatment of Ulcerative Colitis- A Review
Authors: Yiting Lin, Peiru Wang, Xi Hu, Qinjia Wang, Quan Shi, Yanna Zhou, Ruisheng Liu and Xianbin CaiAvailable online: 06 August 2025More LessFecal Microbiota Transplantation (FMT) involves the transfer of gut microbiota from healthy donors to recipients, aiming to reestablish microbial equilibrium within the gastrointestinal tract. The human gut harbors a complex and diverse microbial ecosystem, comprising bacteria, viruses, and fungi, that is essential for maintaining intestinal homeostasis. Emerging evidence indicates a strong association between gut microbial dysbiosis and the pathogenesis of Ulcerative Colitis (UC). FMT has been shown to modulate microbial composition, alter immune signaling pathways, enhance intestinal barrier function, and influence the production of proinflammatory mediators, thereby affecting disease progression. This review critically examines the efficacy, safety, modulatory factors, combination therapies, and predictive strategies associated with FMT in the context of UC. The findings suggest that FMT represents a highly promising therapeutic modality for UC. Overall, this review aims to provide a comprehensive and impartial synthesis of current knowledge regarding FMT, offering deeper insights into its therapeutic potential and clinical applicability in UC management.
-
-
-
Hybrids/Conjugates/Chimera Drugs-Antimicrobial Hybrids: Antibiotics, Antifungals, Antituberculars, Antimalarials
Available online: 04 August 2025More LessAntimicrobial hybrids are compounds that can inhibit, stop the growth of, or kill microorganisms, including bacteria, fungi, and parasites. Antibiotics, a subset of antimicrobial agents, specifically target bacteria and include well-established classes such as β-lactams, macrolides, quinolones, and oxazolidinones. Other antimicrobial hybrids are designed for treating a wide range of diseases, including fungal infections, leishmaniasis, parasitic diseases (such as trypanosomiasis and malaria), leprosy, and tuberculosis. Some hybrids are designed to treat a variety of diseases. This review highlights studies primarily published between 2000 and 2023, with a few from 2024, underscoring the dynamic and rapidly evolving nature of antimicrobial hybrid research.
-