Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

SARS-CoV-2 invades the respiratory tract epithelium and can result in systemic inflammation prior to an infection caused by either bacteria or fungus. COVID-19-associated mucormycosis (CAM) is a serious condition that can occur during the time of the disease due to increased administration of corticosteroids. Various studies have suggested that statins may improve clinical outcomes in COVID-19 patients. According to several preclinical reports, fluvastatin was shown to exert direct and indirect synergistic antifungal activity. Thus, fluvastatin could be considered a potential antifungal agent when no other option is available. Furthermore, in comparison with other statins, fluvastatin exhibits the fewest drug/drug interactions with anti-Mucorales azoles (, isavuconazole and posaconazole), as well as with medicines that are used in solid organ transplant recipients (, cyclosporine) and HIV-positive individuals (, ritonavir); two groups of patients that have a higher risk of infection with Mucorales fungi following a SARS-CoV-2 infection.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230706152616
2023-07-31
2024-11-02
Loading full text...

Full text loading...

References

  1. DamP. CardosoM.H. MandalS. FrancoO.L. SağıroğluP. PolatO.A. KokogluK. MondalR. MandalA.K. OcsoyI. Surge of mucormycosis during the COVID-19 pandemic.Travel Med. Infect. Dis.20235210255710.1016/j.tmaid.2023.10255736805033
    [Google Scholar]
  2. SunH.Y. SinghN. Mucormycosis: Its contemporary face and management strategies.Lancet Infect. Dis.201111430131110.1016/S1473‑3099(10)70316‑921453871
    [Google Scholar]
  3. DograS. AroraA. AggarwalA. PassiG. SharmaA. SinghG. BarnwalR.P. mucormycosis amid COVID-19 crisis: Pathogenesis, diagnosis, and novel treatment strategies to combat the spread.Front. Microbiol.20221279417610.3389/fmicb.2021.79417635058909
    [Google Scholar]
  4. SinghA.K. SinghR. JoshiS.R. MisraA. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India.Diabetes Metab. Syndr.202115410214610.1016/j.dsx.2021.05.01934192610
    [Google Scholar]
  5. PalR SinghB BhadadaSK BanerjeeM BhogalRS HageN KumarA COVID-19-associated mucormycosis: An updated systematic review of literature.Mycoses202164121452145910.1111/myc.1333834133798
    [Google Scholar]
  6. AranjaniJ.M. ManuelA. Abdul RazackH.I. MathewS.T. COVID-19 associated mucormycosis: Evidence-based critical review of an emerging infection burden during the pandemic’s second wave in India.PLoS Negl. Trop. Dis.20211511e000992110.1371/journal.pntd.000992134793455
    [Google Scholar]
  7. GanjaliS. BianconiV. PensonP.E. PirroM. BanachM. WattsG.F. SahebkarA. Commentary: Statins, COVID-19, and coronary artery disease: Killing two birds with one stone.Metabolism202011315437510.1016/j.metabol.2020.15437532976855
    [Google Scholar]
  8. BahramiA. BoS. JamialahmadiT. SahebkarA. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms.Ageing Res. Rev.20205810102410.1016/j.arr.2020.10102432006687
    [Google Scholar]
  9. BahramiA. ParsamaneshN. AtkinS.L. BanachM. SahebkarA. Effect of statins on toll-like receptors: A new insight to pleiotropic effects.Pharmacol. Res.201813523023810.1016/j.phrs.2018.08.01430120976
    [Google Scholar]
  10. BlandA.R. PayneF.M. AshtonJ.C. JamialahmadiT. SahebkarA. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury.Pharmacol. Res.202217510598610.1016/j.phrs.2021.10598634800627
    [Google Scholar]
  11. KhalifehM. PensonP. BanachM. SahebkarA. Statins as anti-pyroptotic agents.Arch. Med. Sci.20211751414141710.5114/aoms/14115534522271
    [Google Scholar]
  12. KoushkiK. ShahbazS.K. MashayekhiK. SadeghiM. ZayeriZ.D. TabaM.Y. BanachM. Al-RasadiK. JohnstonT.P. SahebkarA. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways.Clin. Rev. Allergy Immunol.202160217519910.1007/s12016‑020‑08791‑932378144
    [Google Scholar]
  13. SohrevardiS. NasabF. MirjaliliM. BagherniyaM. TaftiA. JarrahzadehM. AzarpazhoohM. SaeidmaneshM. BanachM. JamialahmadiT. SahebkarA. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial.Arch. Med. Sci.20191751423142810.5114/aoms.2019.8933034522273
    [Google Scholar]
