- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 31, Issue 40, 2024
Current Medicinal Chemistry - Volume 31, Issue 40, 2024
Volume 31, Issue 40, 2024
-
-
Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer
Authors: Mohammed Alnukhali, Omar Altabbakh, Ammad Ahmad Farooqi, Alan Pollack, Sylvia Daunert, Sapna Deo and Wensi TaoProstate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
-
-
-
Artificial Intelligence Application for Anti-tumor Drug Synergy Prediction
Authors: Zheng Peng, Yanling Ding, Pengfei Zhang, Xiaolan Lv, Zepeng Li, Xiaoling Zhou and Shigao HuangCurrently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti-tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.
-
-
-
Evaluation of Treatments with Radiotherapy Alone and Radiotherapy Plus Chemo-immunotherapy in Patients with Primary Liver Cancer based on Blood Biomarkers
Authors: Shigao Huang, Yutian Yin, Jianping Li, Mei Shi, Huijie Bian and Lina ZhaoPurposeIt is critical to assess primary liver cancer patients likely to benefit from radiotherapy (RT) or RT plus chemo-immunotherapy. Many potential peripheral biomarkers from blood samples have been proposed for clinical application. Therefore, the aim of this study was to evaluate treatments with radiotherapy alone and radiotherapy plus chemo-immunotherapy in patients with unresectable primary liver cancer based on blood biomarkers.
MethodsFrom January, 2017, to February, 2022, 63 unresectable primary liver cancer patients receiving radiotherapy alone (RT, n = 21) or radiotherapy plus chemo-immunotherapy (RT plus C/IT, n = 42) were included in this study. We compared the clinical outcomes and adverse effects of these two groups. Also, distant metastasis-free survival (DMFS), overall survival (OS), and progress-free survival (PFS) were retrospectively analyzed. Finally, univariable and multivariable Cox analyses were used to explore the prognostic role of blood biochemical biomarkers.
ResultsIn this study, 1, 2, and 3 years of OS after RT treatment were 63.9%, 27.0%, and 13.5%, and after RT plus C/IT were 68.2%, 37.0%, and 24.7%, respectively (p = 0.617). Compared with baseline, white blood cells (WBC) and lymphocytes were significantly decreased after RT (p = 0.002 and p = 0.001, respectively) or RT plus C/IT therapy (p = 0.135 and p<0.001, respectively). In multivariable Cox regression analyses, higher lymphocyte counts before RT (pre-Lymphocyte) were associated with better OS and PFS (HR=0.439, p = 0.023; HR=0.539, p = 0.053; respectively), and higher lymphocyte counts before RT (pre-Platelets) were a poor prognostic factor associated with DMFS (HR=1.013, p = 0.040). Importantly, OS and PFS were significantly better for patients (pre-Lymphocyte ≥1.10 x 109/L) (p = 0.006; p = 0.066, respectively). The DMFS was significantly better for patients (pre-platelets < 233.5 ×109/L) (p<0.001).
ConclusionOur evaluation of blood biomarkers before and after radiotherapy or plus chem-immunotherapy for primary liver cancer revealed a potential marker for clinics to decide on precise treatment strategies.
-
-
-
Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase
Background/AimGlioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations.
MethodsApproximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively.
ResultsAmong those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM).
ConclusionThis study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.
-
-
-
Rhodotorulic Acid and its Derivatives: Synthesis, Properties, and Applications
Authors: Joanna Stefaniak, Michał Grzegorz Nowak and Andrzej Stanisław SkwareckiSiderophores are low molecular weight compounds produced by microorganisms to scavenge iron in iron-deficient environments. Rhodotorulic acid, a natural hydroxamate siderophore, plays a vital role in iron acquisition for fungi and bacteria. As the simplest natural hydroxamate siderophore, it exhibits a high affinity for ferric ions, enabling it to form stable complexes that facilitate iron uptake and transport within microorganisms. This article provides a comprehensive analysis of this hydroxamate siderophore, rhodotorulic acid, its synthesis, physicochemical properties, and biological significance. It also explores its applications in antifungal and plant protection strategies. Insights into RA derivatives reveal distinct biological effects and applications with potential in various fields, from antioxidants to antifungals. Rhodotorulic acid and its derivatives show promise for novel therapies, plant protection strategies, and iron supplementation in agriculture. Understanding their properties could advance science and medicine with sustainable practices.
-
-
-
Effects of Consuming Repeatedly Heated Edible Oils on Cardiovascular Diseases: A Narrative Review
Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.
-
-
-
Fluvastatin: A Choice for COVID-19-associated Mucormycosis Management
Authors: Alireza Tavakkoli, Thomas P. Johnston and Amirhossein SahebkarSARS-CoV-2 invades the respiratory tract epithelium and can result in systemic inflammation prior to an infection caused by either bacteria or fungus. COVID-19-associated mucormycosis (CAM) is a serious condition that can occur during the time of the disease due to increased administration of corticosteroids. Various studies have suggested that statins may improve clinical outcomes in COVID-19 patients. According to several preclinical reports, fluvastatin was shown to exert direct and indirect synergistic antifungal activity. Thus, fluvastatin could be considered a potential antifungal agent when no other option is available. Furthermore, in comparison with other statins, fluvastatin exhibits the fewest drug/drug interactions with anti-Mucorales azoles (e.g., isavuconazole and posaconazole), as well as with medicines that are used in solid organ transplant recipients (e.g., cyclosporine) and HIV-positive individuals (e.g., ritonavir); two groups of patients that have a higher risk of infection with Mucorales fungi following a SARS-CoV-2 infection.
