Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background/Aim

Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations.

Methods

Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, , epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively.

Results

Among those hits, four natural products (, , , and ) exerted dual inhibitory effects on EGFR and PI3K in our analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds , , and exhibited significant anti-proliferative capability with IC values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while displayed weak inhibitory potency (IC = 74.97 ± 2.30 µM).

Conclusion

This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293279240404080046
2024-04-09
2024-11-02
Loading full text...

Full text loading...

References

  1. KrexD. KlinkB. HartmannC. von DeimlingA. PietschT. SimonM. SabelM. SteinbachJ.P. HeeseO. ReifenbergerG. WellerM. SchackertG. Long-term survival with glioblastoma multiforme.Brain2007130102596260610.1093/brain/awm20417785346
    [Google Scholar]
  2. ToraihE.A. AlyN.M. AbdallahH.Y. QahtaniA.S.A. ShaalanA.A.M. HusseinM.H. FawzyM.S. MicroRNA-target cross-talks: Key players in glioblastoma multiforme.Tumour Biol.20173911101042831772684210.1177/101042831772684229110584
    [Google Scholar]
  3. HollandE.C. Glioblastoma multiforme: The terminator.Proc. Natl. Acad. Sci. USA200097126242624410.1073/pnas.97.12.624210841526
    [Google Scholar]
  4. AdamsonC. KanuO.O. MehtaA.I. DiC. LinN. MattoxA.K. BignerD.D. Glioblastoma multiforme: A review of where we have been and where we are going.Expert Opin. Investig. Drugs20091881061108310.1517/1354378090305276419555299
    [Google Scholar]
  5. KelesG.E. AndersonB. BergerM.S. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere.Surg. Neurol.199952437137910.1016/S0090‑3019(99)00103‑210555843
    [Google Scholar]
  6. EjazK. SuaibN.B.M. KamalM.S. RahimM.S.M. RanaN. Segmentation method of deterministic feature clustering for identification of brain tumor using MRI.IEEE Access202311396953971210.1109/ACCESS.2023.3263798
    [Google Scholar]
  7. ParsaA.T. WachhorstS. LambornK.R. PradosM.D. McDermottM.W. BergerM.S. ChangS.M. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults.J. Neurosurg.2005102462262810.3171/jns.2005.102.4.062215871503
    [Google Scholar]
  8. NathaS. LailaU. GashimI.A. MahboobK. SaeedM.N. NoamanK.M. Automated brain tumor identification in biomedical radiology images: A multi-model ensemble deep learning approach.Appl. Sci.2024145221010.3390/app14052210
    [Google Scholar]
  9. RothJ.G. ElvidgeA.R. Glioblastoma multiforme: A clinical survey.J. Neurosurg.196017473675010.3171/jns.1960.17.4.073614439403
    [Google Scholar]
  10. BarbagalloG.M.V. JenkinsonM.D. BrodbeltA.R. ‘Recurrent’ glioblastoma multiforme, when should we reoperate?Br. J. Neurosurg.200822345245510.1080/0268869080218225618568742
    [Google Scholar]
  11. SanliA. TurkogluE. DolgunH. SekerciZ. Unusual manifestations of primary Glioblastoma Multiforme: A report of three cases.Surg. Neurol. Int.2010118710.4103/2152‑7806.7414621206896
    [Google Scholar]
  12. RobinsonG.W. OrrB.A. GajjarA. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy.BMC Cancer201414125810.1186/1471‑2407‑14‑25824725538
    [Google Scholar]
  13. SasmitaA.O. WongY.P. LingA.P.K. Biomarkers and therapeutic advances in glioblastoma multiforme.Asia Pac. J. Clin. Oncol.2018141405110.1111/ajco.1275628840962
    [Google Scholar]
  14. HodgesL.C. SmithJ.L. GarrettA. TateS. Prevalence of glioblastoma multiforme in subjects with prior therapeutic radiation.J. Neurosci. Nurs.19922427983
    [Google Scholar]
  15. ZhaoH. WangJ. ShaoW. WuC. ChenZ. ToS.T. LiW. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development.Mol. Cancer201716110010.1186/s12943‑017‑0670‑328592260
    [Google Scholar]
