Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Purpose

It is critical to assess primary liver cancer patients likely to benefit from radiotherapy (RT) or RT plus chemo-immunotherapy. Many potential peripheral biomarkers from blood samples have been proposed for clinical application. Therefore, the aim of this study was to evaluate treatments with radiotherapy alone and radiotherapy plus chemo-immunotherapy in patients with unresectable primary liver cancer based on blood biomarkers.

Methods

From January, 2017, to February, 2022, 63 unresectable primary liver cancer patients receiving radiotherapy alone (RT, n = 21) or radiotherapy plus chemo-immunotherapy (RT plus C/IT, n = 42) were included in this study. We compared the clinical outcomes and adverse effects of these two groups. Also, distant metastasis-free survival (DMFS), overall survival (OS), and progress-free survival (PFS) were retrospectively analyzed. Finally, univariable and multivariable Cox analyses were used to explore the prognostic role of blood biochemical biomarkers.

Results

In this study, 1, 2, and 3 years of OS after RT treatment were 63.9%, 27.0%, and 13.5%, and after RT plus C/IT were 68.2%, 37.0%, and 24.7%, respectively ( = 0.617). Compared with baseline, white blood cells (WBC) and lymphocytes were significantly decreased after RT ( = 0.002 and = 0.001, respectively) or RT plus C/IT therapy ( = 0.135 and <0.001, respectively). In multivariable Cox regression analyses, higher lymphocyte counts before RT (pre-Lymphocyte) were associated with better OS and PFS (HR=0.439, = 0.023; HR=0.539, = 0.053; respectively), and higher lymphocyte counts before RT (pre-Platelets) were a poor prognostic factor associated with DMFS (HR=1.013, = 0.040). Importantly, OS and PFS were significantly better for patients (pre-Lymphocyte ≥1.10 x 109/L) ( = 0.006; = 0.066, respectively). The DMFS was significantly better for patients (pre-platelets < 233.5 ×109/L) (<0.001).