-
-
-
Research Progress of Pyroptosis in Renal Diseases
Authors: Boyan Hu, Kuai Ma, Wei Wang, Zhongyu Han, Mingxuan Chi, Moussa Ide Nasser and Chi LiuKidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.
-
-
-
Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy
Authors: Ayşe Hale Alkan, Mine Ensoy and Demet Cansaran-DumanIn the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
-
-
-
Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer
Authors: Jie Li, Siyi Xu, Feng Zhu, Fei Shen, Tianyi Zhang, Xin Wan, Saisai Gong, Geyu Liang and Yonglin ZhouGastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multi-omics data; iii) the integrated analysis of multi-omics data using machine learning techniques.
-
-
-
Synthesis and Anti-bacterial Activity of New Substituted 2-trifluoromethyl-4-quinolinylhydrazone Analogs against Mycobacterium tuberculosis Strains
BackgroundTuberculosis (TB) is a serious disease that still affects humanity, despite being old, caused by the bacterium Mycobacterium tuberculosis (Mtb). The emergence of drug-resistant strains has alarmed governments and international organizations, such as the World Health Organization (WHO). The need for research on new drugs that are effective in a shorter treatment time and active against resistant strains still persists.
ObjectiveThe objective of this study is to synthesize and evaluate forty-four substituted 2-trifluoromethyl-4-quinolinylhydrazone analogs, as probable inhibitors of Mycobacterium tuberculosis growth.
MethodsThe anti-mycobacterial activities of all tested compounds against Mycobacterium tuberculosis strains, as well as the cytotoxicity test, were evaluated using the in vitro microplate procedure with broth microdilution assay.
ResultsThirteen compounds exhibited some activity against sensitive strain ATCC 27294, six of which were the most active: 4a, 4c, 6a, 6b, 6c, and 6g; with MIC around 7 - 8 μM, close to that presented by ethambutol (15.9 μM), a drug used in the treatment of tuberculosis. These same compounds also were active against a resistant strain of Mtb (T113), with MIC around 7 – 8 μM. Three of these compounds 4a, 6a, and 6c were not cytotoxic against Vero cells at concentrations near the MIC.
ConclusionThis study indicates the importance of the hydrazone function to obtain promising anti-TB compounds and open new perspectives for drug development.
-
-
-
Quantitative Structure-activity Relationship (QSAR) Modelling of Indomethacin Derivatives using Regression Analysis
Authors: Neerja Shukla and Bechan SharmaBackgroundIndomethacin is a non-steroidal anti-inflammatory drug (NSAID) used for medication to reduce fever, spondylitis, or shoulder pain. It mainly works by the inhibition of prostaglandins, the endogenous signaling molecules.
MethodsFifteen indomethacin derivatives have been analyzed in relation to their physicochemical and molecular properties. Two-dimensional (2D) structures of fifteen indomethacin derivatives were drawn using the ACD Lab Chem Sketch version. Most of the topological parameters, such as wiener index (W), mean wiener index (Wa), Balaban indices (J), Balaban centric index (BAC), and molecular connectivity (χ), were calculated by using E Dragon software. The most common molecular file formats accepted in E-Dragon software were SMILES notations created online by Babel software and 2D structures of various derivatives, which were converted into 3D optimized structures using online CORINA, provided by Molecular Networks GMBH. 3D structures of compounds were also drawn on Gauss View software for calculations of various density functional theory (DFT) based quantum chemical descriptors, such as total energy (TE), softness (S), hardness (η), chemical potential (µ), highest occupied molecular orbital energy (HOMO), and lowest unoccupied molecular orbital energy (LUMO). All species were fully optimized in the gas phase with a 6-31+G* basis set. The harmonic vibrational frequency calculations were used to confirm that the optimized structures were minima, as characterized by positive vibrational frequencies.
ResultsCombinations of various descriptors, such as D, ID, IOR, Log P, Mr, Mv, Mw, Pc, BAC, Pz, St, W, Wa, 0χ, 1χ, 2χ,3χ,4χ, 5χ, and Xeq have been found to be significant for modeling of activity. QSAR model no. 2: pIC50= -20.605 (±6.600) IOR - 0.747 (±0.454) I1 -5.083 (±3.478) Xeq + 51.647 optimized with empirical parameters with high statistical quality (R= 0.921, R2=0.848) was found to be the best model obtained.
ConclusionThe QSAR model obtained suggests that substituents with a lesser value of the index of refraction and less electronegative groups were favourable for the activity, whereas indomethacin derivatives with a CH2CH2NHCONH(CH2)3ONO2 group at R1 position were unfavourable for the activity. The results were critically discussed based on regression data and cross-validation techniques. Pogliani factor Q and the results of the LOO (leave-one-out) method confirmed the reliability and predictability of the proposed models that could be highly beneficial for the future designing of new analogues with higher potency.
-
Volumes & issues
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)