Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673273303231208071403
2024-02-12
2025-07-05
The full text of this item is not currently available.

References

  1. NooneA.M. Cancer statistics review1975-2017 - SEER Statistics2018Available from: https://seer.cancer.gov/archive/csr/1975_2017/ [cited 2023 Apr 26].
    [Google Scholar]
  2. DebP. DaiJ. SinghS. KalyoussefE. Fitzgerald-BocarslyP. Triggering of the cGAS–STING pathway in human plasmacytoid dendritic cells inhibits tlr9-mediated ifn production.J. Immunol.2020205122323610.4049/jimmunol.180093332471881
    [Google Scholar]
  3. PuF. ChenF. LiuJ. ZhangZ. ShaoZ. Immune regulation of the cgas-sting signaling pathway in the tumor microenvironment and its clinical application.OncoTargets Ther.2021141501151610.2147/OTT.S29895833688199
    [Google Scholar]
  4. StultzJ. FongL. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer.Prostate Cancer and Prostatic Diseases. Springer Nature202124697717
    [Google Scholar]
  5. XuY. LiH. FanY. Progression patterns, treatment, and prognosis beyond resistance of responders to immunotherapy in advanced non-small cell lung cancer.Front. Oncol.20211164288310.3389/fonc.2021.64288333747966
    [Google Scholar]
  6. VogelzangN.J. BeerT.M. GerritsenW. OudardS. WiechnoP. Kukielka-BudnyB. SamalV. HajekJ. FeyerabendS. KhooV. StenzlA. CsösziT. FilipovicZ. GoncalvesF. ProkhorovA. CheungE. HussainA. SousaN. BahlA. HussainS. FrickeH. KadlecovaP. ScheinerT. KorolkiewiczR.P. BartunkovaJ. SpisekR. StadlerW. BergA.S. KurthK-H. HiganoC.S. AaproM. KrainerM. HrubyS. MeranJ. PolyakovS. MachielsJ-P. RoumeguereT. AckaertK. LumenN. GilT. MinchevV. TomovaA. DimitrovB. KolevaM. JureticA. FröbeA. VojnovicZ. DrabekM. JarolimL. BuchlerT. KindlovaE. SchramlJ. ZemanovaM. PrausovaJ. MelicharB. ChodackaM. JansaJ. DaugaardG. DelonchampsN. DuclosB. CulineS. DeplanqueG. Le MoulecS. HammererP. RodemerG. RitterM. MerseburgerA. GrimmM-O. DamjanoskiI. WirthM. BurmesterM. MillerK. HerdenJ. KeckB. WuelfingC. WinterA. BoegemannM. von SchmelingI.K. FornaraP. JaegerE. BodokyG. PápaiZ. Böszörményi-NagyG. VanellaP. SotoParraH. PassalacquaR. FerrauF. MaioM. FratinoL. CortesiE. PurkalneG. AsadauskieneJ. JanciauskieneR. TulyteS. CesasA. PoleeM. HaberkornB. van de EertweghF. van den BergP. BeekerA. NieboerP. ZdrojowyR. StaroslawskaE. FijuthJ. Sikora-KupisB. KaraszewskaB. FernandesI. SousaG. RodriguesT. DzamicZ. BabovicN. CvetkovicB. SokolR. MikulášJ. GajdosM. BrezovskyM. MincikI. BrezaJ. ArranzJ.A. CalvoV. RubioG. ChapadoM.S. BoreuP.G. MontesaA. OlmosD. MelladoB. CastellanoD. PuenteJ. KarlssonE.T. AhlgrenJ. PandhaH. MazharD. Vilarino-VarelaM. ElliottT. PedleyI. ZarkarA. LawA. SlaterD. KarlinG. BilusicM. RedfernC. GaurR. McCroskeyR. ClarksonD. AgrawalM. ShtivelbandM. NordquistL. KarimN. HaukeR. FlaigT. JhangianiH. SingalR. ChoiB. ReyesE. CormanJ. HwangC. ApplemanL. McClayE. FlemingM. GunugantiV. CheungE. GartrellB. SartorA. WilliamsonS. GandhiJ. SchnadigI. BurkeJ. BloomS. ShoreN. MayerT. OhW. BryceA. BelkoffL. VaishampayanU. AgarwalaS. KucukO. AgrawalA. WalshW. PoieszB. HarshmanL. DawsonN. SharmaS. VIABLE Investigators Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer.JAMA Oncol.20228454655210.1001/jamaoncol.2021.729835142815
    [Google Scholar]
  7. WangY. XiangY. XinV.W. WangX.W. PengX.C. LiuX.Q. WangD. LiN. ChengJ.T. LyvY.N. CuiS.Z. MaZ. ZhangQ. XinH.W. Dendritic cell biology and its role in tumor immunotherapy.J. Hematol. Oncol.202013110710.1186/s13045‑020‑00939‑632746880
    [Google Scholar]
  8. VenkatachalamS. McFarlandT.R. AgarwalN. SwamiU. Immune checkpoint inhibitors in prostate cancer.Cancers2021139218710.3390/cancers1309218734063238
    [Google Scholar]
  9. KimT.J. KooK.C. Current status and future perspectives of checkpoint inhibitor immunotherapy for prostate cancer: A comprehensive review.Int. J. Mol. Sci.20202115548410.3390/ijms2115548432751945
    [Google Scholar]