  16. RamaiahM.J. KumarK.R. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme.Mol. Biol. Rep.20214854813483510.1007/s11033‑021‑06462‑234132942
    [Google Scholar]
  17. LötschD. SteinerE. HolzmannK. KreineckerS.S. PirkerC. HlavatyJ. PetznekH. HegedusB. GarayT. MohrT. SommergruberW. GruschM. BergerW. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis.Oncotarget20134111904191810.18632/oncotarget.126424243798
    [Google Scholar]
  18. FanQ.-W. WeissW.A. Targeting the RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance.Curr. Top. Microbiol. Immunol.20112279296
    [Google Scholar]
  19. AkhavanD. CloughesyT.F. MischelP.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside.Neuro-oncol.201012888288910.1093/neuonc/noq05220472883
    [Google Scholar]
  20. NewtonH.B. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis.Expert Rev. Anticancer Ther.20044110512810.1586/14737140.4.1.10514748662
    [Google Scholar]
  21. PrasadG. SotteroT. YangX. MuellerS. JamesC.D. WeissW.A. PolleyM.Y. OzawaT. BergerM.S. AftabD.T. PradosM.D. Haas-KoganD.A. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide.Neuro-oncol.201113438439210.1093/neuonc/noq19321317208
    [Google Scholar]
  22. TuncelG. KalkanR. Receptor tyrosine kinase-Ras-PI 3 kinase-Akt signaling network in glioblastoma multiforme.Med. Oncol.201835912210.1007/s12032‑018‑1185‑530078108
    [Google Scholar]
  23. CrespoS. KindM. ArcaroA. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis.J. Cancer Metastasis Treat.201623808910.20517/2394‑4722.2015.72
    [Google Scholar]
  24. JalalvandA.R. Chemometrics in investigation of small molecule-biomacromolecule interactions: A review.Int. J. Biol. Macromol.202118147849310.1016/j.ijbiomac.2021.03.18433798569
    [Google Scholar]
  25. GlaysherS. BoltonL.M. JohnsonP. AtkeyN. DysonM. TorranceC. CreeI.A. Targeting EGFR and PI3K pathways in ovarian cancer.Br. J. Cancer201310971786179410.1038/bjc.2013.52924022196
    [Google Scholar]
  26. ZaryouhH. De PauwI. BaysalH. PeetersM. VermorkenJ.B. LardonF. WoutersA. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma.Med. Res. Rev.202242111215510.1002/med.2180633928670
    [Google Scholar]
  27. MarkhamA. Copanlisib: first global approval.Drugs201777182057206210.1007/s40265‑017‑0838‑629127587
    [Google Scholar]
  28. DreylingM. MorschhauserF. BouabdallahK. BronD. CunninghamD. AssoulineS.E. VerhoefG. LintonK. ThieblemontC. VitoloU. HiemeyerF. GiurescuM. VargasG.J. GorbatchevskyI. LiuL. KoechertK. PeñaC. NevesM. ChildsB.H. ZinzaniP.L. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma.Ann. Oncol.20172892169217810.1093/annonc/mdx28928633365
    [Google Scholar]
  29. MarkhamA. Idelalisib: First global approval.Drugs201474141701170710.1007/s40265‑014‑0285‑625187123
    [Google Scholar]
  30. LuS. DongX. JianH. ChenJ. ChenG. SunY. JiY. WangZ. ShiJ. LuJ. Am. Soc. Clin. Oncol.202240273162
    [Google Scholar]
  31. KumarA. BhatiaR. ChawlaP. AnghoreD. SainiV. RawalR.K. Copanlisib: Novel PI3K inhibitor for the treatment of lymphoma.Anti-Cancer Agents Med. Chem.2020201011581172
    [Google Scholar]
  32. ShirleyM. KeamS.J. Aumolertinib: A review in non-small cell lung cancer.Drugs202282557758410.1007/s40265‑022‑01695‑235305259
    [Google Scholar]
  33. MichaelsS.A. HulversonM.A. WhitmanG.R. TranL.T. ChoiR. FanE. McNamaraC.W. LoveM.S. OjoK.K. Repurposing the kinase inhibitor mavelertinib for giardiasis therapy.Antimicrob. Agents Chemother.2022667e000172210.1128/aac.00017‑2235703552
    [Google Scholar]
  34. SunY. ChuL. WangH. PengH. LiuJ. Inhibitory effect of gefitinib derivative LPY-9 on human glioma.Mol. Med. Rep.202124362310.3892/mmr.2021.1226234212976
    [Google Scholar]
  35. TanJ. LiM. ZhongW. HuC. GuQ. XieY. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model.Oncotarget2017858987719878110.18632/oncotarget.2193629228726
    [Google Scholar]
