Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Currently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti-tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290777240301071513
2024-03-12
2024-11-02
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in the diagnosis of COVID-19: Challenges and perspectives.Int. J. Biol. Sci.20211761581158710.7150/ijbs.5885533907522
    [Google Scholar]
  3. HuangS. YangJ. ShenN. XuQ. ZhaoQ. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective.Semin. Cancer Biol.202389303710.1016/j.semcancer.2023.01.00636682439
    [Google Scholar]
  4. YueH. YuQ. LiuC. HuangY. JiangZ. ShaoC. ZhangH. MaB. WangY. XieG. ZhangH. LiX. KangN. MengX. HuangS. XuD. LeiJ. HuangH. YangJ. JiJ. PanH. ZouS. JuS. QiX. Machine learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study.Ann. Transl. Med.202081485910.21037/atm‑20‑302632793703
    [Google Scholar]
  5. ZhangJ. HuangS. XuY. WuJ. Diagnostic accuracy of artificial intelligence based on imaging data for preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis.Front. Oncol.20221276384210.3389/fonc.2022.76384235280776
    [Google Scholar]
  6. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
    [Google Scholar]
  7. PreuerK. LewisR.P.I. HochreiterS. BenderA. BulusuK.C. KlambauerG. DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning.Bioinformatics20183491538154610.1093/bioinformatics/btx80629253077
    [Google Scholar]
  8. PeinF. PinkertonR. BerthaudP. JonesP.K. DickG. VassalG. Dose finding study of oral PSC 833 combined with weekly intravenous etoposide in children with relapsed or refractory solid tumours.Eur. J. Cancer200743142074208110.1016/j.ejca.2007.07.00317716890
    [Google Scholar]
  9. DziadziuszkoR. CabanasG.E. RojasK. ChelstowskaM. BlaszkowskaM. DudziakR. RzymskiT. AngelosantoN. LittlewoodP. NogaiH. BoniV. LugowskaI. Phase I/II trial of RVU120, a CDK8/CDK19 inhibitor in patients with relapsed/refractory metastatic or advanced solid tumors.Eur. J. Cancer2022174S23S2310.1016/S0959‑8049(22)00865‑6
    [Google Scholar]
  10. MacyM. CashT. PintoN. PresseyJ.G. SzalontayL. FurmanW.L. BukowinskiA. FosterJ.H. FriedmanG.K. HaDuongJ. FoxE. WeigelB.J. GrevelJ. HuangF. PhelpsC. ChildsB.H. ChungJ. ChaturvediS. SchulzA. DuBoisS.G. Phase I dose-escalation study of the pan-PI3 K inhibitor copanlisib in children and adolescents with relapsed/refractory solid tumors.Eur. J. Cancer2022174S28S2910.1016/S0959‑8049(22)00878‑4
    [Google Scholar]
  11. NagaoK. MaedaM. MañucatN.B. UedaK. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20131831239840610.1016/j.bbalip.2012.11.00223153588
    [Google Scholar]
  12. AwadaA. CortésJ. MartínM. AftimosP. OliveiraM. TarruellaL.S. EspieM. LardelliP. ExtremeraS. GarcíaF.E.M. DelalogeS. Phase 2 study of trabectedin in patients with hormone receptor–positive, HER-2–negative, advanced breast carcinoma according to expression of xeroderma pigmentosum G gene.Clin. Breast Cancer201616536437110.1016/j.clbc.2016.05.00527266804
    [Google Scholar]
  13. LiuY.Y. HanT.Y. GiulianoA.E. HansenN. CabotM.C. Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance.J. Biol. Chem.2000275107138714310.1074/jbc.275.10.713810702281
