Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Gastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multi-omics data; iii) the integrated analysis of multi-omics data using machine learning techniques.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673284520240112055108
2024-02-13
2024-11-01
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MorganE. ArnoldM. CamargoM.C. GiniA. KunzmannA.T. MatsudaT. MeheusF. VerhoevenR.H.A. VignatJ. LaversanneM. FerlayJ. SoerjomataramI. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study.E. Clinical. Medicine20224710140410.1016/j.eclinm.2022.10140435497064
    [Google Scholar]
  3. KataiH. IshikawaT. AkazawaK. IsobeY. MiyashiroI. OdaI. TsujitaniS. OnoH. TanabeS. FukagawaT. NunobeS. KakejiY. NashimotoA. Registration Committee of the Japanese Gastric Cancer Association Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007).Gastric Cancer201821114415410.1007/s10120‑017‑0716‑728417260
    [Google Scholar]
  4. SumiyamaK. Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan.Gastric Cancer201720S1Suppl. 1202710.1007/s10120‑016‑0659‑427734273
    [Google Scholar]
  5. RenW. YuJ. ZhangZ.M. SongY.K. LiY.H. WangL. Missed diagnosis of early gastric cancer or high-grade intraepithelial neoplasia.World J. Gastroenterol.201319132092209610.3748/wjg.v19.i13.209223599630
    [Google Scholar]
  6. Herrera-ParienteC. MontoriS. LlachJ. BofillA. AlbenizE. MoreiraL. Biomarkers for gastric cancer screening and early diagnosis.Biomedicines2021910144810.3390/biomedicines910144834680565
    [Google Scholar]
  7. ShiX.J. WeiY. JiB. Systems biology of gastric cancer: Perspectives on the omics-based diagnosis and treatment.Front. Mol. Biosci.2020720310.3389/fmolb.2020.0020333005629
    [Google Scholar]
  8. SironiL. TremoliE. MillerI. GuerriniU. CalvioA.M. EberiniI. GemeinerM. AsdenteM. PaolettiR. GianazzaE. Acute-phase proteins before cerebral ischemia in stroke-prone rats: Identification by proteomics.Stroke200132375376010.1161/01.STR.32.3.75311239198
    [Google Scholar]
  9. Gonzalez-CovarrubiasV. Martínez-MartínezE. del Bosque-PlataL. The potential of metabolomics in biomedical applications.Metabolites202212219410.3390/metabo1202019435208267
    [Google Scholar]
  10. FiehnO. Metabolomics-the link between genotypes and phenotypes.Plant Mol. Biol.2002481/215517110.1023/A:101371390583311860207
    [Google Scholar]
  11. BurtonC. MaY. Current trends in cancer biomarker discovery using urinary metabolomics: Achievements and new challenges.Curr. Med. Chem.201926152810.2174/092986732466617091410223628914192
    [Google Scholar]
  12. AmantonicoA. UrbanP.L. ZenobiR. Analytical techniques for single-cell metabolomics: State of the art and trends.Anal. Bioanal. Chem.201039862493250410.1007/s00216‑010‑3850‑120544183
    [Google Scholar]
  13. WuX. JianA. TangH. LiuW. LiuF. LiuS. WuH. A multi-omics study on the effect of helicobacter pylori-related genes in the tumor immunity on stomach adenocarcinoma.Front. Cell. Infect. Microbiol.20221288063610.3389/fcimb.2022.88063635619651
    [Google Scholar]
  14. JungY.S. Xuan TranM.T. ParkB. MoonC.M. Association between family history of gastric cancer and the risk of gastric cancer and adenoma: A nationwide population-based study.Am. J. Gastroenterol.202211781255126310.14309/ajg.000000000000183735613561
    [Google Scholar]
  15. Herrera-ParienteC. Capó-GarcíaR. Díaz-GayM. CarballalS. MuñozJ. LlachJ. SánchezA. BonjochL. Arnau-CollellC. Soares de LimaY. GolubickiM. JungG. LozanoJ.J. CastellsA. BalaguerF. BujandaL. Castellví-BelS. MoreiraL. Identification of new genes involved in germline predisposition to early-onset gastric cancer.Int. J. Mol. Sci.2021223131010.3390/ijms2203131033525650
    [Google Scholar]
  16. ReelP.S. ReelS. PearsonE. TruccoE. JeffersonE. Using machine learning approaches for multi-omics data analysis: A review.Biotechnol. Adv.20214910773910.1016/j.biotechadv.2021.10773933794304
    [Google Scholar]
  17. PoirionO.B. JingZ. ChaudharyK. HuangS. GarmireL.X. DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.Genome Med.202113111210.1186/s13073‑021‑00930‑x34261540