  10. MadanR.A. AntonarakisE.S. DrakeC.G. FongL. YuE.Y. McNeelD.G. LinD.W. ChangN.N. SheikhN.A. GulleyJ.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T.J. Natl. Cancer Inst.2020112656257310.1093/jnci/djaa02132145020
    [Google Scholar]
  11. KwonJ. BakhoumS.F. The cytosolic dna-sensing cGAS–STING pathway in cancer.Cancer Discov.2020101263910.1158/2159‑8290.CD‑19‑076131852718
    [Google Scholar]
  12. DouZ. GhoshK. VizioliM.G. ZhuJ. SenP. WangensteenK.J. SimithyJ. LanY. LinY. ZhouZ. CapellB.C. XuC. XuM. KieckhaeferJ.E. JiangT. Shoshkes-CarmelM. TanimK.M.A.A. BarberG.N. SeykoraJ.T. MillarS.E. KaestnerK.H. GarciaB.A. AdamsP.D. BergerS.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer.Nature2017550767640240610.1038/nature2405028976970
    [Google Scholar]
  13. ChenQ. SunL. ChenZ.J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing.Nat. Immunol.201617101142114910.1038/ni.355827648547
    [Google Scholar]
  14. JiangM. ChenP. WangL. LiW. ChenB. LiuY. WangH. ZhaoS. YeL. HeY. ZhouC. cGAS-STING, an important pathway in cancer immunotherapy.J. Hematol. Oncol.20201318110.1186/s13045‑020‑00916‑z32571374
    [Google Scholar]
  15. SuterM.A. TanN.Y. ThiamC.H. KhatooM. MacAryP.A. AngeliV. GasserS. ZhangY.L. cGAS–STING cytosolic DNA sensing pathway is suppressed by JAK2-STAT3 in tumor cells.Sci. Rep.2021111724310.1038/s41598‑021‑86644‑x33790360
    [Google Scholar]
  16. SenT. RodriguezB.L. ChenL. CorteC.M.D. MorikawaN. FujimotoJ. CristeaS. NguyenT. DiaoL. LiL. FanY. YangY. WangJ. GlissonB.S. WistubaI.I. SageJ. HeymachJ.V. GibbonsD.L. ByersL.A. Targeting DNA damage response promotes antitumor immunity through sting-mediated t-cell activation in small cell lung cancer.Cancer Discov.20199564666110.1158/2159‑8290.CD‑18‑102030777870
    [Google Scholar]
  17. Maleki VarekiS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors.J. Immunother. Cancer20186115710.1186/s40425‑018‑0479‑730587233
    [Google Scholar]
  18. LiuY.T. SunZ.J. Turning cold tumors into hot tumors by improving T-cell infiltration.Theranostics202111115365538610.7150/thno.5839033859752
    [Google Scholar]
  19. HanG. YangG. HaoD. LuY. TheinK. SimpsonB.S. ChenJ. SunR. AlhalabiO. WangR. DangM. DaiE. ZhangS. NieF. ZhaoS. GuoC. HamzaA. CzerniakB. ChengC. Siefker-RadtkeA. BhatK. FutrealA. PengG. WargoJ. PengW. KadaraH. AjaniJ. SwantonC. LitchfieldK. AhnertJ.R. GaoJ. WangL. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy.Nat. Commun.2021121560610.1038/s41467‑021‑25894‑934556668
    [Google Scholar]
  20. BonaventuraP. ShekarianT. AlcazerV. Valladeau-GuilemondJ. Valsesia-WittmannS. AmigorenaS. CauxC. DepilS. Cold tumors: A therapeutic challenge for immunotherapy.Front. Immunol.201910FEB16810.3389/fimmu.2019.0016830800125
    [Google Scholar]
  21. NairS.S. WeilR. DoveyZ. DavisA. TewariA.K. The tumor microenvironment and immunotherapy in prostate and bladder cancer.Urol. Clin. North Am.2020474e17e5410.1016/j.ucl.2020.10.00533446323
    [Google Scholar]
  22. DrakeC.G. DoodyA.D.H. MihalyoM.A. HuangC.T. KelleherE. RaviS. HipkissE.L. FliesD.B. KennedyE.P. LongM. McGaryP.W. CoryellL. NelsonW.G. PardollD.M. AdlerA.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen.Cancer Cell20057323924910.1016/j.ccr.2005.01.02715766662
    [Google Scholar]
  23. ZitvogelL. GalluzziL. KeppO. SmythM.J. KroemerG. Type I interferons in anticancer immunity.Nat. Rev. Immunol.201515740541410.1038/nri384526027717
    [Google Scholar]
  24. AndersonM.J. Shafer-WeaverK. GreenbergN.M. HurwitzA.A. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer.J. Immunol.200717831268127610.4049/jimmunol.178.3.126817237372
    [Google Scholar]
  25. EbeltK. BabarykaG. FigelA.M. PohlaH. BuchnerA. StiefC.G. EisenmengerW. KirchnerT. SchendelD.J. NoessnerE. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma.Prostate200868111010.1002/pros.2066117948280
    [Google Scholar]