  36. RichJ.N. ReardonD.A. PeeryT. DowellJ.M. QuinnJ.A. PenneK.L. WikstrandC.J. Van DuynL.B. DanceyJ.E. McLendonR.E. KaoJ.C. StenzelT.T. RasheedA.B.K. UhligT.S.E. HerndonJ.E.II VredenburghJ.J. SampsonJ.H. FriedmanA.H. BignerD.D. FriedmanH.S. Phase II trial of gefitinib in recurrent glioblastoma.J. Clin. Oncol.200422113314210.1200/JCO.2004.08.11014638850
    [Google Scholar]
  37. YangQ. ModiP. NewcombT. QuévaC. GandhiV. Idelalisib: First-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma.Clin. Cancer Res.20152171537154210.1158/1078‑0432.CCR‑14‑203425670221
    [Google Scholar]
  38. KumarN. LalN. NemayshV. LuthraP.M. Design, synthesis, DNA binding studies and evaluation of anticancer potential of novel substituted biscarbazole derivatives against human glioma U87 MG cell line.Bioorg. Chem.202010010391110.1016/j.bioorg.2020.10391132502918
    [Google Scholar]
  39. KarveA.S. DesaiJ.M. DaveN. DraperW.T.M. GudelskyG.A. PhoenixT.N. DasGuptaB. SenguptaS. PlasD.R. DesaiP.B. Potentiation of temozolomide activity against glioblastoma cells by aromatase inhibitor letrozole.Cancer Chemother. Pharmacol.202290434535610.1007/s00280‑022‑04469‑536050497
    [Google Scholar]
  40. LiX. WuC. ChenN. GuH. YenA. CaoL. WangE. WangL. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma.Oncotarget2016722334403345010.18632/oncotarget.796126967052
    [Google Scholar]
  41. FanQ.W. ChengC.K. NicolaidesT.P. HackettC.S. KnightZ.A. ShokatK.M. WeissW.A. A dual phosphoinositide-3-kinase α/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma.Cancer Res.200767177960796510.1158/0008‑5472.CAN‑07‑215417804702
    [Google Scholar]
  42. LinoM.M. MerloA. PI3Kinase signaling in glioblastoma.J. Neurooncol.2011103341742710.1007/s11060‑010‑0442‑z21063898
    [Google Scholar]
  43. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  44. TokalıF.S. DemirY. TürkeşC. DinçerB. BeydemirŞ. Novel acetic acid derivatives containing quinazolin-4(3 H )-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors.Drug Dev. Res.202384227529510.1002/ddr.2203136598092
    [Google Scholar]
  45. RoseP.W. BiC. BluhmW.F. ChristieC.H. DimitropoulosD. DuttaS. GreenR.K. GoodsellD.S. PrlićA. QuesadaM. QuinnG.B. RamosA.G. WestbrookJ.D. YoungJ. ZardeckiC. BermanH.M. BourneP.E. The RCSB Protein Data Bank: New resources for research and education.Nucleic Acids Res.201341Database issueD475D48223193259
    [Google Scholar]
  46. StamosJ. SliwkowskiM.X. EigenbrotC. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor.J. Biol. Chem.200227748462654627210.1074/jbc.M20713520012196540
    [Google Scholar]
  47. WalkerE.H. PacoldM.E. PerisicO. StephensL. HawkinsP.T. WymannM.P. WilliamsR.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.Mol. Cell20006490991910.1016/S1097‑2765(05)00089‑411090628
    [Google Scholar]
  48. PetersM.B. YangY. WangB. MolnárF.L. WeaverM.N. Merz Jr.K.M. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF).J. Chem. Theory Comput.2010692935294710.1021/ct100262620856692
    [Google Scholar]
  49. RajhiA.A.M.H. QanashH. AlmuhayawiM.S. JaouniA.S.K. BakriM.M. GanashM. SalamaH.M. SelimS. AbdelghanyT.M. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents.Molecules20222715482410.3390/molecules2715482435956775
    [Google Scholar]
  50. AzizM. EjazS.A. TamamN. SiddiqueF. RiazN. QaisF.A. ChtitaS. IqbalJ. Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach.Sci. Rep.2022121640410.1038/s41598‑022‑10253‑535436996
    [Google Scholar]
  51. ChanW.K.B. OlsonK.M. WotringJ.W. SextonJ.Z. CarlsonH.A. TraynorJ.R. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs.Sci. Rep.2022121532010.1038/s41598‑022‑08320‑y35351926
    [Google Scholar]
  52. ScholzC. KnorrS. HamacherK. SchmidtB. DOCKTITE-A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.J. Chem. Inf. Model.201555239840610.1021/ci500681r25541749
    [Google Scholar]
  53. UllahA. WaqasM. HalimS.A. DaudM. JanA. KhanA. HarrasiA.A. Sirtuin 1 inhibition: A promising avenue to suppress cancer progression through small inhibitors design.J. Biomol. Struct. Dyn.202311710.1080/07391102.2023.225289837661778