    [Google Scholar]
  18. FanP. ZhangZ. LuL. GuoX. HaoZ. WangX. YeY. Association of single nucleotide polymorphisms (SNPs) with gastric cancer susceptibility and prognosis in population in Wuwei, Gansu, China.World J. Surg. Oncol.202220119410.1186/s12957‑022‑02663‑635689286
    [Google Scholar]
  19. ZangZ.J. OngC.K. CutcutacheI. YuW. ZhangS.L. HuangD. LerL.D. DykemaK. GanA. TaoJ. LimS. LiuY. FutrealP.A. GrabschH. FurgeK.A. GohL.K. RozenS. TehB.T. TanP. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing.Cancer Res.2011711293910.1158/0008‑5472.CAN‑10‑174921097718
    [Google Scholar]
  20. ZhangJ. LiuF. YangY. YuN. WengX. YangY. GongZ. HuangS. GanL. SunS. ZhangX. GongY. LiuY. GuoW. Integrated DNA and RNA sequencing reveals early drivers involved in metastasis of gastric cancer.Cell Death Dis.202213439210.1038/s41419‑022‑04838‑135449126
    [Google Scholar]
  21. XiaoY. BiM. GuoH. LiM. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis.E. Bio. Medicine.20227910400110.1016/j.ebiom.2022.10400135439677
    [Google Scholar]
  22. HanX. LiuT. ZhaiJ. LiuC. WangW. NieC. WangQ. ZhuX. ZhouH. TianW. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer.PeerJ202210e1377410.7717/peerj.1377436164608
    [Google Scholar]
  23. ZhangY. HuS. LiJ. ShiD. LuoB. The promoter aberrant methylation status of TMEM130 is associated with gastric cancer.Dig. Liver Dis.202254681982510.1016/j.dld.2021.05.03534162508
    [Google Scholar]
  24. GuoX.Y. DongL. QinB. JiangJ. ShiA.M. Decreased expression of gastrokine 1 in gastric mucosa of gastric cancer patients.World J. Gastroenterol.20142044167021670610.3748/wjg.v20.i44.1670225469040
    [Google Scholar]
  25. YamadaS. KatoS. MatsuhisaT. MakonkawkeyoonL. YoshidaM. ChakrabandhuT. LertprasertsukN. SuttharatP. ChakrabandhuB. NishiumiS. ChongraksutW. AzumaT. Predominant mucosal IL-8 mRNA expression in non-cagA Thais is risk for gastric cancer.World J. Gastroenterol.201319192941294910.3748/wjg.v19.i19.294123704827
    [Google Scholar]
  26. PereiraB.S. WisnieskiF. CalcagnoD.Q. SantosL.C. GigekC.O. ChenE.S. RasmussenL.T. PayãoS.L.M. AlmeidaR.S. PintoC.A. KariaB.T.R. ArtigianiR. DemachkiS. AssumpçãoP.P. LourençoL.G. ArasakiC.H. BurbanoR.R. LealM.F. SmithM.A.C. Genetic and transcriptional analysis of 8q24.21 cluster in gastric cancer.Anticancer Res.20224294381439410.21873/anticanres.1593836039443
    [Google Scholar]
  27. QianH. Appiah-KubiK. WangY. WuM. TaoY. WuY. ChenY. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis.Crit. Rev. Oncol. Hematol.2018127152810.1016/j.critrevonc.2018.05.00429891108
    [Google Scholar]
  28. ZhangC. LiangY. MaM.H. WuK.Z. DaiD.Q. KRT15, INHBA, MATN3, and AGT are aberrantly methylated and differentially expressed in gastric cancer and associated with prognosis.Pathol. Res. Pract.2019215589389910.1016/j.prp.2019.01.03430718100
    [Google Scholar]
  29. VermaR. SharmaP.C. Identification of stage-specific differentially expressed genes and SNPs in gastric cancer employing RNA-Seq based transcriptome profiling.Genomics20221141617110.1016/j.ygeno.2021.11.03234839019
    [Google Scholar]
  30. ZhangY. LiuW. FengW. WangX. LeiT. ChenZ. SongW. Identification of 14 differentially-expressed metabolism-related genes as potential targets of gastric cancer by integrated proteomics and transcriptomics.Front. Cell Dev. Biol.20221081624910.3389/fcell.2022.81624935265615
    [Google Scholar]
  31. ZhaoX. WuS. JingJ. Identifying diagnostic and prognostic biomarkers and candidate therapeutic drugs of gastric cancer based on transcriptomics and single-cell sequencing.Pathol. Oncol. Res.202127160995510.3389/pore.2021.160995534899080
    [Google Scholar]
  32. ZhangP. YangM. ZhangY. XiaoS. LaiX. TanA. DuS. LiS. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer.Cell Rep.20203012431710.1016/j.celrep.2020.03.02032209487
    [Google Scholar]
  33. LiuX.Y. ZhangT.Q. ZhangQ. GuoJ. ZhangP. MaoT. TianZ.B. ZhangC.P. LiX.Y. Differential long non-coding RNA expression analysis in chronic non-atrophic gastritis, gastric mucosal intraepithelial neoplasia, and gastric cancer tissues.Front. Genet.20221383385710.3389/fgene.2022.83385735571069
