Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673264372230919102758
2023-10-26
2024-11-01
Loading full text...

Full text loading...

References

  1. StewartB. W. WildC. P. World Cancer Report 2014.LyonWHO Press2014
    [Google Scholar]
  2. Worldwide cancer data. World Cancer Research Fund InternationalAvailable from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/(accessed May 19, 2023)
  3. Worldwide cancer incidence statistics. Cancer Research UKAvailable from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence(accessed May 19, 2023)
  4. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  5. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  6. YanL. ShenJ. WangJ. YangX. DongS. LuS. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology.Dose Response2020183155932582093616110.1177/155932582093616132699536
    [Google Scholar]
  7. LiuX.Y. ZhangQ. GuoJ. ZhangP. LiuH. TianZ.B. ZhangC.P. LiX.Y. The role of circular rnas in the drug resistance of cancers.Front. Oncol.20221179058910.3389/fonc.2021.79058935070998
    [Google Scholar]
  8. LichotaA. GwozdzinskiK. Anti-cancer activity of natural compounds from plant and marine environment.Int. J. Mol. Sci.20181911353310.3390/ijms1911353330423952
    [Google Scholar]
  9. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.04129071215
    [Google Scholar]
  10. GreenwellM. RahmanP.K.S.M. Medicinal plants: Their use in anti-cancer treatment.Int. J. Pharm. Sci. Res.20156114103411210.13040/IJPSR.0975‑8232.6(10).4103‑1226594645
    [Google Scholar]
  11. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  12. Cansaran-DumanD. TanmanÜ. YangınS. AtakolO. The comparison of miRNAs that respond to anti-breast cancer drugs and usnic acid for the treatment of breast cancer.Cytotechnology202072685587210.1007/s10616‑020‑00430‑733128199
    [Google Scholar]
  13. BeckH. HärterM. HaßB. SchmeckC. BaerfackerL. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory.Drug Discov. Today20222761560157410.1016/j.drudis.2022.02.01535202802
    [Google Scholar]
  14. SecaA. PintoD. Plant secondary metabolites as anti-cancer agents: Successes in clinical trials and therapeutic application.Int. J. Mol. Sci.201819126310.3390/ijms1901026329337925
    [Google Scholar]
  15. EvansA. E. FarberS. BrunetS. MarlanoP. J. JohnsonW. Vincristine in the treatment of acute leukemia in children.Cancer19631613021306
    [Google Scholar]
  16. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  17. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  18. SunG. RongD. LiZ. SunG. WuF. LiX. CaoH. ChengY. TangW. SunY. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges.Front. Cell Dev. Biol.2021969436310.3389/fcell.2021.69436334568317
    [Google Scholar]
  19. NgoH.X. Garneau-TsodikovaS. What are the drugs of the future?MedChemComm20189575775810.1039/C8MD90019A30108965
    [Google Scholar]
  20. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  21. XicotaL. De TomaI. MaffiolettiE. PisanuC. SquassinaA. BauneB.T. PotierM.C. StaceyD. DierssenM. Recommendations for pharmacotranscriptomic profiling of drug response in CNS disorders.Eur. Neuropsychopharmacol.202254415310.1016/j.euroneuro.2021.10.00534743061
    [Google Scholar]
  22. YuA.M. ChoiY.H. TuM.J. RNA drugs and RNA targets for small molecules: Principles, progress, and challenges.Pharmacol. Rev.202072486289810.1124/pr.120.01955432929000
    [Google Scholar]
  23. Mollocana-LaraE.C. NiM. AgathosS.N. Gonzales-ZubiateF.A. The infinite possibilities of RNA therapeutics.J. Ind. Microbiol. Biotechnol.2021489-10kuab06310.1093/jimb/kuab06334463324
    [Google Scholar]
  24. LiY. KongD. WangZ. SarkarF.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research.Pharm. Res.20102761027104110.1007/s11095‑010‑0105‑y20306121
    [Google Scholar]
  25. QianY. ShiL. LuoZ. Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy.Front. Med.2020761239310.3389/fmed.2020.61239333330574
    [Google Scholar]
  26. ArunG. DiermeierS.D. SpectorD.L. Therapeutic targeting of long non-coding RNAs in cancer.Trends Mol. Med.201824325727710.1016/j.molmed.2018.01.00129449148
    [Google Scholar]
  27. HannaJ. HossainG.S. KocerhaJ. The potential for microRNA therapeutics and clinical research.Front. Genet.201910MAY47810.3389/fgene.2019.0047831156715