Conclusion

Our evaluation of blood biomarkers before and after radiotherapy or plus chem-immunotherapy for primary liver cancer revealed a potential marker for clinics to decide on precise treatment strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230822121246
2023-10-16
2024-11-02
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. YaziciC. NiemeyerD.J. IannittiD.A. RussoM.W. Hepatocellular carcinoma and cholangiocarcinoma: An update.Expert Rev. Gastroenterol. Hepatol.201481638210.1586/17474124.2014.85246824245910
    [Google Scholar]
  3. AlabrabaE. JoshiH. BirdN. GriffinR. SturgessR. SternN. SieberhagenC. CrossT. CamenzuliA. DavisR. EvansJ. O’GradyE. PalmerD. Diaz-NietoR. FenwickS. PostonG. MalikH. Increased multimodality treatment options has improved survival for Hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged.Eur. J. Surg. Oncol.20194591660166710.1016/j.ejso.2019.04.00231014988
    [Google Scholar]
  4. O’LearyC. MahlerM. SoulenM.C. Liver-directed therapy for hepatocellular carcinoma.Chin. Clin. Oncol.2021101810.21037/cco‑20‑5132527111
    [Google Scholar]
  5. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.00133579421
    [Google Scholar]
  6. LlovetJ.M. Updated treatment approach to hepatocellular carcinoma.J. Gastroenterol.200540322523510.1007/s00535‑005‑1566‑315830281
    [Google Scholar]
  7. GrecoC. CatalanoG. Di GraziaA. OrecchiaR. Radiotherapy of liver malignancies. From whole liver irradiation to stereotactic hypofractionated radiotherapy.Tumori.2004901737910.1177/03008916040900011615143976
    [Google Scholar]
  8. Olivares-UrbanoM.A. Griñán-LisónC. MarchalJ.A. NúñezM.I. RadioresistanceC.S.C. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer.Cells.202097165110.3390/cells907165132660072
    [Google Scholar]
  9. EcclesC.L. BissonnetteJ.P. CraigT. TaremiM. WuX. DawsonL.A. Treatment planning study to determine potential benefit of intensity-modulated radiotherapy versus conformal radiotherapy for unresectable hepatic malignancies.Int. J. Radiat. Oncol. Biol. Phys.200872258258810.1016/j.ijrobp.2008.06.149618793961
    [Google Scholar]
  10. ChenW. ChiangC.L. DawsonL.A. Efficacy and safety of radiotherapy for primary liver cancer.Chin. Clin. Oncol.2021101910.21037/cco‑20‑8932576017
    [Google Scholar]
  11. HuoY.R. EslickG.D. Transcatheter arterial chemoembolization plus radiotherapy compared with chemoembolization alone for hepatocellular carcinoma.JAMA Oncol.20151675676510.1001/jamaoncol.2015.218926182200
    [Google Scholar]
  12. MajumdarA. RoccarinaD. ThorburnD. DavidsonB.R. TsochatzisE. GurusamyK.S. Management of people with early- or very early-stage hepatocellular carcinoma: an attempted network meta-analysis.Cochrane Database Syst. Rev.201733CD01165028351116
    [Google Scholar]
  13. RoccarinaD. MajumdarA. ThorburnD. DavidsonB.R. TsochatzisE. GurusamyK.S. Management of people with intermediate-stage hepatocellular carcinoma: an attempted network meta-analysis.Cochrane Database Syst. Rev.201733CD01164928281295
    [Google Scholar]
  14. van der MostR.G. RobinsonB.W. LakeR.A. Combining immunotherapy with chemotherapy to treat cancer.Discov. Med.200552726527020704886
    [Google Scholar]
  15. WangY. LiuZ.G. YuanH. DengW. LiJ. HuangY. KimB.Y.S. StoryM.D. JiangW. The reciprocity between radiotherapy and cancer immunotherapy.Clin. Cancer Res.20192561709171710.1158/1078‑0432.CCR‑18‑258130413527
    [Google Scholar]
  16. GrosserR. CherkasskyL. ChintalaN. AdusumilliP.S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors.Cancer Cell201936547148210.1016/j.ccell.2019.09.00631715131
    [Google Scholar]
  17. BerrettaM. CavaliereC. AlessandriniL. StanzioneB. FacchiniG. BalestreriL. PerinT. CanzonieriV. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: Clinical and prognostic implications.Oncotarget201788141921422010.18632/oncotarget.1392928077782
    [Google Scholar]
  18. LeeY.T.M. GeerD.A. Primary liver cancer: Pattern of metastasis.J. Surg. Oncol.1987361263110.1002/jso.29303601073041113
    [Google Scholar]
  19. FengM. PanY. KongR. ShuS. Therapy of primary liver cancer.Innovation.20201210003210003210.1016/j.xinn.2020.10003232914142
    [Google Scholar]
  20. MahadevanA. BlanckO. LancianoR. PeddadaA. SundararamanS. D’AmbrosioD. SharmaS. PerryD. KolkerJ. DavisJ. Stereotactic Body Radiotherapy (SBRT) for liver metastasis – clinical outcomes from the international multi-institutional RSSearch® Patient Registry.Radiat. Oncol.2018131262610.1186/s13014‑018‑0969‑229439707
    [Google Scholar]
  21. FinnR.S. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. XuD.Z. HernandezS. LiuJ. HuangC. MullaS. WangY. LimH.Y. ZhuA.X. ChengA.L. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.N. Engl. J. Med.2020382201894190510.1056/NEJMoa191574532402160
    [Google Scholar]
  22. RomeroD. Combination set to transform HCC therapy.Nat. Rev. Clin. Oncol.202017738910.1038/s41571‑020‑0396‑932457541
    [Google Scholar]
  23. ByunH.K. KimN. ParkS. SeongJ. Acute severe lymphopenia by radiotherapy is associated with reduced overall survival in hepatocellular carcinoma.Strahlenther. Onkol.2019195111007101710.1007/s00066‑019‑01462‑530989242
    [Google Scholar]
  24. ChenJ.S. LiL.S. ChengD.R. JiS.M. SunQ.Q. ChengZ. WenJ.Q. ShaG.Z. LiuZ.H. Prognostic effect of lymphocyte subgroup CD4+ and CD8+ cells in peripheral blood in renal transplant patients with cytomegalovirus viremia.Transplant. Proc.20094151639164210.1016/j.transproceed.2009.01.08519545698
    [Google Scholar]
  25. YooG.S. AhnW.G. KimS.Y. KangW. ChoiC. ParkH.C. Radiation-induced abscopal effect and its enhancement by programmed cell death 1 blockade in the hepatocellular carcinoma: A murine model study.Clin. Mol. Hepatol.202127114415610.3350/cmh.2020.009533280350
    [Google Scholar]
  26. DewanM.Z. GallowayA.E. KawashimaN. DewyngaertJ.K. BabbJ.S. FormentiS.C. DemariaS. Fractionated but not single-dose radiotherapy induces an immune- mediated abscopal effect when combined with anti-CTLA-4 antibody.Clin. Cancer Res.200915175379538810.1158/1078‑0432.CCR‑09‑026519706802
    [Google Scholar]
  27. PengZ. LvX. HuangS. Photoimmunotherapy: A new paradigm in solid tumor immunotherapy.Cancer Contr.2022291073274822108882510.1177/10732748221088825
    [Google Scholar]
  28. HayashiK. NikolosF. LeeY.C. JainA. TsoukoE. GaoH. KasabyanA. LeungH.E. OsipovA. JungS.Y. KurtovaA.V. ChanK.S. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death.Nat. Commun.2020111629910.1038/s41467‑020‑19970‑933288764
    [Google Scholar]
  29. KryskoO. Løve AaesT. BachertC. VandenabeeleP. KryskoD.V. Many faces of DAMPs in cancer therapy.Cell Death Dis.201345e63110.1038/cddis.2013.15623681226
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230822121246
Loading
/content/journals/cmc/10.2174/0929867331666230822121246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test