  14. PalR BanerjeeM YadavU BhattacharjeeS Statin use and clinical outcomes in patients with COVID-19: An updated systematic review and meta-analysis.Postgrad Med J.202198115935435910.1136/postgradmedj‑2020‑13917233541927
    [Google Scholar]
  15. KolliasA. KyriakoulisK.G. KyriakoulisI.G. NitsotolisT. PoulakouG. StergiouG.S. SyrigosK. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis.Atherosclerosis202133011412110.1016/j.atherosclerosis.2021.06.91134243953
    [Google Scholar]
  16. YetmarZ.A. ChesdachaiS. KashourT. RiazM. GerberiD.J. BadleyA.D. BerbariE.F. TleyjehI.M. Prior statin use and risk of mortality and severe disease from coronavirus disease 2019: A systematic review and meta-analysis.Open Forum Infect. Dis.202187ofab28410.1093/ofid/ofab28434258316
    [Google Scholar]
  17. KowC.S. HasanS.S. Meta-analysis of effect of statins in patients with COVID-19.Am. J. Cardiol.202013415315510.1016/j.amjcard.2020.08.00432891399
    [Google Scholar]
  18. KowC.S. HasanS.S. The association between the use of statins and clinical outcomes in patients with COVID-19: A systematic review and meta-analysis.Am. J. Cardiovasc. Drugs202222216718134341972
    [Google Scholar]
  19. Diaz-ArocutipaC. Melgar-TalaveraB. Alvarado-YarascaÁ. Saravia-BartraM.M. CazorlaP. BelzusarriI. HernandezA.V. Statins reduce mortality in patients with COVID-19: An updated meta-analysis of 147 824 patients.Int. J. Infect. Dis.202111037438110.1016/j.ijid.2021.08.00434375760
    [Google Scholar]
  20. Vahedian-AzimiA. MohammadiS. BeniF. BanachM. GuestP. JamialahmadiT. SahebkarA. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: A systematic review and meta-analysis.Arch. Med. Sci.202117357959510.5114/aoms/13295034025827
    [Google Scholar]
  21. WuK.S. LinP.C. ChenY.S. PanT.C. TangP.L. The use of statins was associated with reduced COVID-19 mortality: A systematic review and meta-analysis.Ann. Med.202153187488410.1080/07853890.2021.193316534096808
    [Google Scholar]
  22. ChowR. ImJ. ChiuN. ChiuL. AggarwalR. LeeJ. ChoiY.G. PrsicE.H. ShinH.J. The protective association between statins use and adverse outcomes among COVID-19 patients: A systematic review and meta-analysis.PLoS One2021166e025357610.1371/journal.pone.025357634166458
    [Google Scholar]
  23. ZeinA. SulistiyanaC.S. KhasanahU. WibowoA. LimM.A. PranataR. Statin and mortality in COVID-19: A systematic review and meta-analysis of pooled adjusted effect estimates from propensity-matched cohorts.Postgrad. Med. J.202198116150350834193549
    [Google Scholar]
  24. LawrenceJ.M. RecklessJ.P.D. Fluvastatin.Expert Opin. Pharmacother.20023111631164110.1517/14656566.3.11.163112437496
    [Google Scholar]
  25. TavakkoliA. JohnstonT.P. SahebkarA. Antifungal effects of statins.Pharmacol. Ther.202020810748310.1016/j.pharmthera.2020.10748331953128
    [Google Scholar]
  26. GalgóczyL. LukácsG. NyilasiI. PappT. VágvölgyiC. Antifungal activity of statins and their interaction with amphotericin B against clinically important Zygomycetes.Acta Biol. Hung.201061335636510.1556/ABiol.61.2010.3.1120724281
    [Google Scholar]
  27. GalgóczyL. PappT. VágvölgyiC. In vitro interaction between suramin and fluvastatin against clinically important Zygomycetes.Mycoses200952544745310.1111/j.1439‑0507.2008.01634.x18983427
    [Google Scholar]
  28. NagyG. VazA.G. SzebenyiC. TakóM. TóthE.J. CserneticsÁ. BencsikO. SzekeresA. HomaM. AyaydinF. GalgóczyL. VágvölgyiC. PappT. CRISPR-Cas9-mediated disruption of the HMG-CoA reductase genes of Mucor circinelloides and subcellular localization of the encoded enzymes.Fungal Genet. Biol.2019129303910.1016/j.fgb.2019.04.00830991115
    [Google Scholar]
  29. NyilasiI. KocsubéS. GalgóczyL. PappT. PestiM. VágvölgyiC. Effect of different statins on the antifungal activity of polyene antimycotics.Acta Biol. Szeged.20105413336
    [Google Scholar]
  30. NyilasiI. KocsubéS. PestiM. LukácsG. PappT. VágvölgyiC. In vitro interactions between primycin and different statins in their effects against some clinically important fungi.J. Med. Microbiol.201059220020510.1099/jmm.0.013946‑019875509
    [Google Scholar]
  31. LukácsG. PappT. SomogyváriF. CserneticsÁ. NyilasiI. VágvölgyiC. Cloning of the Rhizomucor miehei 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene and its heterologous expression in Mucor circinelloides.Antonie van Leeuwenhoek.2009951556410.1007/s10482‑008‑9287‑218853273