  26. OwenK.L. GearingL.J. ZankerD.J. BrockwellN.K. KhooW.H. RodenD.L. CmeroM. MangiolaS. HongM.K. SpurlingA.J. McDonaldM. ChanC.L. PasamA. LyonsR.J. DuivenvoordenH.M. RyanA. ButlerL.M. MariadasonJ.M. Giang PhanT. HayesV.M. SandhuS. SwarbrickA. CorcoranN.M. HertzogP.J. CroucherP.I. HovensC. ParkerB.S. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone.EMBO Rep.2020216e5016210.15252/embr.20205016232314873
    [Google Scholar]
  27. SanaeiM.J. SalimzadehL. BagheriN. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer.J. Leukoc. Biol.20201071435610.1002/JLB.4RU0819‑150RR31721301
    [Google Scholar]
  28. FlemingV. HuX. WeberR. NagibinV. GrothC. AltevogtP. UtikalJ. UmanskyV. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression.Front. Immunol.20189MAR39810.3389/fimmu.2018.0039829552012
    [Google Scholar]
  29. Lopez-BujandaZ. DrakeC.G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies.J. Leukoc. Biol.2017102239340610.1189/jlb.5VMR1116‑491RR28550116
    [Google Scholar]
  30. IdornM. KøllgaardT. KongstedP. SengeløvL. thor StratenP. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer.Cancer Immunol. Immunother.201463111177118710.1007/s00262‑014‑1591‑225085000
    [Google Scholar]
  31. MuthuswamyR. CormanJ.M. DahlK. ChattaG.S. KalinskiP. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8+ T cells.Prostate201676121095110510.1002/pros.2319427199259
    [Google Scholar]
  32. VitkinN. NersesianS. SiemensD.R. KotiM. The tumor immune contexture of prostate cancer.Frontiers in Immunology.Frontiers Media S.A.201910.
    [Google Scholar]
  33. VidottoT. SaggioroF.P. JamaspishviliT. ChescaD.L. Picanço de AlbuquerqueC.G. ReisR.B. GrahamC.H. BermanD.M. SiemensD.R. SquireJ.A. KotiM. PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells.Prostate201979996997910.1002/pros.2380830999388
    [Google Scholar]
  34. Garcia-LoraA. AlgarraI. GarridoF. MHC class I antigens, immune surveillance, and tumor immune escape.J. Cell. Physiol.2003195334635510.1002/jcp.1029012704644
    [Google Scholar]
  35. SandaM.G. RestifoN.P. WalshJ.C. KawakamiY. NelsonW.G. PardollD.M. SimonsJ.W. Molecular characterization of defective antigen processing in human prostate cancer.J. Natl. Cancer Inst.199587428028510.1093/jnci/87.4.2807707419
    [Google Scholar]
  36. ShenY.C. GhasemzadehA. KochelC.M. NirschlT.R. FrancicaB.J. Lopez-BujandaZ.A. Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): Preclinical activity in the Myc-CaP model. Prost. Cancer Prost. Dis.2017211113125
    [Google Scholar]
  37. LeiQ. WangD. SunK. WangL. ZhangY. Resistance mechanisms of Anti-PD1/PDL1 therapy in solid tumors.Front. Cell Dev. Biol.2020867210.3389/fcell.2020.0067232793604
    [Google Scholar]
  38. RibasA. Adaptive immune resistance: How cancer protects from immune attack.Cancer Discov.20155991591910.1158/2159‑8290.CD‑15‑056326272491
    [Google Scholar]
  39. MontoyaM. SchiavoniG. MatteiF. GresserI. BelardelliF. BorrowP. ToughD.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation.Blood20029993263327110.1182/blood.V99.9.326311964292
    [Google Scholar]
  40. IsaacsA. LindenmannJ. Virus interference. I. The interferon.Proc. R. Soc. Lond. B Biol. Sci.195714792725826710.1098/rspb.1957.004813465720
    [Google Scholar]
  41. YuR. ZhuB. ChenD. Type I interferon-mediated tumor immunity and its role in immunotherapy.Cell. Mol. Life Sci.202279319110.1007/s00018‑022‑04219‑z35292881
    [Google Scholar]
  42. DiamondM.S. KinderM. MatsushitaH. MashayekhiM. DunnG.P. ArchambaultJ.M. LeeH. ArthurC.D. WhiteJ.M. KalinkeU. MurphyK.M. SchreiberR.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors.J. Exp. Med.2011208101989200310.1084/jem.2010115821930769
    [Google Scholar]
  43. WanD. JiangW. HaoJ. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response.Front. Immunol.20201161510.3389/fimmu.2020.0061532411126
    [Google Scholar]
  44. SunW. LiY. ChenL. ChenH. YouF. ZhouX. ZhouY. ZhaiZ. ChenD. JiangZ. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.Proc. Natl. Acad. Sci. USA2009106218653865810.1073/pnas.090085010619433799
    [Google Scholar]