    [Google Scholar]
  14. van VlerkenL.E. DuanZ. SeidenM.V. AmijiM.M. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer.Cancer Res.200767104843485010.1158/0008‑5472.CAN‑06‑164817510414
    [Google Scholar]
  15. MaheshwariR. TekadeM. GondaliyaP. KaliaK. D’EmanueleA. TekadeR.K. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers.Nanomedicine201712212653267510.2217/nnm‑2017‑021028960165
    [Google Scholar]
  16. MizrahyS. HalevyH.I. DammesN. MiloL.D. PeerD. Current progress in non-viral RNAi-based delivery strategies to lymphocytes.Mol. Ther.20172571491150010.1016/j.ymthe.2017.03.00128392163
    [Google Scholar]
  17. WeinsteinS. TokerI.A. EmmanuelR. RamishettiS. Hazan-HalevyI. RosenblumD. GoldsmithM. AbrahamA. BenjaminiO. BaireyO. RaananiP. NaglerA. LiebermanJ. PeerD. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies.Proc. Natl. Acad. Sci.20161131E16E2210.1073/pnas.151927311326699502
    [Google Scholar]
  18. MengH. LiongM. XiaT. LiZ. JiZ. ZinkJ.I. NelA.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line.ACS Nano2010484539455010.1021/nn100690m20731437
    [Google Scholar]
  19. WuD.D. SalahY.A. NgowiE.E. ZhangY.X. KhattakS. KhanN.H. WangY. LiT. GuoZ.H. WangY.M. JiX.Y. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration.iScience202326810732110.1016/j.isci.2023.10732137554468
    [Google Scholar]
  20. QiuC. WuY. GuoQ. ShiQ. ZhangJ. MengY. XiaF. WangJ. Preparation and application of calcium phosphate nanocarriers in drug delivery.Mater. Today Bio20221710050110.1016/j.mtbio.2022.10050136466957
    [Google Scholar]
  21. WangY. HouM. DuanS. ZhaoZ. WuX. ChenY. YinL. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury.Bioact. Mater.20221732033310.1016/j.bioactmat.2022.01.02635386446
    [Google Scholar]
  22. ZouS. CaoN. ChengD. ZhengR. WangJ. ZhuK. ShuaiX. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin.Int. J. Nanomedicine201273823383522888237
    [Google Scholar]
  23. LiuW. LiS.Y. HuangX.E. CuiJ.J. ZhaoT. ZhangH. Inhibition of tumor growth in vitro by a combination of extracts from Rosa roxburghii Tratt and Fagopyrum cymosum.Asian Pac. J. Cancer Prev.20121352409241410.7314/APJCP.2012.13.5.240922901230
    [Google Scholar]
  24. DengS. HuB. AnH.M. DuQ. XuL. ShenK.P. ShiX.F. WeiM.M. WuY. Teng-Long-Bu-Zhong-Tang, a chinese herbal formula, enhances anticancer effects of 5-fluorouracil in CT26 colon carcinoma.BMC Complement. Altern. Med.201313112810.1186/1472‑6882‑13‑12823758730
    [Google Scholar]
  25. GouH. WongC.C. ChenH. ShangH. SuH. ZhaiJ. LiuW. LiuW. SunD. WangX. YuJ. TRIP6 disrupts tight junctions to promote metastasis and drug resistance and is a therapeutic target in colorectal cancer.Cancer Lett.202357821643810.1016/j.canlet.2023.21643837827326
    [Google Scholar]
  26. BerettaG.L. Ferroptosis-induced cardiotoxicity and antitumor drugs.Curr. Med. Chem.20233110.2174/092986733166623071912445337469161
    [Google Scholar]
  27. ChenL. QingB.L. ZhengM.Y. Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways.Biomed Res Int2013201372378010.1155/2013/723780
    [Google Scholar]
  28. DormanS.N. BaranovaK. KnollJ.H.M. UrquhartB.L. MarianiG. CarcangiuM.L. RoganP.K. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.Mol. Oncol.20161018510010.1016/j.molonc.2015.07.00626372358
