Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Siderophores are low molecular weight compounds produced by microorganisms to scavenge iron in iron-deficient environments. Rhodotorulic acid, a natural hydroxamate siderophore, plays a vital role in iron acquisition for fungi and bacteria. As the simplest natural hydroxamate siderophore, it exhibits a high affinity for ferric ions, enabling it to form stable complexes that facilitate iron uptake and transport within microorganisms. This article provides a comprehensive analysis of this hydroxamate siderophore, rhodotorulic acid, its synthesis, physicochemical properties, and biological significance. It also explores its applications in antifungal and plant protection strategies. Insights into RA derivatives reveal distinct biological effects and applications with potential in various fields, from antioxidants to antifungals. Rhodotorulic acid and its derivatives show promise for novel therapies, plant protection strategies, and iron supplementation in agriculture. Understanding their properties could advance science and medicine with sustainable practices.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673275636231122062529
2024-01-04
2024-11-02
Loading full text...

Full text loading...

References

  1. HiderR.C. KongX. Chemistry and biology of siderophores.Nat. Prod. Rep.201027563765710.1039/b906679a20376388
    [Google Scholar]
  2. MiethkeM. MarahielM.A. Siderophore-based iron acquisition and pathogen control.Microbiol. Mol. Biol. Rev.200771341345110.1128/MMBR.00012‑07
    [Google Scholar]
  3. HaasH. Molecular genetics of fungal siderophore biosynthesis and uptake: The role of siderophores in iron uptake and storage.Appl. Microbiol. Biotechnol.200362431633010.1007/s00253‑003‑1335‑212759789
    [Google Scholar]
  4. RaymondK.N. AllredB.E. SiaA.K. Coordination chemistry of microbial iron transport.Acc. Chem. Res.20154892496250510.1021/acs.accounts.5b0030126332443
    [Google Scholar]
  5. MessengerA.J.M. BarclayR. Bacteria, iron and pathogenicity.Biochem. Educ.1983112546310.1016/0307‑4412(83)90043‑2
    [Google Scholar]
  6. SahS. SinghR. Siderophore: Structural and functional characterisation – a comprehensive review.Agriculture20156197114
    [Google Scholar]
  7. LawlorM.S. O’ConnorC. MillerV.L. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection.Infect. Immun.20077531463147210.1128/IAI.00372‑0617220312
    [Google Scholar]
  8. HaasH. Fungal siderophore metabolism with a focus on Aspergillus fumigatus.Nat. Prod. Rep.201431101266127610.1039/C4NP00071D25140791
    [Google Scholar]
  9. GrinterR. LithgowT. Determination of the molecular basis for coprogen import by Gram-negative bacteria.Intercollegiate US-China J.20196340141110.1107/S2052252519002926
    [Google Scholar]
  10. TilbrookG.S. HiderR.C. Iron chelators for clinical use.Met. Ions Biol. Syst.1998356917309444773
    [Google Scholar]
  11. StradlingG.N. Decorporation of actinides: a review of recent research.J. Alloys Compd.1998271-273727710.1016/S0925‑8388(98)00027‑9
    [Google Scholar]
  12. LuY. MillerM.J. Syntheses and studies of multiwarhead siderophore-5-fluorouridine conjugates.Bioorg. Med. Chem.19997123025303810.1016/S0968‑0896(99)00248‑510658609
    [Google Scholar]
  13. GradyR.W. PetersonC.M. JonesR.L. GrazianoJ.H. BhargavaK.K. BerdoukasV.A. KokkiniG. LoukopoulosD. CeramiA. Rhodotorulic acid-investigation of its potential as an iron-chelating drug.Pharmacol. Exp. Ther.1979209342348
    [Google Scholar]