    [Google Scholar]
  28. LuT. WangY. ChenD. LiuJ. JiaoW. Potential clinical application of lncRNAs in non-small cell lung cancer.OncoTargets Ther.2018118045805210.2147/OTT.S17843130519046
    [Google Scholar]
  29. ChakrabortyC. SharmaA.R. SharmaG. LeeS.S. Therapeutic advances of miRNAs: A preclinical and clinical update.J. Adv. Res.20212812713810.1016/j.jare.2020.08.01233364050
    [Google Scholar]
  30. LindowM. KauppinenS. Discovering the first microRNA-targeted drug.J. Cell Biol.2012199340741210.1083/jcb.20120808223109665
    [Google Scholar]
  31. MercerT.R. MunroT. MattickJ.S. The potential of long noncoding RNA therapies.Trends Pharmacol. Sci.202243426928010.1016/j.tips.2022.01.00835153075
    [Google Scholar]
  32. JiangM-C. NiJ-J. CuiW-Y. WangB-Y. ZhuoW. Emerging roles of lncRNA in cancer and therapeutic opportunities.Am. J. Cancer Res.2019971354136631392074
    [Google Scholar]
  33. JarrouxJ. MorillonA. PinskayaM. History, discovery, and classification of lncRNAs.Adv. Exp. Med. Biol.2017100814610.1007/978‑981‑10‑5203‑3_128815535
    [Google Scholar]
  34. MattickJ.S. The state of long non-coding RNA Biology.Noncoding RNA2018431710.3390/ncrna403001730103474
    [Google Scholar]
  35. ClarkM.B. JohnstonR.L. Inostroza-PontaM. FoxA.H. FortiniE. MoscatoP. DingerM.E. MattickJ.S. Genome-wide analysis of long noncoding RNA stability.Genome Res.201222588589810.1101/gr.131037.11122406755
    [Google Scholar]
  36. OrafidiyaF. DengL. BevanC.L. FletcherC.E. Crosstalk between long non coding RNAs, microRNAs and DNA damage repair in prostate cancer: New therapeutic opportunities?Cancers202214375510.3390/cancers1403075535159022
    [Google Scholar]
  37. ZhangA. ZhaoJ.C. KimJ. FongK. YangY.A. ChakravartiD. MoY.Y. YuJ. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer.Cell Rep.201513120922110.1016/j.celrep.2015.08.06926411689
    [Google Scholar]
  38. PrensnerJ.R. IyerM.K. SahuA. AsanganiI.A. CaoQ. PatelL. VergaraI.A. DavicioniE. ErhoN. GhadessiM. JenkinsR.B. TricheT.J. MalikR. BedenisR. McGregorN. MaT. ChenW. HanS. JingX. CaoX. WangX. ChandlerB. YanW. SiddiquiJ. KunjuL.P. DhanasekaranS.M. PientaK.J. FengF.Y. ChinnaiyanA.M. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex.Nat. Genet.201345111392139810.1038/ng.277124076601
    [Google Scholar]
  39. GuP. ChenX. XieR. HanJ. XieW. WangB. DongW. ChenC. YangM. JiangJ. ChenZ. HuangJ. LinT. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5.Mol. Ther.20172581959197310.1016/j.ymthe.2017.04.01628487115
    [Google Scholar]
  40. MunschauerM. NguyenC.T. SirokmanK. HartiganC.R. HogstromL. EngreitzJ.M. UlirschJ.C. FulcoC.P. SubramanianV. ChenJ. SchenoneM. GuttmanM. CarrS.A. LanderE.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability.Nature2018561772113213610.1038/s41586‑018‑0453‑z30150775
    [Google Scholar]
  41. YangC. WuD. GaoL. LiuX. JinY. WangD. WangT. LiX. Competing endogenous RNA networks in human cancer: Hypothesis, validation, and perspectives.Oncotarget2016712134791349010.18632/oncotarget.726626872371
    [Google Scholar]
  42. AlkanA.H. AkgülB. Endogenous MiRNA sponges.Methods Mol. Biol.20229110410.1007/978‑1‑0716‑1170‑8_5
    [Google Scholar]
  43. JiaM. ShiY. XieY. LiW. DengJ. FuD. BaiJ. MaY. ZuberiZ. LiJ. LiZ. WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments.Cells20211112510.3390/cells1101002535011587
    [Google Scholar]
  44. CuiY.S. SongY.P. FangB.J. The role of long non-coding RNAs in multiple myeloma.Eur. J. Haematol.201910313910.1111/ejh.1323730985973
    [Google Scholar]
  45. WangY. ChenS. ChenL. WangY. Associating lncRNAs with small molecules via bilevel optimization reveals cancer-related lncRNAs.PLOS Comput. Biol.20191512e100754010.1371/journal.pcbi.100754031877126
    [Google Scholar]
  46. Childs-DisneyJ.L. YangX. GibautQ.M.R. TongY. BateyR.T. DisneyM.D. Targeting RNA structures with small molecules.Nat. Rev. Drug Discov.2022211073676210.1038/s41573‑022‑00521‑435941229
    [Google Scholar]
  47. MurrayA. HearnJ. TurnerS. The emerging landscape of RNA-targeted small molecules.2021Available from:https://www.alacrita.com/whitepapers/the-emerging-landscape-of-rna-targeted-small-molecules#:~:text=An%20emerging%20strategy%20to%20exploit,thus%20altering%20its%20conformational%20landscape.