    [Google Scholar]
  29. GhaisaniF.D. WasitoI. FaturrahmanM. MufidahR. Prognosis cancer prediction model using deep belief network approach.J. Theor. Appl. Inf. Technol.2017952053695378
    [Google Scholar]
  30. WangL. YouZ.H. ChenX. XiaS.X. LiuF. YanX. ZhouY. SongK.J. A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network.J. Comput. Biol.201825336137310.1089/cmb.2017.013528891684
    [Google Scholar]
  31. GönenM. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization.Bioinformatics201228182304231010.1093/bioinformatics/bts36022730431
    [Google Scholar]
  32. BinatlıO.C. GönenM. MOKPE: Drug–target interaction prediction via manifold optimization based kernel preserving embedding.BMC Bioinformatics202324127610.1186/s12859‑023‑05401‑137407927
    [Google Scholar]
  33. KuenziB.M. ParkJ. FongS.H. SanchezK.S. LeeJ. KreisbergJ.F. MaJ. IdekerT. Predicting drug response and synergy using a deep learning model of human cancer cells.Cancer Cell2020385672684.e610.1016/j.ccell.2020.09.01433096023
    [Google Scholar]
  34. TsigelnyI.F. Artificial intelligence in drug combination therapy.Brief. Bioinform.20192041434144810.1093/bib/bby00429438494
    [Google Scholar]
  35. DingP. LuoJ. LiangC. XiaoQ. CaoB. LiG. Discovering synergistic drug combination from a computational perspective.Curr. Top. Med. Chem.2018181296597410.2174/156802661866618033014180429600766
    [Google Scholar]
  36. TorkamanniaA. OmidiY. FerdousiR. A review of machine learning approaches for drug synergy prediction in cancer.Brief. Bioinform.2022233bbac07510.1093/bib/bbac07535323854
    [Google Scholar]
  37. ChenW. LiuX. ZhangS. ChenS. Artificial intelligence for drug discovery: Resources, methods, and applications.Mol. Ther. Nucleic Acids20233169170210.1016/j.omtn.2023.02.01936923950
    [Google Scholar]
  38. SumathiS. SuganyaK. SwathiK. SudhaB. PoornimaA. VargheseC.A. AswathyR. A review on deep learning-driven drug discovery: Strategies, tools and applications.Curr. Pharm. Des.202329131013102510.2174/138161282966623041208413737055908
    [Google Scholar]
  39. WuL. GaoJ. ZhangY. SuiB. WenY. WuQ. LiuK. HeS. BoX. A hybrid deep forest-based method for predicting synergistic drug combinations.Cell Rep. Methods20233210041110.1016/j.crmeth.2023.10041136936075
    [Google Scholar]
  40. MurumägiA. UngureanuD. KhanS. ArjamaM. VälimäkiK. IanevskiA. IanevskiP. BergströmR. DiniA. KanervaA. KoranderK.R. TapperJ. LassusH. LoukovaaraM. MägiA. HirasawaA. AokiD. PietiäinenV. PellinenT. BützowR. AittokallioT. KallioniemiO. Drug response profiles in patient-derived cancer cells across histological subtypes of ovarian cancer: Real-time therapy tailoring for a patient with low-grade serous carcinoma.Br. J. Cancer2023128467869010.1038/s41416‑022‑02067‑z36476658
    [Google Scholar]
  41. ShahP.A. SambandamV. FernandezA.M. ZhaoH. MazumdarT. ShenL. WangQ. AhmedK.M. GhoshS. FrederickM.J. WangJ. JohnsonF.M. Sustained aurora kinase B expression confers resistance to PI3K inhibition in head and neck squamous cell carcinoma.Cancer Res.202282234444445610.1158/0008‑5472.CAN‑22‑117536169922
    [Google Scholar]