  14. AtkinC.L. NeilandsJ.B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization.Biochemistry19687103734373910.1021/bi00850a0544971459
    [Google Scholar]
  15. AtkinC.L. NeilandsJ.B. PhaffH.J. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum.J. Bacteriol.1970103372273310.1128/jb.103.3.722‑733.19705529038
    [Google Scholar]
  16. BrichL.E. RuddatM. Extracellular Accumulation of rhodotorulic acid in strains of Microbotryum violaceum.Int. J. Plant Sci.199815921322010.1086/297541
    [Google Scholar]
  17. Van der HelmD. WinkelmannG. Hydroxamates and polycarboxylates as iron transport agents (Siderophores) in fungi.Metal Ions in Fungi1st ed.CRC Press1994
    [Google Scholar]
  18. PecoraroL. WangX. ShahD. SongX. KumarV. ShakoorA. TripathiK. RamtekeP.W. RaniR. J. Fungi (Basel)20228128
    [Google Scholar]
  19. De LucaN.G. WoodP.M. Iron uptake by fungi: Contrasted mechanisms with internal or external reduction.Adv. Microb. Physiol.200043397410.1016/S0065‑2911(00)43002‑X10907554
    [Google Scholar]
  20. NeilandsJ.B. KonopkaK. SchwynB. FrancisR.T. PawB.H. BaggA. Iron Transport in Microbes.Plants and Animals1987133
    [Google Scholar]
  21. AnkeT. DiekmannH. Biosynthesis of sideramines in fungi. Rhodotorulic acid synthetase from extracts of Rhodotorula glutinis.FEBS Lett.197227225926210.1016/0014‑5793(72)80635‑54677112
    [Google Scholar]
  22. LeongS.A. WinkelmannG. Molecular biology of iron transport in fungi.Met. Ions Biol. Syst.1998351471869444761
    [Google Scholar]
  23. AkresH. LlinasM. NeilandsJ.B. Protonated amino acid precursor studies on rhodotorulic acid biosynthesis in deuterium oxide media.Biochemistry1972122283229110.1021/bi00762a012
    [Google Scholar]
  24. MakarovaE.N. GrigoryanD.T. [Effect of urea and amino acids of the ornithine cycle on the biomass accumulation and amino acids synthesis by Candida guilliermondii].Prikl. Biokhim. Mikrobiol.19751133223251208387
    [Google Scholar]
  25. CalventeV. de OrellanoM.E. SansoneG. BenuzziD. Sanz de TosettiM.I. Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds.J. Ind. Microbiol. Biotechnol.200126422622910.1038/sj.jim.7000117
    [Google Scholar]
  26. AndersenD. RenshawJ.C. WiebeM.G. Rhodotorulic acid production by Rhodotorula mucilaginosa.Mycol. Res.2003107894995610.1017/S095375620300822014531617
    [Google Scholar]
  27. DasA. PrasadR. SrivastavaA. GiangP.H. BhatnagarK. VarmaA. Fungal siderophores: Structure, functions and regulation.Soc. Biol.20071214210.1007/978‑3‑540‑71160‑5_1
    [Google Scholar]
  28. MatzankeB.F. Iron storage in fungi. WinkelmannG. WingDR. Metal Ions in FungiNYMarcel Dekker1994179214
    [Google Scholar]
  29. CarranoC.J. RaymondK.N. Coordination chemistry of microbial iron transport compounds: Rhodotorulic acid and iron uptake in Rhodotorula pilimanae.J. Bacteriol.19781361697410.1128/jb.136.1.69‑74.197830750
    [Google Scholar]
  30. MüllerG. BarclayS.J. RaymondK.N. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid.J. Biol. Chem.198526026139161392010.1016/S0021‑9258(17)38663‑54055765
    [Google Scholar]
  31. MatzankeB.F. BillE. TrautweinA.X. WinkelmannG. Siderophores as iron storage compounds in the yeastsRhodotorula minuta and Ustilago sphaerogena detected by in vivo Mössbauer spectroscopy.Hyperfine Interact.1990581-42359236410.1007/BF02398344
    [Google Scholar]
  32. HantkeK. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12.Mol. Gen. Genet.1983191230130610.1007/BF003348306353165
    [Google Scholar]