  45. LvM. ChenM. ZhangR. ZhangW. WangC. ZhangY. WeiX. GuanY. LiuJ. FengK. JingM. WangX. LiuY.C. MeiQ. HanW. JiangZ. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.Cell Res.2020301196697910.1038/s41422‑020‑00395‑432839553
    [Google Scholar]
  46. LiT. ChenZ.J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer.J. Exp. Med.201821551287129910.1084/jem.2018013929622565
    [Google Scholar]
  47. BairdJ.R. FriedmanD. CottamB. DubenskyT.W.Jr KanneD.B. BambinaS. BahjatK. CrittendenM.R. GoughM.J. Radiotherapy combined with novel sting-targeting oligonucleotides results in regression of established tumors.Cancer Res.2016761506110.1158/0008‑5472.CAN‑14‑361926567136
    [Google Scholar]
  48. GajewskiT.F. SchreiberH. FuY.X. Innate and adaptive immune cells in the tumor microenvironment.Nat. Immunol.201314101014102210.1038/ni.270324048123
    [Google Scholar]
  49. KumarS. HanJ.A. MichaelI.J. KiD. SunkaraV. ParkJ. GautamS. HaH.K. ZhangL. ChoY-K. Human platelet membrane functionalized microchips with plasmonic codes for cancer detection.Adv. Funct. Mater.20192930190266910.1002/adfm.201902669
    [Google Scholar]
  50. GaoP. AscanoM. WuY. BarchetW. GaffneyB.L. ZillingerT. SerganovA.A. LiuY. JonesR.A. HartmannG. TuschlT. PatelD.J. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase.Cell201315351094110710.1016/j.cell.2013.04.04623647843
    [Google Scholar]
  51. KangJ. WuJ. LiuQ. WuX. ZhaoY. RenJ. Post-translational modifications of STING: A potential therapeutic target.Front. Immunol.20221388814710.3389/fimmu.2022.88814735603197
    [Google Scholar]
  52. TaoJ. ZhouX. JiangZ. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling.IUBMB Life2016681185887010.1002/iub.156627706894
    [Google Scholar]
  53. GaoY. ZhengX. ChangB. LinY. HuangX. WangW. DingS. ZhanW. WangS. XiaoB. HuoL. YuY. ChenY. GongR. WuY. ZhangR. ZhongL. WangX. ChenQ. GaoS. JiangZ. WeiD. KangT. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity.Cell Res.202232121086110410.1038/s41422‑022‑00731‑w36280710
    [Google Scholar]
  54. HuX. ZhangH. ZhangQ. YaoX. NiW. ZhouK. Emerging role of STING signalling in CNS injury: Inflammation, autophagy, necroptosis, ferroptosis and pyroptosis.J. Neuroinflammation202219124210.1186/s12974‑022‑02602‑y36195926
    [Google Scholar]
  55. JianfengW. YutaoW. JianbinB. Indolethylamine-N-Methyltransferase inhibits proliferation and promotes apoptosis of human prostate cancer cells: A mechanistic exploration.Front. Cell Dev. Biol.20221080540210.3389/fcell.2022.80540235252179
    [Google Scholar]
  56. IhleC.L. ProveraM.D. StraignD.M. SmithE.E. EdgertonS.M. Van BokhovenA. LuciaM.S. OwensP. Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients.J. Immunother. Cancer20197129310.1186/s40425‑019‑0753‑331703602
    [Google Scholar]
  57. LindbladK.E. Ruiz de GalarretaM. LujambioA. Tumor-intrinsic mechanisms regulating immune exclusion in liver cancers.Front. Immunol.202112642958>10.3389/fimmu.2021.64295833981303
    [Google Scholar]
  58. O’DonnellJ.S. MadoreJ. LiX.Y. SmythM.J. Tumor intrinsic and extrinsic immune functions of CD155.Semin. Cancer Biol.20206518919610.1016/j.semcancer.2019.11.01331883911
    [Google Scholar]
  59. RowshanravanB. HallidayN. SansomD.M. CTLA-4: A moving target in immunotherapy.Blood20181311586710.1182/blood‑2017‑06‑74103329118008
    [Google Scholar]
  60. StamperC.C. ZhangY. TobinJ.F. ErbeD.V. IkemizuS. DavisS.J. StahlM.L. SeehraJ. SomersW.S. MosyakL. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses.Nature2001410682860861110.1038/3506911811279502
    [Google Scholar]
  61. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑5
    [Google Scholar]
  62. Degl’InnocentiE. GrioniM. BoniA. CamporealeA. BertilaccioM.T.S. FreschiM. MonnoA. ArcelloniC. GreenbergN.M. BelloneM. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization.Eur. J. Immunol.2005351667510.1002/eji.20042553115597325
    [Google Scholar]
  63. LiX. KhorsandiS. WangY. SantelliJ. HuntoonK. NguyenN. YangM. LeeD. LuY. GaoR. KimB.Y.S. de Gracia LuxC. MattreyR.F. JiangW. LuxJ. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.Nat. Nanotechnol.202217889189910.1038/s41565‑022‑01134‑z35637356