    [Google Scholar]
  34. SunM. XiaR. JinF. XuT. LiuZ. DeW. LiuX. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer.Tumour Biol.20143521065107310.1007/s13277‑013‑1142‑z24006224
    [Google Scholar]
  35. LeeS. ParkJ. OhS. KwackK. Downregulation of LOC441461 promotes cell growth and motility in human gastric cancer.Cancers2022145114910.3390/cancers1405114935267457
    [Google Scholar]
  36. DengY. HuangZ. XuY. JinJ. ZhuoW. ZhangC. ZhangX. ShenM. YanX. WangL. WangX. KangY. SiJ. ZhouT. MiR-215 modulates gastric cancer cell proliferation by targeting RB1.Cancer Lett.20143421273510.1016/j.canlet.2013.08.03323981575
    [Google Scholar]
  37. LiuG. XiangT. WuQ.F. WangW.X. Long noncoding RNA H19-Derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells.Oncol. Res.20162339910710.3727/096504015X1449693293357526931432
    [Google Scholar]
  38. KongY. NingL. QiuF. YuQ. CaoB. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer.Cancer Biomark.201924447748310.3233/CBM‑18221330909187
    [Google Scholar]
  39. ShinV.Y. NgE.K.O. ChanV.W. KwongA. ChuK.M. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer.Mol. Cancer201514120210.1186/s12943‑015‑0473‑326607322
    [Google Scholar]
  40. HuangZ. ZhuD. WuL. HeM. ZhouX. ZhangL. ZhangH. WangW. ZhuJ. ChengW. ChenY. FanY. QiL. YinY. ZhuW. ShuY. LiuP. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer.Cancer Epidemiol. Biomarkers Prev.201726218819610.1158/1055‑9965.EPI‑16‑060727756776
    [Google Scholar]
  41. SoJ.B.Y. KapoorR. ZhuF. KohC. ZhouL. ZouR. TangY.C. GooP.C.K. RhaS.Y. ChungH.C. YoongJ. YapC.T. RaoJ. ChiaC.K. TsaoS. ShabbirA. LeeJ. LamK.P. HartmanM. YongW.P. TooH.P. YeohK.G. Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population.Gut202170582983710.1136/gutjnl‑2020‑32206533028667
    [Google Scholar]
  42. ZhaoQ. ChenS. LiT. XiaoB. ZhangX. Clinical values of circular RNA 0000181 in the screening of gastric cancer.J. Clin. Lab. Anal.2018324e2233310.1002/jcla.2233328940688
    [Google Scholar]
  43. XieY. ShaoY. SunW. YeG. ZhangX. XiaoB. GuoJ. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values.Biomarkers Med.2018121112010.2217/bmm‑2017‑011429240459
    [Google Scholar]
  44. ChenS. LiT. ZhaoQ. XiaoB. GuoJ. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer.Clin. Chim. Acta201746616717110.1016/j.cca.2017.01.02528130019
    [Google Scholar]
  45. LiT. ShaoY. FuL. XieY. ZhuL. SunW. YuR. XiaoB. GuoJ. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection.J. Mol. Med.2018961859610.1007/s00109‑017‑1600‑y29098316
    [Google Scholar]
  46. SunH. TangW. RongD. JinH. FuK. ZhangW. LiuZ. CaoH. CaoX. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma.Cancer Biomark.201821229930610.3233/CBM‑17037929103021
    [Google Scholar]
  47. BureI.V. NemtsovaM.V. Methylation and noncoding RNAs in gastric cancer: Everything is connected.Int. J. Mol. Sci.20212211568310.3390/ijms2211568334073603
    [Google Scholar]
  48. ZhangP. WuW. ChenQ. ChenM. Non-coding RNAs and their integrated networks.J. Integr. Bioinform.20191632019002710.1515/jib‑2019‑002731301674
    [Google Scholar]
  49. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑033082563
    [Google Scholar]
  50. Chun-zhiZ. LeiH. An-lingZ. Yan-chaoF. XiaoY. Guang-xiuW. Zhi-fanJ. Pei-yuP. Qing-yuZ. Chun-shengK. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN.BMC Cancer201010136710.1186/1471‑2407‑10‑36720618998
    [Google Scholar]
  51. LiuY. ZhangL. DuW. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p.Biosci. Rep.20193912BSR2019304510.1042/BSR2019304531793989
    [Google Scholar]
  52. ZhangF. LiY. XuW. HeL. TanY. XuH. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis.Biosci. Biotechnol. Biochem.20198371289129910.1080/09168451.2019.160669730999814
    [Google Scholar]
  53. LiuX. MaR. YiB. RikerA.I. XiY. MicroRNAs are involved in the development and progression of gastric cancer.Acta Pharmacol. Sin.20214271018102610.1038/s41401‑020‑00540‑033037405
    [Google Scholar]
  54. WuS.R. WuQ. ShiY.Q. Recent advances of miRNAs in the development and clinical application of gastric cancer.Chin. Med. J.2020133151856186710.1097/CM9.000000000000092132649523