  48. YousefiH. MaheronnaghshM. MolaeiF. MashouriL. Reza ArefA. MomenyM. AlahariS.K. Long noncoding RNAs and exosomal lncRNAs: Classification, and mechanisms in breast cancer metastasis and drug resistance.Oncogene202039595397410.1038/s41388‑019‑1040‑y31601996
    [Google Scholar]
  49. GuptaR.A. ShahN. WangK.C. KimJ. HorlingsH.M. WongD.J. TsaiM.C. HungT. ArganiP. RinnJ.L. WangY. BrzoskaP. KongB. LiR. WestR.B. van de VijverM.J. SukumarS. ChangH.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.Nature201046472911071107610.1038/nature0897520393566
    [Google Scholar]
  50. Sanchez CalleA. KawamuraY. YamamotoY. TakeshitaF. OchiyaT. Emerging roles of long non-coding RNA in cancer.Cancer Sci.201810972093210010.1111/cas.1364229774630
    [Google Scholar]
  51. HuarteM. GuttmanM. FeldserD. GarberM. KoziolM.J. Kenzelmann-BrozD. KhalilA.M. ZukO. AmitI. RabaniM. AttardiL.D. RegevA. LanderE.S. JacksT. RinnJ.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response.Cell2010142340941910.1016/j.cell.2010.06.04020673990
    [Google Scholar]
  52. ZhangY. TangL. The application of lncRNAs in cancer treatment and diagnosis.Recent Patents Anti-cancer Drug Discov.201813329230110.2174/157489281366618022612181929485010
    [Google Scholar]
  53. HoonD. S. B. LessardL. Long Noncoding RNA (LncRNA) as a biomarker and therapeutic marker in cancer.US Patent 9410206B22016
  54. LinJ. ZhouD. SteitzT.A. PolikanovY.S. GagnonM.G. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design.Annu. Rev. Biochem.201887145147810.1146/annurev‑biochem‑062917‑01194229570352
    [Google Scholar]
  55. ZhaoR. FuJ. ZhuL. ChenY. LiuB. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy.J. Hematol. Oncol.20221511410.1186/s13045‑022‑01230‑635123522
    [Google Scholar]
  56. FengR. PatilS. ZhaoX. MiaoZ. QianA. RNA therapeutics - Research and clinical advancements.Front. Mol. Biosci.2021871073810.3389/fmolb.2021.71073834631795
    [Google Scholar]
  57. LiangX. LiD. LengS. ZhuX. RNA-based pharmacotherapy for tumors: From bench to clinic and back.Biomed. Pharmacother.202012510999710.1016/j.biopha.2020.10999732062550
    [Google Scholar]
  58. RenY. WangY. ZhangJ. WangQ. HanL. MeiM. KangC. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2.Clin. Epigenetics20191112910.1186/s13148‑019‑0624‑230764859
    [Google Scholar]
  59. LiY. DisneyM.D. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype.ACS Chem. Biol.201813113065307110.1021/acschembio.8b0082730375843
    [Google Scholar]
  60. KothaR.R. LuthriaD.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules2416293031412624
    [Google Scholar]
  61. Gowhari ShabgahA. Hejri ZarifiS. Mazloumi KiapeyS.S. EzzatifarF. PahlavaniN. SoleimaniD. Mohammadian HaftcheshmehS. MohammadiH. Gholizadeh NavashenaqJ. Curcumin and cancer; are long non-coding RNAs missing link?Prog. Biophys. Mol. Biol.2021164637110.1016/j.pbiomolbio.2021.04.00133894206
    [Google Scholar]
  62. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  63. PrasadS. GuptaS.C. TyagiA.K. AggarwalB.B. Curcumin, a component of golden spice: From bedside to bench and back.Biotechnol. Adv.20143261053106410.1016/j.biotechadv.2014.04.00424793420
    [Google Scholar]
  64. ZhangZ. YiP. TuC. ZhanJ. JiangL. ZhangF. Curcumin inhibits ERK/c-Jun expressions and phosphorylation against endometrial carcinoma.BioMed Res. Int.2019201911310.1155/2019/891296132083122
    [Google Scholar]
  65. HuS. XuY. MengL. HuangL. SunH. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells.Exp. Ther. Med.20181621266127210.3892/etm.2018.634530116377
    [Google Scholar]
  66. ChenT. ZhaoL. ChenS. ZhengB. ChenH. ZengT. SunH. ZhongS. WuW. LinX. WangL. The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway.Food Chem. Toxicol.202013711113110.1016/j.fct.2020.11113131958483
    [Google Scholar]
  67. YuH. XieY. ZhouZ. WuZ. DaiX. XuB. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway.Technol. Cancer Res. Treat.20191810.1177/153303381987078131888414
    [Google Scholar]
  68. EsmatabadiM.J.D. MotamedradM. SadeghizadehM. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells.Phytomedicine201842566510.1016/j.phymed.2018.03.02229655698
    [Google Scholar]
  69. ShaoJ. ShiC.J. LiY. ZhangF. PanF. FuW. ZhangJ. LincROR mediates the suppressive effects of curcumin on hepatocellular carcinoma through inactivating Wnt/β-catenin signaling.Front. Pharmacol.20201184710.3389/fphar.2020.0084732714183
    [Google Scholar]