    [Google Scholar]
  64. SunX. ZhangY. LiJ. ParkK.S. HanK. ZhouX. XuY. NamJ. XuJ. ShiX. WeiL. LeiY.L. MoonJ.J. Amplifying STING activation by cyclic dinucleotide– manganese particles for local and systemic cancer metalloimmunotherapy.Nat. Nanotechnol.202116111260127010.1038/s41565‑021‑00962‑934594005
    [Google Scholar]
  65. LinH. WangK. XiongY. ZhouL. YangY. ChenS. XuP. ZhouY. MaoR. LvG. WangP. ZhouD. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development.Front. Immunol.20221377326410.3389/fimmu.2022.77326435185876
    [Google Scholar]
  66. ShortmanK. LahoudM.H. CaminschiI. Improving vaccines by targeting antigens to dendritic cells.Exp. Mol. Med.2009412616610.3858/emm.2009.41.2.00819287186
    [Google Scholar]
  67. KratzerT.B. JemalA. MillerK.D. NashS. WigginsC. RedwoodD. SmithR. SiegelR.L. Cancer statistics for A merican I ndian and A laska N ative individuals, 2022: Including increasing disparities in early onset colorectal cancer.CA Cancer J. Clin.202373212014610.3322/caac.2175736346402
    [Google Scholar]
  68. SunL. WuJ. DuF. ChenX. ChenZ.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.Science2013339612178679110.1126/science.123245823258413
    [Google Scholar]
  69. LiuY. ZengG. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy.J. Immunother.201235429930810.1097/CJI.0b013e3182518e8322495387
    [Google Scholar]
  70. DisisM.L. Immune regulation of cancer.J. Clin. Oncol.201028294531453810.1200/JCO.2009.27.214620516428
    [Google Scholar]
  71. ChaplinD.D. Overview of the immune response.J. Allergy Clin. Immunol.20101252Suppl. 2S3S2310.1016/j.jaci.2009.12.98020176265
    [Google Scholar]
  72. Del PreteA. SalviV. SorianiA. LaffranchiM. SozioF. BosisioD. SozzaniS. Dendritic cell subsets in cancer immunity and tumor antigen sensing.Cell. Mol. Immunol.202320543244710.1038/s41423‑023‑00990‑636949244
    [Google Scholar]
  73. DasP. ShenT. McCordR.P. Characterizing the variation in chromosome structure ensembles in the context of the nuclear microenvironment.PLOS Comput. Biol.2022188e101039210.1371/journal.pcbi.101039235969616
    [Google Scholar]
  74. StrickfadenH. ZunhammerA. van KoningsbruggenS. KöhlerD. CremerT. 4D Chromatin dynamics in cycling cells.Nucleus20101328429710.4161/nucl.1196921327076
    [Google Scholar]
  75. HoS.S.W. ZhangW.Y.L. TanN.Y.J. KhatooM. SuterM.A. TripathiS. CheungF.S.G. LimW.K. TanP.H. NgeowJ. GasserS. The DNA structure-specific endonuclease mus81 mediates dna sensor sting-dependent host rejection of prostate cancer cells.Immunity20164451177118910.1016/j.immuni.2016.04.01027178469
    [Google Scholar]
  76. ZhangW. LiG. LuoR. LeiJ. SongY. WangB. MaL. LiaoZ. KeW. LiuH. HuaW. ZhaoK. FengX. WuX. ZhangY. WangK. YangC. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis.Exp. Mol. Med.202254212914210.1038/s12276‑022‑00729‑935145201
    [Google Scholar]
  77. NewmanL.E. ShadelG.S. Mitochondrial DNA release in innate immune signaling.Annu. Rev. Biochem.202392129933210.1146/annurev‑biochem‑032620‑10440137001140
    [Google Scholar]
  78. SinghJ. BoettcherM. DöllingM. HeuerA. HohbergerB. LeppkesM. NaschbergerE. SchapherM. SchauerC. SchoenJ. StürzlM. VitkovL. WangH. ZlatarL. SchettG.A. PisetskyD.S. LiuM.L. HerrmannM. KnopfJ. Moonlighting chromatin: When DNA escapes nuclear control.Cell Death Differ.202330486187510.1038/s41418‑023‑01124‑136755071
    [Google Scholar]
  79. VassilievaE.V. TaylorD.W. CompansR.W. Combination of STING pathway agonist with saponin is an effective adjuvant in immunosenescent mice.Front. Immunol.201910300610.3389/fimmu.2019.0300631921219
    [Google Scholar]
  80. LiuY. LuX. QinN. QiaoY. XingS. LiuW. FengF. LiuZ. SunH. STING, a promising target for small molecular immune modulator: A review.Eur. J. Med. Chem.202121111311310.1016/j.ejmech.2020.11311333360799
    [Google Scholar]