  33. WinkelmannG. Handbook of microbial iron chelates. 1991, pp. 65-105.
  34. NoinajN. GuillierM. BarnardT.J. BuchananS.K. TonB-dependent transporters: Regulation, structure, and function.Annu. Rev. Microbiol.2010641436010.1146/annurev.micro.112408.13424720420522
    [Google Scholar]
  35. BoukhalfaH. CrumblissA.L. Chemical aspects of siderophore mediated iron transport.Biometals200215432533910.1023/A:102021860826612405526
    [Google Scholar]
  36. CarranoC.J. CooperS.R. RaymondK.N. Coordination chemistry of microbial iron transport compounds. 11. Solution equilibriums and electrochemistry of ferric rhodotorulate complexes.J. Am. Chem. Soc.1979101359960410.1021/ja00497a019
    [Google Scholar]
  37. MüllerG. IsowaY. RaymondK.N. Stereospecificity of siderophore-mediated iron uptake in Rhodotorula pilimanae as probed by enantiorhodotorulic acid and isomers of chromic rhodotorulate.J. Biol. Chem.198526026139211392610.1016/S0021‑9258(17)38664‑74055766
    [Google Scholar]
  38. MüllerG. MatzankeB.F. RaymondK.N. Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid.J. Bacteriol.1984160131331810.1128/jb.160.1.313‑318.19846480558
    [Google Scholar]
  39. CarranoC.J. RaymondK.N. Coordination chemistry of microbial iron transport compounds. 10. Characterization of the complexes of rhodotorulic acid, a dihydroxamate siderophore.J. Am. Chem. Soc.1978100175371537410.1021/ja00485a019
    [Google Scholar]
  40. CarranoC.J. RaymondK.N. Synthesis and characterization of iron complexes of rhodotorulic acid: A novel dihydroxamate siderophore and potential chelating drug.J. Chem. Soc. Chem. Commun.1978121250150210.1039/c39780000501
    [Google Scholar]
  41. SpasojevićI. ArmstrongS.K. BrickmanT.J. CrumblissA.L. Electrochemical behavior of the Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E.Inorg. Chem.199938344945410.1021/ic980635n11673947
    [Google Scholar]
  42. ZaiterN. KradI. RoukosR. Thermodynamic studies of iron(III) complex of some new dihydroxamic acids model of rhodotorulic acid.Inorg. Chim. Acta201848218719410.1016/j.ica.2018.06.016
    [Google Scholar]
  43. IsowaY. TakashimaT. OhmoriM. KuritaH. SatoM. MoriK. Synthesis of rhodotorulic acid.Bull. Chem. Soc. Jpn.19724551467147110.1246/bcsj.45.1467
    [Google Scholar]
  44. FujiT. HatanakaY. A synthesis of rhodotorulic acid.Tetrahedron1973293825383110.1016/0040‑4020(73)80202‑9
    [Google Scholar]
  45. LeeB.H. GerfenG.J. MillerM.J. Constituents of microbial iron chelators. Alternate syntheses of delta-N-hydroxy-L-ornithine derivatives and applications to the synthesis of rhodotorulic acid.J. Org. Chem.198449132418242310.1021/jo00187a023
    [Google Scholar]
  46. NakaoM. FukayamaS. KitaikeS. SanoS. Heterocycles2015901309131610.3987/COM‑14‑S(K)67
    [Google Scholar]
  47. LeeB.H. MillerM.J. ProdyC.A. NeilandsJ.B. Artificial siderophores. 2. Syntheses of trihydroxamate analogs of rhodotorulic acid and their biological iron transport capabilities in Escherichia coli.J. Med. Chem.198528332332710.1021/jm00381a0113156249
    [Google Scholar]
  48. NakaoM. Development of novel functional molecules based on the molecular structure characteristics of diketopiperazines.Yakugaku Zasshi2017137121505151610.1248/yakushi.17‑0017629199259
    [Google Scholar]
  49. CalventeV. BenuzziD. de TosettiM.I.S. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum.Int. Biodeterior. Biodegradation199943416717210.1016/S0964‑8305(99)00046‑3
    [Google Scholar]
  50. SnowdonA.L. A colour atlas of post-harvest diseases and disorders of fruits and vegetables: General introduction and fruits.Wolfe1990
    [Google Scholar]
  51. Chand-GoyalT. SpottsR.A. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole.Postharvest Biol. Technol.199671-2516410.1016/0925‑5214(95)00031‑3
    [Google Scholar]
  52. SansoneG. RezzaI. CalventeV. BenuzziD. TosettiM.I.S. Control of botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts.Postharvest Biol. Technol.200535324525110.1016/j.postharvbio.2004.09.005
    [Google Scholar]
  53. MillerG.W. PushnikJ.C. BrowneJ.C. EmeryT.E. JolleyV.D. WarnickK.Y. Biochemistry of Metal Micronutrients in the Rhizosphere. CRC Press; 1994.