    [Google Scholar]
  54. CorbeilC.R. WilliamsC.I. LabuteP. Variability in docking success rates due to dataset preparation.J. Comput. Aided Mol. Des.201226677578610.1007/s10822‑012‑9570‑122566074
    [Google Scholar]
  55. BéchetE. MinneboH. MoësN. BurgardtB. Improved implementation and robustness study of the X-FEM for stress analysis around cracks.Int. J. Numer. Methods Eng.20056481033105610.1002/nme.1386
    [Google Scholar]
  56. WaqasM. HalimS.A. UllahA. AliA.A.M. KhalidA. AbdallaA.N. KhanA. HarrasiA.A. Multi-Fold computational analysis to discover novel putative inhibitors of isethionate sulfite-lyase (isla) from Bilophila wadsworthia: Combating colorectal cancer and inflammatory bowel diseases.Cancers202315390110.3390/cancers1503090136765864
    [Google Scholar]
  57. ShiC. ChenJ. XiaoB. KangX. LaoX. ZhengH. Discovery of NDM-1 inhibitors from natural products.J. Glob. Antimicrob. Resist.201918808710.1016/j.jgar.2019.02.00330763762
    [Google Scholar]
  58. ChopraH. BibiS. KumarS. KhanM.S. KumarP. SinghI. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application.Gels20228211110.3390/gels802011135200493
    [Google Scholar]
  59. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku29324792161
    [Google Scholar]
  60. MayrA. KlambauerG. UnterthinerT. SteijaertM. WegnerJ.K. CeulemansH. ClevertD.A. HochreiterS. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL.Chem. Sci.20189245441545110.1039/C8SC00148K30155234
    [Google Scholar]
  61. DaC. KireevD. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study.J. Chem. Inf. Model.20145492555256110.1021/ci500319f25116840
    [Google Scholar]
  62. SravikaN. PriyaS. DivyaN. JyotsnaP.M.S. AnushaP. KudumulaN. BaiS.A. Swiss ADME properties screening of the phytochemical compounds present in Bauhinia acuminata.J. Pharmacogn. Phytochem.202110441141910.22271/phyto.2021.v10.i4e.14193
    [Google Scholar]
  63. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  64. KumarP. NagarajanA. UchilP.D. Analysis of cell viability by the MTT assay.Cold Spring Harb. Protoc.201820186pdb.prot09550510.1101/pdb.prot09550529858338
    [Google Scholar]
  65. PlumbJ.A. Cell sensitivity assays: the MTT assay.Methods Mol Med.1999282530
    [Google Scholar]
  66. SeverB. AltıntopM.D. DemirY. YılmazN. ÇiftçiA.G. BeydemirŞ. ÖzdemirA. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines.Chem. Biol. Interact.202134510957610.1016/j.cbi.2021.10957634252406
    [Google Scholar]
  67. BuzaA. TürkeşC. ArslanM. DemirY. DincerB. NixhaA.R. BeydemirŞ. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors.Int. J. Biol. Macromol.202323912423210.1016/j.ijbiomac.2023.12423237001773
    [Google Scholar]
  68. HeJ.J. ZhangW.H. LiuS.L. ChenY.F. LiaoC.X. ShenQ.Q. HuP. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma.Oncol. Lett.20171433846385210.3892/ol.2017.665328927156
    [Google Scholar]
  69. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  70. MeerlooV.J. KaspersG.J. CloosJ. Cell sensitivity assays: the MTT assay.Methods Mol Biol.2011731237245
    [Google Scholar]
  71. MaD.L. ChanD.S.H. LeungC.H. Molecular docking for virtual screening of natural product databases.Chem. Sci.2011291656166510.1039/C1SC00152C
    [Google Scholar]
  72. KakakhanC. TürkeşC. GüleçÖ. DemirY. ArslanM. ÖzkemahlıG. BeydemirŞ. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase.Bioorg. Med. Chem.20237711711110.1016/j.bmc.2022.11711136463726
    [Google Scholar]
  73. WirschingH.-G. WellerM. Glioblastoma. Malignant brain tumors: State-of-the-art treatment Springer Nature2017265288
    [Google Scholar]
  74. OhgakiH. KleihuesP. The definition of primary and secondary glioblastoma.Clin. Cancer Res.201319476477210.1158/1078‑0432.CCR‑12‑300223209033
    [Google Scholar]
  75. AlexanderB.M. CloughesyT.F. Adult glioblastoma.J. Clin. Oncol.201735212402240910.1200/JCO.2017.73.011928640706