  81. RossP. WeinhouseH. AloniY. MichaeliD. Weinberger-OhanaP. MayerR. BraunS. de VroomE. van der MarelG.A. van BoomJ.H. BenzimanM. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid.Nature1987325610127928110.1038/325279a018990795
    [Google Scholar]
  82. ElmanfiS. YilmazM. OngW.W.S. YeboahK.S. SintimH.O. GürsoyM. KönönenE. GürsoyU.K. Bacterial cyclic dinucleotides and the cGAS–cGAMP–STING pathway: A role in periodontitis?Pathogens202110667510.3390/pathogens1006067534070809
    [Google Scholar]
  83. GonuguntaV.K. SakaiT. PokatayevV. YangK. WuJ. DobbsN. YanN. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response.Cell Rep.201721113234324210.1016/j.celrep.2017.11.06129241549
    [Google Scholar]
  84. OhkuriT. KosakaA. IshibashiK. KumaiT. HirataY. OharaK. NagatoT. OikawaK. AokiN. HarabuchiY. CelisE. KobayashiH. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site.Cancer Immunol. Immunother.201766670571610.1007/s00262‑017‑1975‑128243692
    [Google Scholar]
  85. JiN. WangM. TanC. Liposomal delivery of MIW815 (ADU-S100) for potentiated STING activation.Pharmaceutics202315263810.3390/pharmaceutics1502063836839960
    [Google Scholar]
  86. CorralesL. GlickmanL.H. McWhirterS.M. KanneD.B. SivickK.E. KatibahG.E. WooS.R. LemmensE. BandaT. LeongJ.J. MetchetteK. DubenskyT.W.Jr GajewskiT.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity.Cell Rep.20151171018103010.1016/j.celrep.2015.04.03125959818
    [Google Scholar]
  87. HarringtonK.J. BrodyJ. InghamM. StraussJ. CemerskiS. WangM. TseA. KhilnaniA. MarabelleA. GolanT. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas.Ann. Oncol.201829viii71210.1093/annonc/mdy424.015
    [Google Scholar]
  88. PapaevangelouE. EstevesA.M. DasguptaP. GalustianC. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models.Front. Immunol.202314119682910.3389/fimmu.2023.119682937465665
    [Google Scholar]
  89. CuiX. ZhangR. CenS. ZhouJ. STING modulators: Predictive significance in drug discovery.Eur. J. Med. Chem.201918211159110.1016/j.ejmech.2019.11159131419779
    [Google Scholar]
  90. JassarA.S. SuzukiE. KapoorV. SunJ. SilverbergM.B. CheungL. BurdickM.D. StrieterR.M. ChingL.M. KaiserL.R. AlbeldaS.M. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma.Cancer Res.20056524117521176110.1158/0008‑5472.CAN‑05‑165816357188
    [Google Scholar]
  91. KanwarKRPSCLKGWJR Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci.Cancer Res. 200161519481956
    [Google Scholar]
  92. LaraP.N.Jr DouillardJ.Y. NakagawaK. von PawelJ. McKeageM.J. AlbertI. LosonczyG. ReckM. HeoD.S. FanX. FandiA. ScagliottiG. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer.J. Clin. Oncol.201129222965297110.1200/JCO.2011.35.066021709202
    [Google Scholar]
  93. WoonS.T. ZwainS. SchooltinkM.A. NewthA.L. BaguleyB.C. ChingL.M. NF-kappa B activation in vivo in both host and tumour cells by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA).Eur. J. Cancer20033981176118310.1016/S0959‑8049(03)00196‑512736120
    [Google Scholar]
  94. ChingL-M. CaoZ. KiedaC. ZwainS. JamesonM.B. BaguleyB.C. Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid.Br. J. Cancer200286121937194210.1038/sj.bjc.660036812085190
    [Google Scholar]
  95. WangY. LuoJ. AluA. HanX. WeiY. WeiX. cGAS-STING pathway in cancer biotherapy.Mol. Cancer202019113610.1186/s12943‑020‑01247‑w32887628
    [Google Scholar]
  96. GarlandK.M. SheehyT.L. WilsonJ.T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy.Chem. Rev.202212265977603910.1021/acs.chemrev.1c0075035107989
    [Google Scholar]
  97. RamanjuluJ.M. PesiridisG.S. YangJ. ConchaN. SinghausR. ZhangS.Y. TranJ.L. MooreP. LehmannS. EberlH.C. MuelbaierM. SchneckJ.L. ClemensJ. AdamM. MehlmannJ. RomanoJ. MoralesA. KangJ. LeisterL. GraybillT.L. CharnleyA.K. YeG. NevinsN. BehniaK. WolfA.I. KasparcovaV. NurseK. WangL. PuhlA.C. LiY. KleinM. HopsonC.B. GussJ. BantscheffM. BergaminiG. ReillyM.A. LianY. DuffyK.J. AdamsJ. FoleyK.P. GoughP.J. MarquisR.W. SmothersJ. HoosA. BertinJ. Design of amidobenzimidazole STING receptor agonists with systemic activity.Nature2018564773643944310.1038/s41586‑018‑0705‑y30405246