  70. XuF. JiZ. HeL. ChenM. ChenH. FengQ. DongB. YangX. JiangL. JinR. Downregulation of LINC01021 by curcumin analog Da0324 inhibits gastric cancer progression through activation of p53.Am. J. Transl. Res.20201273429344432774710
    [Google Scholar]
  71. TruongV.L. JunM. JeongW.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress.Biofactors2018441364910.1002/biof.139929193412
    [Google Scholar]
  72. BreussJ. AtanasovA. UhrinP. Resveratrol and its effects on the vascular system.Int. J. Mol. Sci.2019207152310.3390/ijms2007152330934670
    [Google Scholar]
  73. CarterL.G. D’OrazioJ.A. PearsonK.J. Resveratrol and cancer: Focus on in vivo evidence.Endocr. Relat. Cancer2014213R209R22510.1530/ERC‑13‑017124500760
    [Google Scholar]
  74. VaroniE.M. Lo FaroA.F. Sharifi-RadJ. IritiM. anti-cancer molecular mechanisms of resveratrol.Front. Nutr.20163810.3389/fnut.2016.0000827148534
    [Google Scholar]
  75. EspinozaJ.L. KurokawaY. TakamiA. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies.Blood Rev.201933435210.1016/j.blre.2018.07.00130005817
    [Google Scholar]
  76. RimbaudS. RuizM. PiquereauJ. MateoP. FortinD. VekslerV. GarnierA. Ventura-ClapierR. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure.PLoS One2011610e2639110.1371/journal.pone.002639122028869
    [Google Scholar]
  77. PyoI.S. YunS. YoonY.E. ChoiJ.W. LeeS.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases.Molecules20202520464910.3390/molecules2520464933053864
    [Google Scholar]
  78. ZhouD.D. LuoM. HuangS.Y. SaimaitiA. ShangA. GanR.Y. LiH.B. Effects and mechanisms of resveratrol on aging and age-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/993221834336123
    [Google Scholar]
  79. LiT. ZhangX. ChengL. LiC. WuZ. LuoY. ZhouK. LiY. ZhaoQ. HuangY. Modulation of lncRNA H19 enhances resveratrol-inhibited cancer cell proliferation and migration by regulating endoplasmic reticulum stress.J. Cell. Mol. Med.20222682205221710.1111/jcmm.1724235166018
    [Google Scholar]
  80. CesmeliS. Goker BagcaB. CaglarH.O. OzatesN.P. GunduzC. Biray AvciC. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs.Med. Oncol.20223911210.1007/s12032‑021‑01611‑w34779924
    [Google Scholar]
  81. YangQ. XuE. DaiJ. LiuB. HanZ. WuJ. ZhangS. PengB. ZhangY. JiangY. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer.Toxicol. Appl. Pharmacol.20152852798810.1016/j.taap.2015.04.00325888808
    [Google Scholar]
  82. SinghD. GuptaM. SarwatM. SiddiqueH.R. Apigenin in cancer prevention and therapy: A systematic review and meta-analysis of animal models.Crit. Rev. Oncol. Hematol.202217610375110.1016/j.critrevonc.2022.10375135752426
    [Google Scholar]
  83. SinghD. KhanM.A. AkhtarK. ArjmandF. SiddiqueH.R. Apigenin alleviates cancer drug sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress.Toxicol. Appl. Pharmacol.202244711607210.1016/j.taap.2022.11607235613639
    [Google Scholar]
  84. ShiC. MaC. RenC. LiN. LiuX. ZhangY. WangY. LiX. LvP. HanC. LiX. LINC00629, a KLF10-responsive lncRNA, promotes the anti-cancer effects of apigenin by decreasing Mcl1 stability in oral squamous cell carcinoma.Aging202214229149916610.18632/aging.20439636445338
    [Google Scholar]
  85. XuL. ZhangY. TianK. ChenX. ZhangR. MuX. WuY. WangD. WangS. LiuF. WangT. ZhangJ. LiuS. ZhangY. TuC. LiuH. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects.J. Exp. Clin. Cancer Res.201837126110.1186/s13046‑018‑0929‑630373602
    [Google Scholar]
  86. PanF. ZhengY.B. ShiC.J. ZhangF. ZhangJ. FuW. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma.Eur. J. Pharmacol.202189317381010.1016/j.ejphar.2020.17381033345859
    [Google Scholar]
  87. KaramiA. FakhriS. KooshkiL. KhanH. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits.Molecules20222719647410.3390/molecules2719647436235012
    [Google Scholar]
  88. DuQ.H. PengC. ZhangH. Polydatin: A review of pharmacology and pharmacokinetics.Pharm. Biol.201351111347135410.3109/13880209.2013.79284923862567
    [Google Scholar]
  89. HuT. FeiZ. SuH. XieR. ChenL. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling.Toxicol. Appl. Pharmacol.2019371556210.1016/j.taap.2019.04.00530974157
    [Google Scholar]
  90. RuanW. LiJ. XuY. WangY. ZhaoF. YangX. JiangH. ZhangL. SaavedraJ.M. ShiL. PangT. MALAT1 up-regulator polydatin protects brain microvascular integrity and ameliorates stroke through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway.Cell. Mol. Neurobiol.201939226528610.1007/s10571‑018‑00646‑430607811
    [Google Scholar]