  42. ForslundS.K. ChakarounR. Zimmermann-KogadeevaM. MarkóL. WisnewskyA.J. NielsenT. SilvaM.L. SchmidtT.S.B. FalonyG. SilvaV.S. AdriouchS. AlvesR.J. AssmannK. BastardJ.P. BirknerT. CaesarR. ChillouxJ. CoelhoL.P. FezeuL. GalleronN. HelftG. IsnardR. JiB. KuhnM. Le ChatelierE. MyridakisA. OlssonL. PonsN. PriftiE. QuinquisB. RoumeH. SalemJ.E. SokolovskaN. TremaroliV. ColomerV.M. LewinterC. SøndertoftN.B. PedersenH.K. HansenT.H. AmouyalC. GalijatovicA.E.A. AndreelliF. BarthelemyO. BatisseJ-P. BeldaE. BerlandM. BittarR. BlottièreH. BosquetF. BoubritR. BourronO. CamusM. CassutoD. CianguraC. ColletJ-P. DaoM-C. DjebbarM. DoréA. EngelbrechtsenL. FellahiS. FromentinS. GalanP. GauguierD. GiralP. HartemannA. HartmannB. HolstJ.J. HornbakM. HoylesL. HulotJ-S. JaqueminetS. JørgensenN.R. JulienneH. JustesenJ. KammerJ. KrarupN. KerneisM. KhemisJ. KozlowskiR. LejardV. LevenezF. Lucas-MartiniL. MasseyR. Martinez-GiliL. MaziersN. Medina-StammingerJ. MontalescotG. MouteS. NevesA.L. OlanipekunM. Le PavinL.P. PoitouC. PoussetF. PouzouletL. MartinezR.A. RouaultC. SilvainJ. SvendstrupM. SwartzT. VanduyvenbodenT. VatierC. WaltherS. GøtzeJ.P. KøberL. VestergaardH. HansenT. ZuckerJ-D. HercbergS. OppertJ-M. LetunicI. NielsenJ. BäckhedF. EhrlichS.D. DumasM-E. RaesJ. PedersenO. ClémentK. StumvollM. BorkP. Combinatorial, additive and dose-dependent drug– microbiome associations.Nature2021600788950050510.1038/s41586‑021‑04177‑934880489
    [Google Scholar]
  43. JinW. StokesJ.M. EastmanR.T. ItkinZ. ZakharovA.V. CollinsJ.J. JaakkolaT.S. BarzilayR. Deep learning identifies synergistic drug combinations for treating COVID-19.Proc. Natl. Acad. Sci.202111839e210507011810.1073/pnas.210507011834526388
    [Google Scholar]
  44. DingY.Y. KimH. MaddenK. LoftusJ.P. ChenG.M. AllenD.H. ZhangR. XuJ. ChenC.H. HuY. TasianS.K. TanK. Network analysis reveals synergistic genetic dependencies for rational combination therapy in philadelphia chromosome-like acute lymphoblastic leukemia.Clin. Cancer Res.202127185109512210.1158/1078‑0432.CCR‑21‑055334210682
    [Google Scholar]
  45. JacquelotN. SeilletC. WangM. PizzollaA. LiaoY. Hediyeh-zadehS. Grisaru-TalS. LouisC. HuangQ. SchreuderJ. GuimaraesS.F.F. de GraafC.A. ThiaK. MacdonaldS. CamilleriM. LuongK. ZhangS. ChopinM. HauerM.T. NuttS.L. UmanskyV. CiricB. GroomJ.R. FosterP.S. HansbroP.M. McKenzieA.N.J. GrayD.H.D. BehrenA. CebonJ. VivierE. WicksI.P. TrapaniJ.A. MunitzA. DavisM.J. ShiW. NeesonP.J. BelzG.T. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.Nat. Immunol.202122785186410.1038/s41590‑021‑00943‑z34099918
    [Google Scholar]
  46. McConnellM.J. GalianoM.A.J. Designing multi-antigen vaccines against Acinetobacter baumannii using systemic approaches.Front. Immunol.20211266674210.3389/fimmu.2021.66674233936107
    [Google Scholar]
  47. GomesA.L.V. WeeL.J.K. KhanA.M. GilL.H.V.G. MarquesE.T.A.Jr Calzavara-SilvaC.E. TanT.W. Classification of dengue fever patients based on gene expression data using support vector machines.PLoS One201056e1126710.1371/journal.pone.001126720585645
    [Google Scholar]
  48. MudaliD. TeuneL.K. RenkenR.J. LeendersK.L. RoerdinkJ.B.T.M. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.Comput. Math. Methods Med.2015201511010.1155/2015/13692125918550