    [Google Scholar]
  32. NagyG. FarkasA. CserneticsÁ. BencsikO. SzekeresA. NyilasiI. VágvölgyiC. PappT. Transcription of the three HMG-CoA reductase genes of Mucor circinelloides.BMC Microbiol.20141419310.1186/1471‑2180‑14‑9324731286
    [Google Scholar]
  33. RanaR. SharmaR. KumarA. Repurposing of fluvastatin against candida albicans CYP450 lanosterol 14 alpha-demethylase, a target enzyme for antifungal therapy: An in silico and in vitro study.Curr. Mol. Med.201919750652410.2174/156652401966619052009464431109273
    [Google Scholar]
  34. PariharS.P. GulerR. BrombacherF. Statins: A viable candidate for host-directed therapy against infectious diseases.Nat. Rev. Immunol.201919210411710.1038/s41577‑018‑0094‑330487528
    [Google Scholar]
  35. JouneauS. BonizecM. BelleguicC. DesruesB. BrinchaultG. GalaineJ. GangneuxJ.P. Martin-ChoulyC. Anti-inflammatory effect of fluvastatin on IL-8 production induced by Pseudomonas aeruginosa and Aspergillus fumigatus antigens in cystic fibrosis.PLoS One201168e2265510.1371/journal.pone.002265521826199
    [Google Scholar]
  36. CornelyO.A. Alastruey-IzquierdoA. ArenzD. ChenS.C.A. DannaouiE. HochheggerB. HoeniglM. JensenH.E. LagrouK. LewisR.E. MellinghoffS.C. MerM. PanaZ.D. SeidelD. SheppardD.C. WahbaR. AkovaM. AlanioA. Al-HatmiA.M.S. Arikan-AkdagliS. BadaliH. Ben-AmiR. BonifazA. BretagneS. CastagnolaE. ChayakulkeereeM. ColomboA.L. Corzo-LeónD.E. DrgonaL. GrollA.H. GuineaJ. HeusselC.P. IbrahimA.S. KanjS.S. KlimkoN. LacknerM. LamothF. LanternierF. Lass-FloerlC. LeeD.G. LehrnbecherT. LmimouniB.E. MaresM. MaschmeyerG. MeisJ.F. MeletiadisJ. MorrisseyC.O. NucciM. OladeleR. PaganoL. PasqualottoA. PatelA. RacilZ. RichardsonM. RoilidesE. RuhnkeM. SeyedmousaviS. SidharthanN. SinghN. SinkoJ. SkiadaA. SlavinM. SomanR. SpellbergB. SteinbachW. TanB.H. UllmannA.J. VehreschildJ.J. VehreschildM.J.G.T. WalshT.J. WhiteP.L. WiederholdN.P. ZaoutisT. ChakrabartiA. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in Cooperation with the Mycoses Study Group Education and Research Consortium.Lancet Infect. Dis.20191912e405e42110.1016/S1473‑3099(19)30312‑331699664
    [Google Scholar]
  37. ChenL. KrekelsE.H.J. VerweijP.E. BuilJ.B. KnibbeC.A.J. BrüggemannR.J.M. Pharmacokinetics and pharmacodynamics of posaconazole.Drugs202080767169510.1007/s40265‑020‑01306‑y32323222
    [Google Scholar]
  38. LedouxM.P. DenisJ. NivoixY. HerbrechtR. Isavuconazole: A new broad-spectrum azole. Part 2: Pharmacokinetics and clinical activity.J. Mycol. Med.2018281152210.1016/j.mycmed.2018.02.00229551442
    [Google Scholar]
  39. DiovertiM.V. CawcuttK.A. AbidiM. SohailM.R. WalkerR.C. OsmonD.R. Gastrointestinal mucormycosis in immunocompromised hosts.Mycoses2015581271471810.1111/myc.1241926456920
    [Google Scholar]
  40. de Pádua BorgesR. DegobiN.A.H. BertoluciM.C. Choosing statins: A review to guide clinical practice.Arch. Endocrinol. Metab.202064663965333166435
    [Google Scholar]
  41. WigginsB.S. LamprechtD.G.Jr PageR.L.II SaseenJ.J. Recommendations for managing drug–drug interactions with statins and HIV medications.Am. J. Cardiovasc. Drugs201717537538910.1007/s40256‑017‑0222‑728364370
    [Google Scholar]
  42. BenesicA. ZillyM. KlugeF. WeissbrichB. WinzerR. KlinkerH. LangmannP. Lipid lowering therapy with fluvastatin and pravastatin in patients with HIV infection and antiretroviral therapy: Comparison of efficacy and interaction with indinavir.Infection200432422923310.1007/s15010‑004‑3136‑715293079
    [Google Scholar]
  43. MilazzoL. CarammaI. MazzaliC. CesariM. OlivettiM. GalliM. AntinoriS. Fluvastatin as an adjuvant to pegylated interferon and ribavirin in HIV/hepatitis C virus genotype 1 co-infected patients: An open-label randomized controlled study.J. Antimicrob. Chemother.201065473574010.1093/jac/dkq00220118492
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230706152616
Loading
/content/journals/cmc/10.2174/0929867331666230706152616
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): COVID-19; fluvastatin; fungal infection; immune system; mucormycosis; statins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test