  91. KasalaE.R. BodduluruL.N. MadanaR.M. vA.K. GogoiR. BaruaC.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives.Toxicol. Lett.2015233221422510.1016/j.toxlet.2015.01.00825596314
    [Google Scholar]
  92. Gresa-ArribasN. SerratosaJ. SauraJ. SolàC. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects.J. Neurochem.2010115252653610.1111/j.1471‑4159.2010.06952.x20722966
    [Google Scholar]
  93. WangJ. QiuJ. DongJ. LiH. LuoM. DaiX. ZhangY. LengB. NiuX. ZhaoS. DengX. Chrysin protects mice from Staphylococcus aureus pneumonia.J. Appl. Microbiol.201111161551155810.1111/j.1365‑2672.2011.05170.x21972890
    [Google Scholar]
  94. Rodríguez-LandaJ.F. German-PoncianoL.J. Puga-OlguínA. Olmos-VázquezO.J. Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic- and antidepressant-like effects of flavonoid chrysin.Molecules20222711355110.3390/molecules2711355135684488
    [Google Scholar]
  95. KhooB.Y. ChuaS.L. BalaramP. Apoptotic effects of chrysin in human cancer cell lines.Int. J. Mol. Sci.20101152188219910.3390/ijms1105218820559509
    [Google Scholar]
  96. ZhangT. ChenX. QuL. WuJ. CuiR. ZhaoY. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells.Bioorg. Med. Chem.200412236097610510.1016/j.bmc.2004.09.01315519155
    [Google Scholar]
  97. SalariN. FarajiF. JafarpourS. FarajiF. RasoulpoorS. DokaneheifardS. MohammadiM. Anti-cancer activity of chrysin in cancer therapy: A systematic review.Indian J. Surg. Oncol.202213468169010.1007/s13193‑022‑01550‑636687219
    [Google Scholar]
  98. SherifI.O. Al-MutabaganiL.A. SabryD. ElsherbinyN.M. Antineoplastic activity of chrysin against human hepatocellular carcinoma: New insight on GPC3/SULF2 axis and lncRNA-AF085935 expression.Int. J. Mol. Sci.20202120764210.3390/ijms2120764233076548
    [Google Scholar]
  99. ChenL. LiQ. JiangZ. LiC. HuH. WangT. GaoY. WangD. Chrysin induced cell apoptosis through H19/let-7a/COPB2 axis in gastric cancer cells and inhibited tumor growth.Front. Oncol.20211165164410.3389/fonc.2021.65164434150620
    [Google Scholar]
  100. SinghP. ArifY. BajguzA. HayatS. The role of quercetin in plants.Plant Physiol. Biochem.2021166101910.1016/j.plaphy.2021.05.02334087741
    [Google Scholar]
  101. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms2013317731261749
    [Google Scholar]
  102. KawabataK. MukaiR. IshisakaA. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability.Food Funct.2015651399141710.1039/C4FO01178C25761771
    [Google Scholar]
  103. JeongJ.H. AnJ.Y. KwonY.T. RheeJ.G. LeeY.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression.J. Cell. Biochem.20091061738210.1002/jcb.2197719009557
    [Google Scholar]
  104. Noori-DaloiiM.R. MomenyM. YousefiM. ShiraziF.G. YaseriM. MotamedN. KazemialiakbarN. HashemiS. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): Implications for nutritional transcriptomics and multi-target therapy.Med. Oncol.20112841395140410.1007/s12032‑010‑9603‑320596804
    [Google Scholar]
  105. ShankarG.M. AntonyJ. AntoR.J. Quercetin and tryptanthrin.Enzymes.Academic Press201537437210.1016/bs.enz.2015.05.001
    [Google Scholar]
  106. TangS.M. DengX.T. ZhouJ. LiQ.P. GeX.X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.202012110960410.1016/j.biopha.2019.10960431733570
    [Google Scholar]
  107. WardA.B. MirH. KapurN. GalesD.N. CarriereP.P. SinghS. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways.World J. Surg. Oncol.201816110810.1186/s12957‑018‑1400‑z29898731
    [Google Scholar]
  108. KhanK. JavedZ. SadiaH. Sharifi-RadJ. ChoW.C. LuparelloC. Quercetin and MicroRNA interplay in apoptosis regulation in ovarian cancer.Curr. Pharm. Des.202127202328233610.2174/138161282666620101910220733076802
    [Google Scholar]
  109. RezaieF. MokhtariM.J. KalaniM. Quercetin arrests in G2 phase, upregulates INXS LncRNA and downregulates UCA1 LncRNA in MCF-7 cells.Int. J. Mol. Cell. Med.202110320821610.22088/IJMCM.BUMS.10.3.20735178359
    [Google Scholar]
  110. ChaiR. XuC. LuL. LiuX. MaZ. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway.Immunopharmacol. Immunotoxicol.202143669370310.1080/08923973.2021.196603234448661
    [Google Scholar]
  111. ChandrashekarN. PandiA. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma.J. Food Biochem.2022469e1423010.1111/jfbc.1423035543192
    [Google Scholar]
  112. BieB. SunJ. GuoY. LiJ. JiangW. YangJ. HuangC. LiZ. Baicalein: A review of its anti-cancer effects and mechanisms in hepatocellular carcinoma.Biomed. Pharmacother.2017931285129110.1016/j.biopha.2017.07.06828747003