    [Google Scholar]
  76. SamiA. KarsyM. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: Novel therapeutic agents and advances in understanding.Tumour Biol.20133441991200210.1007/s13277‑013‑0800‑523625692
    [Google Scholar]
  77. KoulD. ShenR. BerghS. ShengX. ShishodiaS. LafortuneT.A. LuY. de GrootJ.F. MillsG.B. YungW.K.A. Inhibition of Akt survival pathway by a small- molecule inhibitor in human glioblastoma.Mol. Cancer Ther.20065363764410.1158/1535‑7163.MCT‑05‑045316546978
    [Google Scholar]
  78. MischelP.S. CloughesyT.F. Targeted molecular therapy of GBM.Brain Pathol.2003131526110.1111/j.1750‑3639.2003.tb00006.x12580545
    [Google Scholar]
  79. YuL. Jessica, Wei.; Liu, P. Attacking the PI3K/Akt/mToR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94.
  80. KoulD. ShenR. KimY.W. KondoY. LuY. BanksonJ. RonenS.M. KirkpatrickD.L. PowisG. YungW.K.A. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma.Neuro-oncol.201012655956910.1093/neuonc/nop05820156803
    [Google Scholar]
  81. GijtenbeekR.G.P. Noortv.d.V. AertsJ.G.J.V. BrekelS.v.d.J.A. SmitE.F. KrouwelsF.H. WilschutF.A. HiltermannT.J.N. TimensW. SchuuringE. JanssenJ.D.J. GoosensM. Bergv.d.P.M. de LangenA.J. StigtJ.A. van den BorneB.E.E.M. GroenH.J.M. van GeffenW.H. van der WekkenA.J. Randomised controlled trial of first-line tyrosine-kinase inhibitor (TKI) versus intercalated TKI with chemotherapy for EGFR -mutated nonsmall cell lung cancer.ERJ Open Res.20228400239-202210.1183/23120541.00239‑202236267895
    [Google Scholar]
  82. ZhangH. Osimertinib making a breakthrough in lung cancer targeted therapy.OncoTargets Ther.201695489549310.2147/OTT.S11472227660466
    [Google Scholar]
  83. NagasakaM. ZhuV.W. LimS.M. GrecoM. WuF. OuS.H.I. Beyond osimertinib: The development of third- generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC.J. Thorac. Oncol.202116574076310.1016/j.jtho.2020.11.02833338652
    [Google Scholar]
  84. PaezJ.G. JänneP.A. LeeJ.C. TracyS. GreulichH. GabrielS. HermanP. KayeF.J. LindemanN. BoggonT.J. NaokiK. SasakiH. FujiiY. EckM.J. SellersW.R. JohnsonB.E. MeyersonM. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy.Science200430456761497150010.1126/science.109931415118125
    [Google Scholar]
  85. GreigS.L. Osimertinib: first global approval.Drugs201676226327310.1007/s40265‑015‑0533‑426729184
    [Google Scholar]
  86. RawatA. ReddyV.B.A. Recent advances on anticancer activity of coumarin derivatives.European J. Med. Chem. Reports2022510003810.1016/j.ejmcr.2022.100038
    [Google Scholar]
  87. XiangY. ZhangQ. WeiS. HuangC. LiZ. GaoY. Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities.J. Pharm. Pharmacol.202072448349510.1111/jphp.1320431858611
    [Google Scholar]
  88. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  89. NozhatZ. HeydarzadehS. KhalajiS.M. WangS. IqbalM.Z. KongX. Advanced biomaterials for human glioblastoma multiforme (GBM) drug delivery.Biomater. Sci.202311124094413110.1039/D2BM01996E37073998
    [Google Scholar]
  90. ZhangF.Y. HuY. QueZ.Y. WangP. LiuY.H. WangZ.H. XueY.X. Shikonin inhibits the migration and invasion of human glioblastoma cells by targeting phosphorylated β-catenin and phosphorylated PI3K/Akt: A potential mechanism for the anti-glioma efficacy of a traditional Chinese herbal medicine.Int. J. Mol. Sci.20151610238232384810.3390/ijms16102382326473829
    [Google Scholar]
  91. AtiqA. ParharI. Anti-neoplastic potential of flavonoids and polysaccharide phytochemicals in glioblastoma.Molecules20202521489510.3390/molecules2521489533113890
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293279240404080046
Loading
/content/journals/cmc/10.2174/0109298673293279240404080046
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): EGFR; Glioblastoma; molecular docking; MTT assay; PI3K; U87 cell line; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test