    [Google Scholar]
  98. PanB.S. PereraS.A. PiesvauxJ.A. PreslandJ.P. SchroederG.K. CummingJ.N. TrotterB.W. AltmanM.D. BuevichA.V. CashB. CemerskiS. ChangW. ChenY. DandlikerP.J. FengG. HaidleA. HendersonT. JewellJ. KarivI. KnemeyerI. KopinjaJ. LaceyB.M. LaskeyJ. LesburgC.A. LiangR. LongB.J. LuM. MaY. MinnihanE.C. O’DonnellG. OtteR. PriceL. RakhilinaL. SauvagnatB. SharmaS. TyagarajanS. WooH. WyssD.F. XuS. BennettD.J. AddonaG.H. An orally available non-nucleotide STING agonist with antitumor activity.Science20203696506eaba609810.1126/science.aba609832820094
    [Google Scholar]
  99. DengL. LiangH. XuM. YangX. BurnetteB. ArinaA. LiX.D. MauceriH. BeckettM. DargaT. HuangX. GajewskiT.F. ChenZ.J. FuY.X. WeichselbaumR.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors.Immunity201441584385210.1016/j.immuni.2014.10.01925517616
    [Google Scholar]
  100. Le NaourJ. ZitvogelL. GalluzziL. VacchelliE. KroemerG. Trial watch: STING agonists in cancer therapy.OncoImmunology202091177762410.1080/2162402X.2020.177762432934881
    [Google Scholar]
  101. GuoF. HanY. ZhaoX. WangJ. LiuF. XuC. WeiL. JiangJ.D. BlockT.M. GuoJ.T. ChangJ. STING agonists induce an innate antiviral immune response against hepatitis B virus.Antimicrob. Agents Chemother.20155921273128110.1128/AAC.04321‑1425512416
    [Google Scholar]
  102. BhatnagarS. RevuriV. ShahM. LarsonP. ShaoZ. YuD. PrabhaS. GriffithT.S. FergusonD. PanyamJ. Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy.Cancers (Basel)20221424609110.3390/cancers1424609136551577
    [Google Scholar]
  103. WobmaH. ShinD.S. ChouJ. DedeoğluF. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus.Front. Immunol.20221390510910.3389/fimmu.2022.90510935693769
    [Google Scholar]
  104. LeventhalD.S. SokolovskaA. LiN. PlesciaC. KolodziejS.A. GallantC.W. ChristmasR. GaoJ.R. JamesM.J. Abin-FuentesA. MominM. BergeronC. FisherA. MillerP.F. WestK.A. LoraJ.M. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity.Nat. Commun.2020111273910.1038/s41467‑020‑16602‑032483165
    [Google Scholar]
  105. ToulanyM. Targeting DNA double-strand break repair pathways to improve radiotherapy response.Genes20191012510.3390/genes1001002530621219
    [Google Scholar]
  106. HoongB.Y.D. GanY.H. LiuH. ChenE.S. cGAS-STING pathway in oncogenesis and cancer therapeutics.Oncotarget202011302930295510.18632/oncotarget.2767332774773
    [Google Scholar]
  107. MotwaniM. PesiridisS. FitzgeraldK.A. DNA sensing by the cGAS–STING pathway in health and disease.Nat. Rev. Genet.2019201165767410.1038/s41576‑019‑0151‑131358977
    [Google Scholar]
  108. StorozynskyQ. HittM.M. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer.Int. J. Mol. Sci.20202122887710.3390/ijms2122887733238631
    [Google Scholar]
  109. LhuillierC. RudqvistN.P. ElementoO. FormentiS.C. DemariaS. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system.Genome Med.20191114010.1186/s13073‑019‑0653‑731221199
    [Google Scholar]
  110. FillonM. Lung cancer radiation may increase the risk of major adverse cardiac events.CA Cancer J. Clin.201969643543710.3322/caac.2158131545880
    [Google Scholar]
  111. XueA. ShangY. JiaoP. ZhangS. ZhuC. HeX. FengG. FanS. Increased activation of cGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells.Thorac. Cancer20221391361136810.1111/1759‑7714.1440035429143
    [Google Scholar]
  112. LiuY. CroweW.N. WangL. LuY. PettyW.J. HabibA.A. ZhaoD. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases.Nat. Commun.2019101510810.1038/s41467‑019‑13094‑531704921
    [Google Scholar]
  113. LuoM. LiuZ. ZhangX. HanC. SamandiL.Z. DongC. SumerB.D. LeaJ. FuY.X. GaoJ. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy.J. Control. Release201930015416010.1016/j.jconrel.2019.02.03630844475
    [Google Scholar]
  114. PatelR.B. YeM. CarlsonP.M. JaquishA. ZanglL. MaB. WangY. ArthurI. XieR. BrownR.J. WangX. SriramaneniR. KimK. GongS. MorrisZ.S. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles.Adv. Mater.20193143190262610.1002/adma.20190262631523868