    [Google Scholar]
  49. SuP. WuX. LiC. YanC. AnY. LiuS. A versatile method for quantitative analysis of total iron content in iron ore using laser-induced breakdown spectroscopy.Appl. Spectrosc.202377214015010.1177/0003702822114110236348501
    [Google Scholar]
  50. PelliséF. BurrielS.M. SmithJ.S. HaddadS. KellyM.P. CasademuntV.A. GruesoS.P.F.J. BessS. GumJ.L. BurtonD.C. AcaroğluE. KleinstückF. LafageV. ObeidI. SchwabF. ShaffreyC.I. AlanayA. AmesC. Development and validation of risk stratification models for adult spinal deformity surgery.J. Neurosurg. Spine201911310.3171/2019.3.SPINE18145231252385
    [Google Scholar]
  51. YanF.J. ChenX.H. QuanX.Q. WangL.L. WeiX.Y. ZhuJ.L. Development and validation of an interpretable machine learning model-Predicting mild cognitive impairment in a high-risk stroke population.Front. Aging Neurosci.202315118035110.3389/fnagi.2023.118035137396650
    [Google Scholar]
  52. LiuQ. ZhangM. HeY. ZhangL. ZouJ. YanY. GuoY. Predicting the risk of incident type 2 diabetes mellitus in chinese elderly using machine learning techniques.J. Pers. Med.202212690510.3390/jpm1206090535743691
    [Google Scholar]
  53. GuanX. ZhangB. FuM. LiM. YuanX. ZhuY. PengJ. GuoH. LuY. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study.Ann. Med.202153125726610.1080/07853890.2020.186856433410720
    [Google Scholar]
  54. ZhangW. JiangH. HuangP. WuG. WangQ. LuanX. ZhangH. YuD. WangH. LuD. WangH. AnH. LiuS. ZhangW. Dracorhodin targeting CMPK2 attenuates inflammation: A novel approach to sepsis therapy.Clin. Transl. Med.20231310e144910.1002/ctm2.144937859535
    [Google Scholar]
  55. LoscalzoJ. Molecular interaction networks and drug development: Novel approach to drug target identification and drug repositioning.FASEB J.2023371e2266010.1096/fj.202201683R36468661
    [Google Scholar]
  56. LuS. SunX. ZhouZ. TangH. XiaoR. LvQ. WangB. QuJ. YuJ. SunF. DengZ. TianY. LiC. YangZ. YangP. RaoB. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation.Front. Immunol.202314123557510.3389/fimmu.2023.123557537799727
    [Google Scholar]
  57. XuF. MengQ. WuF. WangY. YangW. TongY. LiuL. ChenX. Identification of warning transition points from hepatitis B to hepatocellular carcinoma based on mutation accumulation for the early diagnosis and potential drug treatment of HBV-HCC.Oxid. Med. Cell. Longev.2022202212910.1155/2022/347217936105485
    [Google Scholar]
  58. DuL. DuD.H. ChenB. DingY. ZhangT. XiaoW. Anti-inflammatory activity of Sanjie Zhentong capsule assessed by network pharmacology analysis of adenomyosis treatment.Drug Des. Devel. Ther.20201469771310.2147/DDDT.S22872132109994
    [Google Scholar]
  59. OslinD.W. LynchK.G. ShihM.C. IngramE.P. WrayL.O. ChapmanS.R. KranzlerH.R. GelernterJ. PyneJ.M. StoneA. DuVallS.L. LehmannL.S. ThaseM.E. AslamM. BatkiS.L. BjorkJ.M. BlowF.C. BrennerL.A. ChenP. DesaiS. DieperinkE.W. FearsS.C. FullerM.A. GoodmanC.S. GrahamD.P. HaasG.L. HamnerM.B. HelstromA.W. HurleyR.A. IcardiM.S. JurjusG.J. KilbourneA.M. KreyenbuhlJ. LacheD.J. LieskeS.P. LynchJ.A. MeyerL.J. MontalvoC. MuralidharS. OstacherM.J. PaschallG.Y. PfeifferP.N. PrietoS. PrzygodzkiR.M. RanganathanM. Rodriguez-SuarezM.M. RoggenkampH. SchichmanS.A. SchneeweisJ.S. SimonettiJ.A. SteinhauerS.R. SuppesT. UmbertM.A. VassyJ.L. VooraD. WiechersI.R. WoodA.E. Effect of pharmacogenomic testing for drug-gene interactions on medication selection and remission of symptoms in major depressive disorder.JAMA2022328215116110.1001/jama.2022.980535819423