    [Google Scholar]
  55. ZhuC. RenC. HanJ. DingY. DuJ. DaiN. DaiJ. MaH. HuZ. ShenH. XuY. JinG. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer.Br. J. Cancer201411092291229910.1038/bjc.2014.11924595006
    [Google Scholar]
  56. LiJ. SunD. PuW. WangJ. PengY. Circular RNAs in cancer: Biogenesis, function, and clinical significance.Trends Cancer20206431933610.1016/j.trecan.2020.01.01232209446
    [Google Scholar]
  57. DingL. ZhaoY. DangS. WangY. LiX. YuX. LiZ. WeiJ. LiuM. LiG. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4.Mol. Cancer20191814510.1186/s12943‑019‑1006‑230922402
    [Google Scholar]
  58. DhondrupR. ZhangX. FengX. LobsangD. HuaQ. LiuJ. CuoY. ZhuomaS. DuojieG. Duojie CaidanS. GyalS. Proteomic analysis reveals molecular differences in the development of gastric cancer.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/826654435958927
    [Google Scholar]
  59. UeharaT. KikuchiH. MiyazakiS. IinoI. SetoguchiT. HiramatsuY. OhtaM. KamiyaK. MoritaY. TanakaH. BabaS. HayasakaT. SetouM. KonnoH. Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer.Ann. Surg. Oncol.201623S220621310.1245/s10434‑015‑4459‑625752890
    [Google Scholar]
  60. WangX. ZhiQ. LiuS. XueS.L. ShenC. LiY. WuC. TangZ. ChenW. SongJ.L. BaoM. SongY.H. ZhouJ. Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach.Sci. Rep.2016613887110.1038/srep3887127941907
    [Google Scholar]
  61. JiangZ. SunX. ZhangQ. JiX. YuQ. HuangT. ChenD. ChenH. MeiX. WangL. HeL. FangJ. HouL. WangL. Identification of candidate biomarkers that involved in the epigenetic transcriptional regulation for detection gastric cancer by iTRAQ based quantitative proteomic analysis.Clin. Chim. Acta2017471293710.1016/j.cca.2017.05.01528502558
    [Google Scholar]
  62. JiangZ. ZhangC. GanL. JiaY. XiongY. ChenY. WangZ. WangL. LuoH. LiJ. ZhuR. JiX. YuQ. WangL. iTRAQ-Based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer.Proteomics Clin. Appl.2019134180003810.1002/prca.20180003830485682
    [Google Scholar]
  63. YooM.W. ParkJ. HanH.S. YunY.M. KangJ.W. ChoiD.Y. LeeJ. JungJ.H. LeeK.Y. KimK.P. Discovery of gastric cancer specific biomarkers by the application of serum proteomics.Proteomics2017176160033210.1002/pmic.20160033228133907
    [Google Scholar]
  64. ZhouB. ZhouZ. ChenY. DengH. CaiY. RaoX. YinY. RongL. Plasma proteomics-based identification of novel biomarkers in early gastric cancer.Clin. Biochem.20207651010.1016/j.clinbiochem.2019.11.00131765635
    [Google Scholar]
  65. AaJ. YuL. SunM. LiuL. LiM. CaoB. ShiJ. XuJ. ChengL. ZhouJ. ZhengT. WangX. ZhaoC. GuR. ZhangF. ShiR. WangG. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment.Metabolomics20128116417310.1007/s11306‑011‑0297‑0
    [Google Scholar]
  66. KajiS. IrinoT. KusuharaM. MakuuchiR. YamakawaY. TokunagaM. TanizawaY. BandoE. KawamuraT. KamiK. OhashiY. ZhangS. OritaH. Lee-OkadaH.C. FukunagaT. TerashimaM. Metabolomic profiling of gastric cancer tissues identified potential biomarkers for predicting peritoneal recurrence.Gastric Cancer202023587488310.1007/s10120‑020‑01065‑532219586
    [Google Scholar]
  67. ZhuX. WangK. LiuG. WangY. XuJ. LiuL. LiM. ShiJ. AaJ. YuL. Metabolic perturbation and potential markers in patients with esophageal cancer.Gastroenterol. Res. Pract.201720171910.1155/2017/546959728512469
    [Google Scholar]
  68. IkedaA. NishiumiS. ShinoharaM. YoshieT. HatanoN. OkunoT. BambaT. FukusakiE. TakenawaT. AzumaT. YoshidaM. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer.Biomed. Chromatogr.201226554855810.1002/bmc.167121773981
    [Google Scholar]
  69. HanY. YooH.J. JeeS.H. LeeJ.H. High serum levels of l-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset.Metabolomics20221886210.1007/s11306‑022‑01922‑735900644
    [Google Scholar]
  70. SongH. PengJ.S. Dong-ShengY. YangZ.L. LiuH.L. ZengY.K. ShiX.P. LuB.Y. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry.Braz. J. Med. Biol. Res.2012451788510.1590/S0100‑879X201100750015822124703
    [Google Scholar]