    [Google Scholar]
  115. GanY. LiX. HanS. LiangQ. MaX. RongP. WangW. LiW. The cGAS/STING pathway: A novel target for cancer therapy.Front. Immunol.20221279540110.3389/fimmu.2021.79540135046953
    [Google Scholar]
  116. WangY. DengW. LiN. NeriS. SharmaA. JiangW. LinS.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions.Front. Pharmacol.20189MAR18510.3389/fphar.2018.0018529556198
    [Google Scholar]
  117. UklejaJ. KusakaE. MiyamotoD.T. Immunotherapy combined with radiation therapy for genitourinary malignancies.Front. Oncol.20211166385210.3389/fonc.2021.663852
    [Google Scholar]
  118. Vanpouille-BoxC. AlardA. AryankalayilM.J. SarfrazY. DiamondJ.M. SchneiderR.J. InghiramiG. ColemanC.N. FormentiS.C. DemariaS. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity.Nat. Commun.2017811561810.1038/ncomms1561828598415
    [Google Scholar]
  119. ConstanzoJ. FagetJ. UrsinoC. BadieC. PougetJ.P. Radiation-induced immunity and toxicities: The versatility of the cGAS-STING pathway.Front. Immunol.20211268050310.3389/fimmu.2021.68050334079557
    [Google Scholar]
  120. Kaidar-PersonO. ZagarT.M. DealA. MoschosS.J. EwendM.G. Sasaki-AdamsD. LeeC.B. CollichioF.A. FriedD. MarksL.B. CheraB.S. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases.Anticancer Drugs201728666967510.1097/CAD.000000000000049728368903
    [Google Scholar]
  121. WangH. GuanY. LiC. ChenJ. YueS. QianJ. DaiB. JiangC. WenC. WenL. LiangC. ZhangY. ZhangL. PEGylated manganese–zinc ferrite nanocrystals combined with intratumoral implantation of micromagnets enabled synergetic prostate cancer therapy via ferroptotic and immunogenic cell death.Small20231922220707710.1002/smll.20220707736861297
    [Google Scholar]
  122. HsuS.C. ChenC.L. ChengM.L. ChuC.Y. ChangouC.A. YuY.L. YehS.D. KuoT.C. KuoC.C. ChuuC.P. LiC.F. WangL.H. ChenH.W. YenY. AnnD.K. WangH.J. KungH.J. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes.Theranostics202111157527754510.7150/thno.5469534158865
    [Google Scholar]
  123. EstevesA.M. PapaevangelouE. DasguptaP. GalustianC. Combination of interleukin-15 with a STING agonist, ADU-S100 analog: A potential immunotherapy for prostate cancer.Front. Oncol.20211162155010.3389/fonc.2021.62155033777767
    [Google Scholar]
  124. AgerC.R. ReilleyM.J. NicholasC. BartkowiakT. JaiswalA.R. CurranM.A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity.Cancer Immunol. Res.20175867668410.1158/2326‑6066.CIR‑17‑004928674082
    [Google Scholar]
  125. MaZ. ZhangW. DongB. XinZ. JiY. SuR. ShenK. PanJ. WangQ. XueW. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy.Theranostics202212114965497910.7150/thno.7315235836810
    [Google Scholar]
  126. HuangW. RandhawaR. JainP. HubbardS. EickhoffJ. KummarS. WildingG. BasuH. RoyR. A novel artificial intelligence–powered method for prediction of early recurrence of prostate cancer after prostatectomy and cancer drivers.JCO Clin. Cancer Inform.202266e210013110.1200/CCI.21.0013135192404
    [Google Scholar]
  127. GengC. ZhangM.C. ManyamG.C. VykoukalJ.V. FahrmannJ.F. PengS. WuC. ParkS. KondragantiS. WangD. RobinsonB.D. LodaM. BarbieriC.E. YapT.A. CornP.G. HanashS. BroomB.M. PiliéP.G. ThompsonT.C. SPOP mutations target STING1 signaling in prostate cancer and create therapeutic vulnerabilities to PARP inhibitor-induced growth suppression.Clin. Cancer Res.202329214464447810.1158/1078‑0432.CCR‑23‑143937581614
    [Google Scholar]
  128. OlsonB.M. ChaudagarK. BaoR. SahaS.S. HongC. LiM. RameshbabuS. ChenR. ThomasA. PatnaikA. BET inhibition sensitizes immunologically cold rb-deficient prostate cancer to immune checkpoint blockade.Mol. Cancer Ther.202322675176410.1158/1535‑7163.MCT‑22‑036937014264
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673273303231208071403
Loading
/content/journals/cmc/10.2174/0109298673273303231208071403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test