    [Google Scholar]
  60. NaranbhaiV. ViardM. DeanM. GrohaS. BraunD.A. LabakiC. ShuklaS.A. YukiY. ShahP. ChinK. Wind-RotoloM. MuX.J. RobbinsP.B. GusevA. ChoueiriT.K. GulleyJ.L. CarringtonM. HLA-A*03 and response to immune checkpoint blockade in cancer: An epidemiological biomarker study.Lancet Oncol.202223117218410.1016/S1470‑2045(21)00582‑934895481
    [Google Scholar]
  61. Díaz-GilL. Brasó-MaristanyF. LocatelliC. CentaA. GyőrffyB. OcañaA. PratA. PandiellaA. Modelling hypersensitivity to trastuzumab defines biomarkers of response in HER2 positive breast cancer.J. Exp. Clin. Cancer Res.202140131310.1186/s13046‑021‑02098‑z34620206
    [Google Scholar]
  62. SunY. GaoY. ChenJ. HuangL. DengP. ChenJ. ChaiK.X.Y. HongJ.H. ChanJ.Y. HeH. WangY. CheahD. LimJ.Q. ChiaB.K.H. HuangD. LiuL. LiuS. WangX. TengY. PangD. GrigoropoulosN.F. TehB.T. YuQ. LimS.T. LiW. OngC.K. HuangH. TanJ. CREBBP cooperates with the cell cycle machinery to attenuate chidamide sensitivity in relapsed/refractory diffuse large B-cell lymphoma.Cancer Lett.202152126828010.1016/j.canlet.2021.09.00234481935
    [Google Scholar]
  63. LiH. LinW.P. ZhangZ.N. SunZ.J. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures.Acta Biomater.202317211510.1016/j.actbio.2023.09.02837739247
    [Google Scholar]
  64. NardiF. PerurenaN. SchadeA.E. LiZ.H. NgoK. IvanovaE.V. SaldanhaA. LiC. GokhaleP.C. HataA.N. BarbieD.A. PaweletzC.P. JänneP.A. CichowskiK. Cotargeting a MYC/eIF4A-survival axis improves the efficacy of KRAS inhibitors in lung cancer.J. Clin. Invest.202313316e16765110.1172/JCI16765137384411
    [Google Scholar]
  65. LuoK. QianZ. JiangY. LvD. ZhuK. ShaoJ. HuY. LvC. HuangQ. GaoY. JinS. ShangD. Characterization of the metabolic alteration-modulated tumor microenvironment mediated by TP53 mutation and hypoxia.Comput. Biol. Med.202316310707810.1016/j.compbiomed.2023.10707837356294
    [Google Scholar]
  66. WangJ. YangH. ZhengD. SunY. AnL. LiG. ZhaoZ. Integrating network pharmacology and pharmacological evaluation to reveal the therapeutic effects and potential mechanism of S-allylmercapto-N-acetylcysteine on acute respiratory distress syndrome.Int. Immunopharmacol.202312111051610.1016/j.intimp.2023.11051637369159
    [Google Scholar]
  67. ZhangM. ZhangX. PeiJ. GuoB. ZhangG. LiM. HuangL. Identification of phytochemical compounds of Fagopyrum dibotrys and their targets by metabolomics, network pharmacology and molecular docking studies.Heliyon202393e1402910.1016/j.heliyon.2023.e1402936911881
    [Google Scholar]
  68. TangS. ChenS. TanX. XuM. XuX. Network pharmacology prediction and molecular docking-based strategy to explore the pharmacodynamic substances and mechanism of “Mung Bean” against bacterial infection.Drug Dev. Ind. Pharm.2022482586810.1080/03639045.2022.209439935786126
    [Google Scholar]
  69. DingZ. ZhongR. YangY. XiaT. WangW. WangY. XingN. LuoY. LiS. ShangL. ShuZ. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae.Pharmacol. Res.202015610475910.1016/j.phrs.2020.10475932200026