  71. MiyagiY. HigashiyamaM. GochiA. AkaikeM. IshikawaT. MiuraT. SarukiN. BandoE. KimuraH. ImamuraF. MoriyamaM. IkedaI. ChibaA. OshitaF. ImaizumiA. YamamotoH. MiyanoH. HorimotoK. TochikuboO. MitsushimaT. YamakadoM. OkamotoN. Plasma free amino acid profiling of five types of cancer patients and its application for early detection.PLoS One201169e2414310.1371/journal.pone.002414321915291
    [Google Scholar]
  72. WangH. ZhangH. DengP. LiuC. LiD. JieH. ZhangH. ZhouZ. ZhaoY.L. Tissue metabolic profiling of human gastric cancer assessed by 1H NMR.BMC Cancer201616137110.1186/s12885‑016‑2356‑427356757
    [Google Scholar]
  73. LarioS. Ramírez-LázaroM.J. Sanjuan-HerráezD. Brunet-VegaA. PericayC. GombauL. JunqueraF. QuintásG. CalvetX. Plasma sample based analysis of gastric cancer progression using targeted metabolomics.Sci. Rep.2017711777410.1038/s41598‑017‑17921‑x29259332
    [Google Scholar]
  74. JungJ. JungY. BangE.J. ChoS. JangY.J. KwakJ.M. RyuD.H. ParkS. HwangG.S. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling.Ann. Surg. Oncol.201421S473674210.1245/s10434‑014‑3886‑025092158
    [Google Scholar]
  75. DaiD. YangY. YuJ. DangT. QinW. TengL. YeJ. JiangH. Interactions between gastric microbiota and metabolites in gastric cancer.Cell Death Dis.20211212110410.1038/s41419‑021‑04396‑y34819503
    [Google Scholar]
  76. WuH. XueR. TangZ. DengC. LiuT. ZengH. SunY. ShenX. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry.Anal. Bioanal. Chem.201039641385139510.1007/s00216‑009‑3317‑420012946
    [Google Scholar]
  77. HuangS. GuoY. LiZ.W. ShuiG. TianH. LiB.W. KadeerhanG. LiZ.X. LiX. ZhangY. ZhouT. YouW.C. PanK.F. LiW.Q. Identification and validation of plasma metabolomic signatures in precancerous gastric lesions that progress to cancer.JAMA Netw. Open202146e211418610.1001/jamanetworkopen.2021.1418634156450
    [Google Scholar]
  78. YuL. LaiQ. FengQ. LiY. FengJ. XuB. Serum metabolic profiling analysis of chronic gastritis and gastric cancer by untargeted metabolomics.Front. Oncol.20211163691710.3389/fonc.2021.63691733777793
    [Google Scholar]
  79. ZouL. GuoL. ZhuC. LaiZ. LiZ. YangA. Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer.Clin. Chim. Acta202151927628410.1016/j.cca.2021.05.00233989614
    [Google Scholar]
  80. HungC.Y. YehT.S. TsaiC.K. WuR.C. LaiY.C. ChiangM.H. LuK.Y. LinC.N. ChengM.L. LinG. Glycerophospholipids pathways and chromosomal instability in gastric cancer: Global lipidomics analysis.World J. Gastrointest. Oncol.201911318119410.4251/wjgo.v11.i3.18130918592
    [Google Scholar]
  81. ZhangH. CuiL. LiuW. WangZ. YeY. LiX. WangH. 1H NMR metabolic profiling of gastric cancer patients with lymph node metastasis.Metabolomics20181444710.1007/s11306‑018‑1344‑x29541009
    [Google Scholar]
  82. JinH. QiaoF. ChenL. LuC. XuL. GaoX. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma.J. Proteome Res.20141394091410310.1021/pr500483z25162382
    [Google Scholar]
  83. GuJ. HuX. ShaoW. JiT. YangW. ZhuoH. JinZ. HuangH. ChenJ. HuangC. LinD. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis.Oncotarget2016737600536007310.18632/oncotarget.1104927527852
    [Google Scholar]
  84. XuJ. ChenY. ZhangR. SongY. CaoJ. BiN. WangJ. HeJ. BaiJ. DongL. WangL. ZhanQ. AblizZ. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers.Mol. Cell. Proteomics20131251306131810.1074/mcp.M112.02283023397110
    [Google Scholar]
  85. HirayamaA. KamiK. SugimotoM. SugawaraM. TokiN. OnozukaH. KinoshitaT. SaitoN. OchiaiA. TomitaM. EsumiH. SogaT. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry.Cancer Res.200969114918492510.1158/0008‑5472.CAN‑08‑480619458066
    [Google Scholar]
  86. ChenJ.L. TangH.Q. HuJ.D. FanJ. HongJ. GuJ.Z. Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry.World J. Gastroenterol.201016465874588010.3748/wjg.v16.i46.587421155010
    [Google Scholar]
  87. ZhangH. WangL. HouZ. MaH. MamtiminB. HasimA. SheyhidinI. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform.Biochem. Biophys. Res. Commun.2017491111912510.1016/j.bbrc.2017.07.06028711496
    [Google Scholar]
  88. WangL. ChenJ. ChenL. DengP. buQ. XiangP. LiM. LuW. XuY. LinH. WuT. WangH. HuJ. ShaoX. CenX. ZhaoY.L. 1H-NMR based metabonomic profiling of human esophageal cancer tissue.Mol. Cancer20131212510.1186/1476‑4598‑12‑2523556477