    [Google Scholar]
  113. KalhoriM.R. KhodayariH. KhodayariS. VesovicM. JacksonG. FarzaeiM.H. BishayeeA. Regulation of long non-coding rnas by plant secondary metabolites: A novel anti-cancer therapeutic approach.Cancers2021136127410.3390/cancers1306127433805687
    [Google Scholar]
  114. FatimaN. BaqriS.S.R. BhattacharyaA. KoneyN.K.K. HusainK. AbbasA. AnsariR.A. Role of flavonoids as epigenetic modulators in cancer prevention and therapy.Front. Genet.20211275873310.3389/fgene.2021.75873334858475
    [Google Scholar]
  115. YangX. JiangJ. ZhangC. LiY. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1.Braz. J. Med. Biol. Res.20195212e893410.1590/1414‑431x2019893431778440
    [Google Scholar]
  116. YuX. YangY. LiY. CaoY. TangL. ChenF. XiaJ. Baicalein inhibits cervical cancer progression via downregulating long noncoding RNA BDLNR and its downstream PI3 K/Akt pathway.Int. J. Biochem. Cell Biol.20189410711810.1016/j.biocel.2017.11.00929175387
    [Google Scholar]
  117. YuX. CaoY. TangL. YangY. ChenF. XiaJ. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N.J. Cell. Biochem.201811986842685610.1002/jcb.2688129693272
    [Google Scholar]
  118. YuX. TangW. YangY. TangL. DaiR. PuB. FengC. XiaJ. Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling.Chem. Biol. Interact.2018285485810.1016/j.cbi.2018.02.02729481769
    [Google Scholar]
  119. MostafaS.M. Gamal-EldeenA.M. MaksoudN.A.E. FahmiA.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells.An. Acad. Bras. Cienc.2020924e2020057410.1590/0001‑3765202020200574
    [Google Scholar]
  120. ZhaoY. ChenX. JiangJ. WanX. WangY. XuP. Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis.Biochim. Biophys. Acta Mol. Basis Dis.202018661016585610.1016/j.bbadis.2020.16585632512188
    [Google Scholar]
  121. HuD.L. WangG. YuJ. ZhangL.H. HuangY.F. WangD. ZhouH.H. Epigallocatechin-3-gallate modulates long non-coding RNA and mRNA expression profiles in lung cancer cells.Mol. Med. Rep.20191931509152010.3892/mmr.2019.981630628683
    [Google Scholar]
  122. SabryD. AbdelaleemO.O. El Amin AliA.M. MohammedR.A. Abdel-HameedN.D. HassounaA. KhalifaW.A. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: In vitro study.Mol. Biol. Rep.20194622039204710.1007/s11033‑019‑04653‑630710234
    [Google Scholar]
  123. LiuG. ZhengX. XuY. LuJ. ChenJ. HuangX. Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism.Chin. Med. J.20151281919710.4103/0366‑6999.14782425563320
    [Google Scholar]
  124. HayakawaS. OhishiT. OishiY. IsemuraM. MiyoshiN. Contribution of non-coding RNAs to anti-cancer effects of dietary polyphenols: chlorogenic acid, curcumin, epigallocatechin-3-gallate, genistein, quercetin and resveratrol.Anti-oxidants20221112235210.3390/antiox1112235236552560
    [Google Scholar]
  125. MobeenI. RomeroM.A. YulaevnaI.M. AttarR. JabeenS. FayyazS. Regulation of cell signaling pathways by genistein in different cancers: Progress, prospects and pitfalls.Cell. Mol. Biol.202267631832910.14715/cmb/2021.67.6.4235818180
    [Google Scholar]
  126. ChenX. WuY. GuJ. LiangP. ShenM. XiJ. QinJ. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer.Biofactors202046462062810.1002/biof.162732078221
    [Google Scholar]
  127. PhuahN.H. NagoorN.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies.BioMed Res. Int.2014201411710.1155/2014/80451025254214
    [Google Scholar]
  128. ChenJ. LinC. YongW. YeY. HuangZ. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells.Cell. Physiol. Biochem.201535272272810.1159/00036973225613518
    [Google Scholar]
  129. ChiyomaruT. YamamuraS. FukuharaS. YoshinoH. KinoshitaT. MajidS. SainiS. ChangI. TanakaY. EnokidaH. SekiN. NakagawaM. DahiyaR. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR.PLoS One201388e7037210.1371/journal.pone.007037223936419
    [Google Scholar]
  130. ChenY. ZhuZ. ChenJ. ZhengY. LimsilaB. LuM. GaoT. YangQ. FuC. LiaoW. Terpenoids from Curcumae Rhizoma: Their anti-cancer effects and clinical uses on combination and versus drug therapies.Biomed. Pharmacother.202113811135010.1016/j.biopha.2021.11135033721752
    [Google Scholar]
  131. ZhaiB. ZhangN. HanX. LiQ. ZhangM. ChenX. LiG. ZhangR. ChenP. WangW. LiC. XiangY. LiuS. DuanT. LouJ. XieT. SuiX. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review.Biomed. Pharmacother.201911410881210.1016/j.biopha.2019.10881230965237
    [Google Scholar]
  132. HuZ. WuH. LiY. HouQ. WangY. LiS. XiaB. WuS. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression.Anti-cancer Drugs201526553153910.1097/CAD.000000000000021625646744