    [Google Scholar]
  70. HuangL. LiF. ShengJ. XiaX. MaJ. ZhanM. WongS.T.C. DrugComboRanker: Drug combination discovery based on target network analysis.Bioinformatics20143012i228i23610.1093/bioinformatics/btu27824931988
    [Google Scholar]
  71. KelvinJ.M. ChimentiM.L. ZhangD.Y. WilliamsE.K. MooreS.G. HumberG.M. BaxterT.A. BirnbaumL.A. QuiM. ZeccaH. ThapaA. JainJ. JuiN.T. WangX. FuH. DuY. KempM.L. LamW.A. GrahamD.K. DeRyckereD. DreadenE.C. Development of constitutively synergistic nanoformulations to enhance chemosensitivity in T-cell leukemia.J. Control. Release202336147048210.1016/j.jconrel.2023.07.04537543290
    [Google Scholar]
  72. JeonM. KimS. ParkS. LeeH. KangJ. In silico drug combination discovery for personalized cancer therapy.BMC Syst. Biol.201812S21610.1186/s12918‑018‑0546‑129560824
    [Google Scholar]
  73. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  74. HuangS.T. LiuL.R. ChiuH.W. HuangM.Y. TsaiM.F. Deep convolutional neural network for rib fracture recognition on chest radiographs.Front. Med.202310117879810.3389/fmed.2023.117879837593404
    [Google Scholar]
  75. LiH. HouJ. AdhikariB. LyuQ. ChengJ. Deep learning methods for protein torsion angle prediction.BMC Bioinformatics201718141710.1186/s12859‑017‑1834‑228923002
    [Google Scholar]
  76. WangX. CaoK. GuoE. MaoX. anC. GuoL. ZhangC. YangX. SunJ. YangW. LiX. MiaoS. Integrating DOI in T classification improves the predictive performance of laryngeal cancer staging.Cancer Biol. Ther.2023241216904010.1080/15384047.2023.216904036729904
    [Google Scholar]
  77. CaoR. YaoZ. LinZ. JiaoP. CuiL. The performance of the 2022 ACR/EULAR classification criteria for Takayasu’s arteritis as compared to the 1990 ACR classification criteria in a Chinese population.Clin. Exp. Med.20232385291529710.1007/s10238‑023‑01140‑y37582910
    [Google Scholar]
  78. van StigtM.N. CampsC.R. CoutinhoJ.M. MarqueringH.A. DoelkaharB.S. PottersW.V. The effect of artifact rejection on the performance of a convolutional neural network based algorithm for binary EEG data classification.Biomed. Signal Process. Control20238510503210.1016/j.bspc.2023.105032
    [Google Scholar]
  79. MufazzalS. MuzakkirS.M. KhanamS. Enhancing the classification performance of machine learning techniques by using hjorth’s and other statistical parameters for precise tracking of naturally evolving faults in ball bearings.Int. J. Acoust. Vib.202227213815010.20855/ijav.2022.27.21847
    [Google Scholar]
  80. Al-MayoufS.M. AkbarL. AbdwaniR. GinesiG. VolpiS. GattornoM. BakryR. AlHashimS. AlsaleemA. Performance of the EULAR/ACR 2019 classification criteria for systemic lupus erythematous in monogenic lupus.Clin. Rheumatol.20224192721272710.1007/s10067‑022‑06209‑935590114
    [Google Scholar]
  81. OginoS. KingE.E. BeckA.H. ShermanM.E. MilnerD.A. GiovannucciE. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science.Am. J. Epidemiol.2012176865966710.1093/aje/kws22622935517
    [Google Scholar]
  82. InamuraK. HamadaT. BullmanS. UgaiT. YachidaS. OginoS. Cancer as microenvironmental, systemic and environmental diseases: Opportunity for transdisciplinary microbiomics science.Gut202271102107212210.1136/gutjnl‑2022‑32720935820782