    [Google Scholar]
  89. ChenJ.L. FanJ. LuX. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients.Electrophoresis20143571032103910.1002/elps.20130024323900894
    [Google Scholar]
  90. HanJ. MengQ. ShenL. WuG. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning.Lipids Health Dis.20181711410.1186/s12944‑018‑0657‑029338749
    [Google Scholar]
  91. BoisonD. YegutkinG.G. Adenosine metabolism: Emerging concepts for cancer therapy.Cancer Cell201936658259610.1016/j.ccell.2019.10.00731821783
    [Google Scholar]
  92. NieS. ZhaoY. QiuX. WangW. YaoY. YiM. WangD. Metabolomic study on nude mice models of gastric cancer treated with modified Si Jun Zi Tang via HILIC UHPLC-Q-TOF/MS analysis.Evid. Based Complement. Alternat. Med.2019201911810.1155/2019/381787931341492
    [Google Scholar]
  93. LiuZ.C. WuW.H. HuangS. LiZ.W. LiX. ShuiG.H. LamS.M. LiB.W. LiZ.X. ZhangY. ZhouT. YouW.C. PanK.F. LiW.Q. Plasma lipids signify the progression of precancerous gastric lesions to gastric cancer: A prospective targeted lipidomics study.Theranostics202212104671468310.7150/thno.7477035832080
    [Google Scholar]
  94. JinG. LvJ. YangM. WangM. ZhuM. WangT. YanC. YuC. DingY. LiG. RenC. NiJ. ZhangR. GuoY. BianZ. ZhengY. ZhangN. JiangY. ChenJ. WangY. XuD. ZhengH. YangL. ChenY. WaltersR. MillwoodI.Y. DaiJ. MaH. ChenK. ChenZ. HuZ. WeiQ. ShenH. LiL. Genetic risk, incident gastric cancer, and healthy lifestyle: A meta-analysis of genome-wide association studies and prospective cohort study.Lancet Oncol.202021101378138610.1016/S1470‑2045(20)30460‑533002439
    [Google Scholar]
  95. MatsuokaK. NishiumiS. YoshidaM. KodamaY. Effects of Helicobacter pylori on the glutathione-related pathway in gastric epithelial cells.Biochem. Biophys. Res. Commun.202052641118112410.1016/j.bbrc.2020.04.01932312521
    [Google Scholar]
  96. LiuD. ZhuJ. MaX. ZhangL. WuY. ZhuW. XingY. JiaY. WangY. Transcriptomic and metabolomic profiling in Helicobacter pylori–induced gastric cancer identified prognosis- and immunotherapy-relevant gene signatures.Front. Cell Dev. Biol.2021976940910.3389/fcell.2021.76940935004676
    [Google Scholar]
  97. JabiniR. EghbaliS.A. AyatollahiH. SheikhiM. FarzanehfarM. Analysis of KRAS gene mutation associated with Helicobacter pylori infection in patients with gastric cancer.Iran. J. Basic Med. Sci.201922552953331217933
    [Google Scholar]
  98. NakajimaT. YamashitaS. MaekitaT. NiwaT. NakazawaK. UshijimaT. The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae.Int. J. Cancer2009124490591010.1002/ijc.2401819035455
    [Google Scholar]
  99. NiwaT. TsukamotoT. ToyodaT. MoriA. TanakaH. MaekitaT. IchinoseM. TatematsuM. UshijimaT. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells.Cancer Res.20107041430144010.1158/0008‑5472.CAN‑09‑275520124475
    [Google Scholar]
  100. ShinC.M. KimN. JungY. ParkJ.H. KangG.H. KimJ.S. JungH.C. SongI.S. Role of Helicobacter pylori infection in aberrant DNA methylation along multistep gastric carcinogenesis.Cancer Sci.201010161337134610.1111/j.1349‑7006.2010.01535.x20345486
    [Google Scholar]
  101. ZhouH. SunH. LiuX. ChenJ. ZhangL. LinS. HanX. NieC. LiuY. TianW. ZhaoY. Combined effect between WT1 methylation and Helicobacter pylori infection, smoking, and alcohol consumption on the risk of gastric cancer.Helicobacter2019245e1265010.1111/hel.1265031361067
    [Google Scholar]
  102. LiX. ZhengN.R. WangL.H. LiZ.W. LiuZ.C. FanH. WangY. DaiJ. NiX.T. WeiX. LiuM.W. LiK. LiZ.X. ZhouT. ZhangY. ZhangJ.Y. KadeerhanG. HuangS. WuW.H. LiuW.D. WuX.Z. ZhangL.F. XuJ.M. GerhardM. YouW.C. PanK.F. LiW.Q. QinJ. Proteomic profiling identifies signatures associated with progression of precancerous gastric lesions and risk of early gastric cancer.E. Bio. Medicine. 20217410371410.1016/j.ebiom.2021.10371434818622
    [Google Scholar]
  103. PrinzC. MeseK. WeberD. MicroRNA changes in gastric carcinogenesis: Differential dysregulation during Helicobacter pylori and EBV infection.Genes202112459710.3390/genes1204059733921696
    [Google Scholar]