  54. JohnsonG.V. LopezA. La Valle FosterN. Reduction and transport of Fe from siderophores.Plant Soil20022411273310.1023/A:1016007708926
    [Google Scholar]
  55. RӧmheldV. MarschnerH. Mobilization of iron in the rhizosphere of different plant species.Adv. Plant Nutr19862155204
    [Google Scholar]
  56. Fernandez-ScavinoA. PedrazaR.O. The role of siderophores in plant growth-promoting bacteria.Bacteria in Agrobiology: Crop Productivity2013265285
    [Google Scholar]
  57. MillerG.W. Treatment of plant chlorosis with rhodotorulic acid.EP Patent 0197225A21989
  58. LeeB.H. PanT.M. Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: Mini review.J. Funct. Foods2013512910.1016/j.jff.2012.11.009
    [Google Scholar]
  59. KhanW. RegmiO. PandaB.P. Enrichment of dimerumic acid in Monascus-fermented rice and its in vivo antioxidant activity.Food Front.20212454755610.1002/fft2.108
    [Google Scholar]
  60. TairaJ. MiyagiC. AniyaY. Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein- mediated oxidation.Biochem. Pharmacol.20026351019102610.1016/S0006‑2952(01)00923‑611911855
    [Google Scholar]
  61. SekineS. YanoK. SaekiJ. HashimotoN. FuwaT. HorieT. Oxidative stress is a triggering factor for LPS-induced Mrp2 internalization in the cryopreserved rat and human liver slices.Biochem. Biophys. Res. Commun.2010399227928510.1016/j.bbrc.2010.07.069
    [Google Scholar]
  62. YanoK. SekineS. NemotoK. FuwaT. HorieT. The effect of dimerumic acid on LPS-induced downregulation of Mrp2 in the rat.Biochem. Pharmacol.201080453353910.1016/j.bcp.2010.04.03620457138
    [Google Scholar]
  63. YamaishiroJ. SumihiroS. ToruF. ToshiharuH. Dimerumic acid protected oxidative stress-induced cytotoxicity in isolated rat hepatocytes.Cell Biol. Toxicol.200824283290
    [Google Scholar]
  64. LeeB.H. HsuW.H. HsuY.W. PanT.M. Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs).Food Chem. Toxicol.20136241341910.1016/j.fct.2013.09.00724036144
    [Google Scholar]
  65. AniyaY. OhtaniI.I. HigaT. MiyagiC. GiboH. ShimabukuroM. NakanishiH. TairaJ. Dimerumic acid as an antioxidant of the mold, Monascus Anka.Free Radic. Biol. Med.2000286999100410.1016/S0891‑5849(00)00188‑X10802232
    [Google Scholar]
  66. LaiJ.R. KeB.J. HsuY.W. LeeC.L. Dimerumic acid and deferricoprogen produced by Monascus purpureus attenuate liquid ethanol diet-induced alcoholic hepatitis via suppressing NF-κB inflammation signalling pathways and stimulation of AMPK-mediated lipid metabolism.J. Funct. Foods20196010339310.1016/j.jff.2019.05.049
    [Google Scholar]
  67. LeeB.H. HsuW.H. HsuY.W. PanT.M. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid.Free Radic. Biol. Med.20136071610.1016/j.freeradbiomed.2013.01.03023434766
    [Google Scholar]
  68. LeeB.H. HsuW.H. HsuY.W. PanT.M. Dimerumic acid protects pancreas damage and elevates insulin production in methylglyoxal-treated pancreatic RINm5F cells.J. Funct. Foods20135264265010.1016/j.jff.2012.12.007
    [Google Scholar]
  69. HoB.Y. WuY.M. ChangK.J. PanT.M. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner.Int. J. Biol. Sci.20117686988010.7150/ijbs.7.86921814482
    [Google Scholar]
  70. TsengW.T. HsuY.W. PanT.M. Dimerumic acid and deferricoprogen activate ak mouse strain thymoma/heme oxygenase-1 pathways and prevent apoptotic cell death in 6-hydroxydopamine-induced SH-SY5Y cells.J. Agric. Food Chem.201664305995600210.1021/acs.jafc.6b0155127431098
    [Google Scholar]
  71. TsengW.T. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.Pharm. Biol.2016541434144410.3109/13880209.2015.110469826794209
    [Google Scholar]
  72. KrasnoffS.B. KeresztesI. DonzelliB.G.G. GibsonD.M. Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii.J. Nat. Prod.20147771685169210.1021/np500300s24992511
    [Google Scholar]
  73. KrasnoffS.B. HoweK.J. HeckM.L. DonzelliB.G.G. Siderophores from the entomopathogenic fungus Beauveria bassiana.J. Nat. Prod.202083229630410.1021/acs.jnatprod.9b0069832058711
    [Google Scholar]
  74. KalansuriyaP. QuezadaM. EspósitoB.P. CaponR.J. Talarazines A–E: noncytotoxic iron(III) chelators from an Australian mud dauber wasp-associated fungus, Talaromyces sp. (CMB-W045).J. Nat. Prod.201780360961510.1021/acs.jnatprod.6b0088928058837
    [Google Scholar]
  75. OuchiT. WatanabeY. NonakaK. MuramatsuR. NoguchiC. TozawaM. HokariR. IshiyamaA. KoikeR. MatsuiH. AsamiY. InahashiY. IshiiT. TeruyaT. IwatsukiM. HanakiH. ŌmuraS. Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021.J. Antibiot.202073636537110.1038/s41429‑020‑0292‑732139881
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673275636231122062529
Loading
/content/journals/cmc/10.2174/0109298673275636231122062529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test