    [Google Scholar]
  83. OginoS. StampferM. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology.J. Natl. Cancer Inst.2010102636536710.1093/jnci/djq03120208016
    [Google Scholar]
  84. CurtinK. SamowitzW.S. WolffR.K. HerrickJ. CaanB.J. SlatteryM.L. Somatic alterations, metabolizing genes and smoking in rectal cancer.Int. J. Cancer2009125115816410.1002/ijc.2433819358278
    [Google Scholar]
  85. OginoS. NowakJ.A. HamadaT. MilnerD.A.Jr NishiharaR. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology.Annu. Rev. Pathol.20191418310310.1146/annurev‑pathmechdis‑012418‑01281830125150
    [Google Scholar]
  86. OginoS. ChanA.T. FuchsC.S. GiovannucciE. Molecular pathological epidemiology of colorectal neoplasia: An emerging transdisciplinary and interdisciplinary field.Gut201160339741110.1136/gut.2010.21718221036793
    [Google Scholar]
  87. HaydonA.M.M. MacinnisR.J. EnglishD.R. GilesG.G. Effect of physical activity and body size on survival after diagnosis with colorectal cancer.Gut2006551626710.1136/gut.2005.06818915972299
    [Google Scholar]
  88. MeyerhardtJ.A. HeseltineD. NiedzwieckiD. HollisD. SaltzL.B. MayerR.J. ThomasJ. NelsonH. WhittomR. HantelA. SchilskyR.L. FuchsC.S. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: Findings from CALGB 89803.J. Clin. Oncol.200624223535354110.1200/JCO.2006.06.086316822843
    [Google Scholar]
  89. Artificial intelligence predicts drug response.Cancer Discov.202111145
    [Google Scholar]
  90. RatnerB. Statistical and machine-learning data mining. Techniques for better predictive modelling and analysis of big data3rd edBoca Raton, FLCRC Press Taylor & Francis Group2017
    [Google Scholar]
  91. BejaniM.M. GhateeM. A systematic review on overfitting control in shallow and deep neural networks.Artif. Intell. Rev.20215486391643810.1007/s10462‑021‑09975‑1
    [Google Scholar]
  92. WangS. LiD. SongX. WeiY. LiH. A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification.Expert Syst. Appl.20113878696870210.1016/j.eswa.2011.01.077
    [Google Scholar]
  93. Shalev-ShwartzS. Ben-DavidS. Understanding machine learning from theory to algorithmsNew YorkCambridge University press201410.1017/CBO9781107298019
    [Google Scholar]
  94. JamesG. WittenD. HastieT. TibshiraniR. An introduction to statistical learning: with applications in RNew YorkSpringer201310.1007/978‑1‑4614‑7138‑7
    [Google Scholar]
  95. TzafestasS.G. DalianisP.J. AnthopoulosG. On the overtraining phenomenon of backpropagation neural networks.Math. Comput. Simul.1996405-650752110.1016/0378‑4754(95)00003‑8
    [Google Scholar]
  96. NgA.Y. Preventing” overfitting” of cross-validation data.Proceedings of the 14th international conference on machine learning (ICML)199797245253
    [Google Scholar]
  97. CamachoD.M. CollinsK.M. PowersR.K. CostelloJ.C. CollinsJ.J. Next-generation machine learning for biological networks.Cell201817371581159210.1016/j.cell.2018.05.01529887378
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290777240301071513
Loading
/content/journals/cmc/10.2174/0109298673290777240301071513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test