    [Google Scholar]
  133. HuT. GaoY. β-Elemene suppresses tumor growth of diffuse large B-cell lymphoma through regulating lncRNA HULC-mediated apoptotic pathway.Biosci. Rep.2020402BSR2019080410.1042/BSR2019080432010942
    [Google Scholar]
  134. XuC. JiangZ.B. ShaoL. ZhaoZ.M. FanX.X. SuiX. YuL.L. WangX.R. ZhangR.N. WangW.J. XieY.J. ZhangY.Z. NieX.W. XieC. HuangJ.M. WangJ. WangJ. LeungE.L.H. WuQ.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer.Pharmacol. Res.202319110673910.1016/j.phrs.2023.10673936948327
    [Google Scholar]
  135. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y31223315
    [Google Scholar]
  136. YangY.H. MaoJ.W. TanX.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel.Chin. J. Nat. Med.2020181289089710.1016/S1875‑5364(20)60032‑233357719
    [Google Scholar]
  137. ThiruvengadamM. Ahmed KhalilA. RaufA. AlhumaydhiF.A. AljohaniA.S.M. JavedM.S. KhanM.A. KhanI.A. El-EsawiM.A. BawazeerS. BouyahyaA. RebezovM. ShariatiM.A. Recent developments and anti-cancer therapeutics of paclitaxel: An update.Curr. Pharm. Des.202228413363337310.2174/138161282966622110215521236330627
    [Google Scholar]
  138. HowatS. ParkB. OhI.S. JinY.W. LeeE.K. LoakeG.J. Paclitaxel: Biosynthesis, production and future prospects.N. Biotechnol.201431324224510.1016/j.nbt.2014.02.01024614567
    [Google Scholar]
  139. Rodríguez-AntonaC. Pharmacogenomics of paclitaxel.Pharmacogenomics201011562162310.2217/pgs.10.3220415548
    [Google Scholar]
  140. DongZ. ZhangD. YangR. WangS. Paclitaxel: New uses for an old drug.Drug Des. Devel. Ther.2014827928410.2147/DDDT.S5680124591817
    [Google Scholar]
  141. LiZ-Y. WangX-L. DangY. ZhuX-Z. ZhangY-H. CaiB-X. ZhengL. Long non-coding RNA UCA1 promotes the progression of paclitaxel resistance in ovarian cancer by regulating the miR-654-5p/SIK2 axis.Eur. Rev. Med. Pharmacol. Sci.202024259160310.26355/eurrev_202001_2003532016960
    [Google Scholar]
  142. ZhaoY. HongL. lncRNA-PRLB confers paclitaxel resistance of ovarian cancer cells by regulating RSF1/NF-κB signaling pathway.Cancer Biother. Radiopharm.202136220221010.1089/cbr.2019.336333156701
    [Google Scholar]
  143. WangR. ZhangT. YangZ. JiangC. SengJ. Long non-coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR-206/ ABCB 1.J. Cell. Mol. Med.20182294068407510.1111/jcmm.1367929971911
    [Google Scholar]
  144. HaroyanA. MukuchyanV. MkrtchyanN. MinasyanN. GasparyanS. SargsyanA. NarimanyanM. HovhannisyanA. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study.BMC Complement. Altern. Med.2018181710.1186/s12906‑017‑2062‑z29316908
    [Google Scholar]
  145. AmmonH. Boswellic acids in chronic inflammatory diseases.Planta Med.200672121100111610.1055/s‑2006‑94722717024588
    [Google Scholar]
  146. ReddyG.K. ChandrakasanG. DharS.C. Studies on the metabolism of glycosaminoglycans under the influence of new herbal anti-inflammatory agents.Biochem. Pharmacol.198938203527353410.1016/0006‑2952(89)90124‑X2818645
    [Google Scholar]
  147. YadavV.R. PrasadS. SungB. GelovaniJ.G. GuhaS. KrishnanS. AggarwalB.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers.Int. J. Cancer201213092176218410.1002/ijc.2625121702037
    [Google Scholar]
  148. LiuJ.J. NilssonA. OredssonS. BadmaevV. ZhaoW.Z. DuanR.D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells.Carcinogenesis200223122087209310.1093/carcin/23.12.208712507932
    [Google Scholar]
  149. DaiJ. LinY. DuanY. LiZ. ZhouD. ChenW. WangL. ZhangQ.Q. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway.Int. J. Biol. Sci.201713566066810.7150/ijbs.1919428539838
    [Google Scholar]
  150. JiangX. LiuY. ZhangG. LinS. YuanN. WuJ. YanX. MaY. MaM. Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor-α.Cancer Manag. Res.2020122301231410.2147/CMAR.S23805132273767
    [Google Scholar]
  151. SunM. YeY. XiaoL. DuanX. ZhangY. ZhangH. Anti-cancer effects of ginsenoside Rg3 (Review).Int. J. Mol. Med.201739350751810.3892/ijmm.2017.285728098857
    [Google Scholar]
  152. ZhaoL. SunW. ZhengA. ZhangY. FangC. ZhangP. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19.Acta Biochim. Pol.202168457558210.18388/abp.2020_534334038042
    [Google Scholar]
  153. WuP. YuX. PengY. WangQ.L. DengL.T. XingW. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis.J. Inflamm.20211813110.1186/s12950‑021‑00296‑234930287
    [Google Scholar]