  104. ZhangX. Induction of fibroblast growth factor receptor 4 by helicobacter pylori via signal transducer and activator of transcription 3 with a feedforward activation loop involving steroid receptor coactivator signaling in gastric cancer.Gastroenterology20221633620636.e910.1053/j.gastro.2022.05.01635588797
    [Google Scholar]
  105. YoonS.J. KimJ.Y. LongN.P. MinJ.E. KimH.M. YoonJ.H. AnhN.H. ParkM.C. KwonS.W. LeeS.K. Comprehensive multi-omics analysis reveals aberrant metabolism of Epstein–Barr-virus-associated gastric carcinoma.Cells2019810122010.3390/cells810122031597357
    [Google Scholar]
  106. WangZ. LvZ. XuQ. SunL. YuanY. Identification of differential proteomics in Epstein-Barr virus-associated gastric cancer and related functional analysis.Cancer Cell Int.202121136810.1186/s12935‑021‑02077‑634247602
    [Google Scholar]
  107. GaoY. FuY. WangJ. ZhengX. ZhouJ. MaJ. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer.Biochem. Biophys. Res. Commun.20215471810.1016/j.bbrc.2021.02.01433588233
    [Google Scholar]
  108. ChenY. FuR. XuM. HuangY. SunG. XuL. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells.Life Sci.201819917918710.1016/j.lfs.2018.02.03429496496
    [Google Scholar]
  109. YangS. LvY. WuC. LiuB. ShuZ. LinY. Pickled vegetables intake impacts the metabolites for gastric cancer.Cancer Manag. Res.2020128263827310.2147/CMAR.S27127732982422
    [Google Scholar]
  110. SuzukiS. MuroishiY. NakanishiI. OdaY. Relationship between genetic polymorphisms of drug-metabolizing enzymes (CYP1A1, CYP2E1, GSTM1, and NAT2), drinking habits, histological subtypes, and p53 gene point mutations in Japanese patients with gastric cancer.J. Gastroenterol.200439322023010.1007/s00535‑003‑1281‑x15064998
    [Google Scholar]
  111. NanH.M. SongY.J. YunH.Y. ParkJ.S. KimH. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer.World J. Gastroenterol.200511253834384110.3748/wjg.v11.i25.383415991278
    [Google Scholar]
  112. ShimazuT. AsadaK. CharvatH. KusanoC. OtakeY. KakugawaY. WatanabeH. GotodaT. UshijimaT. TsuganeS. Association of gastric cancer risk factors with DNA methylation levels in gastric mucosa of healthy Japanese: a cross-sectional study.Carcinogenesis201536111291129810.1093/carcin/bgv12526354778
    [Google Scholar]
  113. CoronaG. CannizzaroR. MioloG. CaggiariL. De ZorziM. RepettoO. SteffanA. De ReV. Use of metabolomics as a complementary omic approach to implement risk criteria for first-degree relatives of gastric cancer patients.Int. J. Mol. Sci.201819375010.3390/ijms1903075029518896
    [Google Scholar]
  114. Braga-NetoM.B. CostaD.V.S. QueirozD.M.M. MacielF.S. de OliveiraM.S. Viana-JuniorA.B. SantosF.A. LeitaoR.F.C. BritoG.A.C. VasconcelosP.R.L. BragaL.L.B.C. Increased oxidative stress in gastric cancer patients and their first-degree relatives: A prospective study from northeastern brazil.Oxid. Med. Cell. Longev.202120211910.1155/2021/665743434873431
    [Google Scholar]
  115. KimH.J. KimN. KimH.W. ParkJ.H. ShinC.M. LeeD.H. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation.Gastric Cancer202124230231310.1007/s10120‑020‑01117‑w32915372
    [Google Scholar]
  116. KimJ.J. ChungS.W. KimJ.H. KimJ.W. OhJ.S. KimS. SongS.Y. ParkJ. KimD.H. Promoter methylation of helicase-like transcription factor is associated with the early stages of gastric cancer with family history.Ann. Oncol.200617465766210.1093/annonc/mdl01816497821
    [Google Scholar]
  117. Hai-jiangY. Preliminary study on EB virus and gastric cancer.Shiyong Zhongliu Zazhi2010
    [Google Scholar]
  118. FujiiT. NishikawaJ. FukudaS. KubotaN. NojimaJ. FujisawaK. OgawaR. GotoA. HamabeK. HashimotoS. WaiA.P. IizasaH. YoshiyamaH. SakaiK. SuehiroY. YamasakiT. TakamiT. MC180295 inhibited Epstein–Barr virus-associated gastric carcinoma cell growth by suppressing DNA repair and the cell cycle.Int. J. Mol. Sci.202223181059710.3390/ijms23181059736142506
    [Google Scholar]
  119. LuL. MullinsC.S. SchafmayerC. ZeißigS. LinnebacherM. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors.Cancer Commun.202141111137115110.1002/cac2.1222034563100
    [Google Scholar]
  120. SongP. WuL. GuanW. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis.Nutrients20157129872989510.3390/nu712550526633477
    [Google Scholar]
  121. PicettiR. DeeneyM. PastorinoS. MillerM.R. ShahA. LeonD.A. DangourA.D. GreenR. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis.Environ. Res.202221011298810.1016/j.envres.2022.11298835217009
    [Google Scholar]
  122. DongE.Y. GiapA.Q. LustigovaE. WuB.U. Gastric cancer screening in first-degree relatives: A pilot study in a diverse integrated healthcare system.Clin. Transl. Gastroenterol.20221311e0053110.14309/ctg.000000000000053136113027
    [Google Scholar]
  123. Youn NamS. ParkB.J. NamJ.H. RyuK.H. KookM.C. KimJ. LeeW.K. Association of current Helicobacter pylori infection and metabolic factors with gastric cancer in 35,519 subjects: A cross-sectional study.United European Gastroenterol. J.20197228729610.1177/205064061881940231080613
    [Google Scholar]
  124. YaghoobiM. BijarchiR. NarodS.A. Family history and the risk of gastric cancer.Br. J. Cancer2010102223724210.1038/sj.bjc.660538019888225
    [Google Scholar]
  125. DhillonA. SinghA. VohraH. EllisC. VargheseB. GillS.S. IoTPulse: Machine learning-based enterprise health information system to predict alcohol addiction in Punjab (India) using IoT and fog computing.Enterprise Inf. Syst.2022167182058310.1080/17517575.2020.1820583
    [Google Scholar]
  126. LiX. MaJ. LengL. HanM. LiM. HeF. ZhuY. MoGCN: A multi-omics integration method based on graph convolutional network for cancer subtype analysis.Front. Genet.20221380684210.3389/fgene.2022.80684235186034
    [Google Scholar]
  127. DhillonA. SinghA. Machine learning in healthcare data analysis: A survey.J. Biol. Todays World20198110
    [Google Scholar]
  128. McCullochW. PittsW. A logical calculus of the ideas immanent in nervous activity.Bull. Math. Biol.1990521-29911510.1016/S0092‑8240(05)80006‑02185863
    [Google Scholar]
  129. MomeniZ. HassanzadehE. Saniee AbadehM. BellazziR. A survey on single and multi omics data mining methods in cancer data classification.J. Biomed. Inform.202010710346610.1016/j.jbi.2020.10346632525020
    [Google Scholar]
  130. RitchieM.D. HolzingerE.R. LiR. PendergrassS.A. KimD. Methods of integrating data to uncover genotype– phenotype interactions.Nat. Rev. Genet.2015162859710.1038/nrg386825582081
    [Google Scholar]
  131. EL-ManzalawyY. HsiehT.Y. ShivakumarM. KimD. HonavarV. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.BMC Med. Genomics201811S3Suppl. 37110.1186/s12920‑018‑0388‑030255801
    [Google Scholar]
  132. MalikV. KalakotiY. SundarD. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.BMC Genomics202122121410.1186/s12864‑021‑07524‑233761889
    [Google Scholar]
  133. ZhangX. WangJ. LuJ. SuL. WangC. HuangY. ZhangX. ZhuX. Robust prognostic subtyping of muscle-invasive bladder cancer revealed by deep learning-based multi-omics data integration.Front. Oncol.20211168962610.3389/fonc.2021.68962634422643
    [Google Scholar]
  134. ChaudharyK. PoirionO.B. LuL. GarmireL.X. Deep learning–based multi-omics integration robustly predicts survival in liver cancer.Clin. Cancer Res.20182461248125910.1158/1078‑0432.CCR‑17‑085328982688
    [Google Scholar]
  135. XuJ. YaoY. XuB. LiY. SuZ. Unsupervised learning of cross-modal mappings in multi-omics data for survival stratification of gastric cancer.Future Oncol.202218221523010.2217/fon‑2021‑105934854737
    [Google Scholar]
  136. ChenS. ZangY. XuB. LuB. MaR. MiaoP. ChenB. An unsupervised deep learning-based model using multiomics data to predict prognosis of patients with stomach adenocarcinoma.Comput. Math. Methods Med.2022202212010.1155/2022/584484636339684
    [Google Scholar]
  137. HuC. JiaW. Multi-omics profiling: The way toward precision medicine in metabolic diseases.J. Mol. Cell Biol.2021138mjab05110.1093/jmcb/mjab05134406397
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673284520240112055108
Loading
/content/journals/cmc/10.2174/0109298673284520240112055108
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): biomarkers; exposure; Gastric cancer; gastroscopy; machine learning; multi-omics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test