  154. PuZ. GeF. WangY. JiangZ. ZhuS. QinS. DaiQ. LiuH. HuaH. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic.Bioengineered20211212398240910.1080/21655979.2021.193221134130594
    [Google Scholar]
  155. ZhangY. LuQ. LiN. XuM. MiyamotoT. LiuJ. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway.NPJ Breast Cancer2022814010.1038/s41523‑022‑00402‑435332167
    [Google Scholar]
  156. VanduchovaA. AnzenbacherP. AnzenbacherovaE. Isothiocyanate from broccoli, sulforaphane, and its properties.J. Med. Food201922212112610.1089/jmf.2018.002430372361
    [Google Scholar]
  157. LuoY. YanB. LiuL. YinL. JiH. AnX. GladkichJ. QiZ. De La TorreC. HerrI. Sulforaphane inhibits the expression of long noncoding RNA H19 and Its Target APOBEC3G and thereby pancreatic cancer progression.Cancers202113482710.3390/cancers1304082733669381
    [Google Scholar]
  158. BeaverL.M. KuintzleR. BuchananA. WileyM.W. GlasserS.T. WongC.P. JohnsonG.S. ChangJ.H. LöhrC.V. WilliamsD.E. DashwoodR.H. HendrixD.A. HoE. Long noncoding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer.J. Nutr. Biochem.201742728310.1016/j.jnutbio.2017.01.00128131897
    [Google Scholar]
  159. StanojkovićT. Investigations of lichen secondary metabolites with potential anti-cancer activity.Lichen Secondary Metabolites.ChamSpringer201512714610.1007/978‑3‑319‑13374‑4_5
    [Google Scholar]
  160. ÇolakB. Cansaran-DumanD. Guney EskilerG. FöldesK. YangınS. Usnic acid-induced programmed cell death in ovarian cancer cells.Rend. Lincei Sci. Fis. Nat.202233114315210.1007/s12210‑021‑01044‑7
    [Google Scholar]
  161. SongY. DaiF. ZhaiD. DongY. ZhangJ. LuB. LuoJ. LiuM. YiZ. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways.Angiogenesis201215342143210.1007/s10456‑012‑9270‑422669534
    [Google Scholar]
  162. KiliçN. IslakoğluY.Ö. Büyükİ. Gür-DedeoğluB. Cansaran-DumanD. Determination of usnic acid responsive mirnas in breast cancer cell lines.Anti-cancer. Agents Med. Chem.201919121463147210.2174/187152061866618111212014230417797
    [Google Scholar]
  163. PetrozzaV. CarboneA. BellissimoT. PortaN. PalleschiG. PastoreA. Di CarloA. Della RoccaC. FaziF. Oncogenic MicroRNAs characterization in clear cell renal cell carcinoma.Int. J. Mol. Sci.20151612292192922510.3390/ijms16122616026670229
    [Google Scholar]
  164. WangB. LiJ. SunM. SunL. ZhangX. MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features.IUBMB Life201466537137710.1002/iub.127324846313
    [Google Scholar]
  165. WenY. HanJ. ChenJ. DongJ. XiaY. LiuJ. JiangY. DaiJ. LuJ. JinG. HanJ. WeiQ. ShenH. SunB. HuZ. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma.Int. J. Cancer201513771679169010.1002/ijc.2954425845839
    [Google Scholar]
  166. SecmeM. DodurgaY. Usnic acid inhibits cell proliferation and downregulates LncRNA UCA1 expression in ishikawa endometrial cancer cells.Nat. Prod. Biotechnol.2021112837
    [Google Scholar]
  167. ZinovievaO.L. GrinevaE.N. ProkofjevaM.M. KarpovD.S. KrasnovG.S. PrassolovV.S. MashkovaT.D. LisitsynN.A. Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells.Mol. Biol.201751573373910.1134/S002689331705024729116072
    [Google Scholar]
  168. SungW.J. HongJ. Targeting lncRNAs of colorectal cancers with natural products.Front. Pharmacol.202313105003210.3389/fphar.2022.105003236699052
    [Google Scholar]
  169. BrownJ.A. BulkleyD. WangJ. ValensteinM.L. YarioT.A. SteitzT.A. SteitzJ.A. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix.Nat. Struct. Mol. Biol.201421763364010.1038/nsmb.284424952594
    [Google Scholar]
  170. Gencel-AugustoJ. WuW. BivonaT.G. Long non-coding RNAs as emerging targets in lung cancer.Cancers20231512313510.3390/cancers1512313537370745
    [Google Scholar]
  171. RakhejaI. AnsariA.H. RayA. Chandra JoshiD. MaitiS. Small molecule quercetin binds MALAT1 triplex and modulates its cellular function.Mol. Ther. Nucleic Acids20223024125610.1016/j.omtn.2022.09.01636284512
    [Google Scholar]
  172. AguilarR. SpencerK.B. KesnerB. RizviN.F. BadmaliaM.D. MrozowichT. MortisonJ.D. RiveraC. SmithG.F. BurchardJ. DandlikerP.J. PatelT.R. NickbargE.B. LeeJ.T. Targeting Xist with compounds that disrupt RNA structure and X inactivation.Nature2022604790416016610.1038/s41586‑022‑04537‑z35355011
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673264372230919102758
Loading
/content/journals/cmc/10.2174/0109298673264372230919102758
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): anti-oxidant; Cancer; lncRNA; natural agents; personalized medicine; small molecules
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test