- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 31, Issue 24, 2024
Current Medicinal Chemistry - Volume 31, Issue 24, 2024
Volume 31, Issue 24, 2024
-
-
Research Progress in Estrogen-related Receptor Gamma (ERRγ) Agonists and Inverse Agonists
Authors: Yong Zheng, Yongli Du, Haibin Zhang, Huiting Lv, Zhijia Yan, Ning Dong, Qunyi Li and Tianxiao WangEstrogen-related receptor gamma (ERRγ), one of three members of the ERR family, is an inducible transcription factor. ERRγ has dual functions in different tissues. The decreased expression of ERRγ in the brain, stomach, prostate, and fat cells can cause neuropsychological dysfunction, gastric cancer, prostate cancer, and obesity. However, when ERRγ is present in the liver, pancreas, and thyroid follicular cells, ERRγ overexpression is related to liver cancer, type II diabetes, oxidative liver injury, and anaplastic thyroid carcinoma. Signaling pathway studies have confirmed that ERRγ agonists or inverse agonists can regulate ERRγ expression to treat related diseases. The collision between residue Phe435 and the modulator is a key factor determining the activation or inhibition of ERRγ. Although more than 20 agonists and inverse agonists of ERRγ have been reported, no clinical studies have been found in the literature. This review summarizes the important relationship between ERRγ-related signaling pathways and diseases, research progress, and the structure-activity relationship of modulators. These findings provide guidance for further study on new ERRγ modulators.
-
-
-
Curcumin and its Derivatives Targeting Multiple Signaling Pathways to Elicit Anticancer Activity: A Comprehensive Perspective
The uncontrolled growth and spread of aberrant cells characterize the group of disorders known as cancer. According to GLOBOCAN 2022 analysis of cancer patients in either developed countries or developing countries the main concern cancers are breast cancer, lung cancer, and liver cancer which may rise eventually. Natural substances with dietary origins have gained interest for their low toxicity, anti-inflammatory, and antioxidant effects. The evaluation of dietary natural products as chemopreventive and therapeutic agents, the identification, characterization, and synthesis of their active components, as well as the enhancement of their delivery and bioavailability, have all received significant attention. Thus, the treatment strategy for concerning cancers must be significantly evaluated and may include the use of phytochemicals in daily lifestyle. In the present perspective, we discussed one of the potent phytochemicals, that has been used over the past few decades known as curcumin as a panacea drug of the “Cure-all” therapy concept. In our review firstly we included exhausted data from in vivo and in vitro studies on breast cancer, lung cancer, and liver cancer which act through various cancer-targeting pathways at the molecular level. Now, the second is the active constituent of turmeric known as curcumin and its derivatives are enlisted with their targeted protein in the molecular docking studies, which help the researchers design and synthesize new curcumin derivatives with respective implicated molecular and cellular activity. However, curcumin and its substituted derivatives still need to be investigated with unknown targeting mechanism studies in depth.
-
-
-
Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside
Background: Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities. Objective: This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease. Methods: Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included. Results: According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels. Conclusion: In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.
-
-
-
Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
-
-
-
To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds
Authors: Banani Bhattacharjee, Arnob Chakrovorty, Maharaj Biswas, Asmita Samadder and Sisir NandiBackground: This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. Introduction: DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. Methods: Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. Result: This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. Conclusion: This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
-
-
-
Meta-analysis of the Impact of Bariatric Surgery on Circulating TMAO Levels as a Predictor of Cardiovascular Disease Risk
Introduction: Trimethylamine N-oxide (TMAO) is a metabolite of the gut microbiota that is considered a cardiovascular risk factor. Because bariatric surgery (BS) produces changes in the composition of the gut microbiota, the production of TMAO can be compromised. Thus, the purpose of this meta-analysis was to determine the effect of BS on circulating TMAO levels. Methods: A systematic search was carried on in Embase, PubMed, Web of Science, and Scopus databases. The meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V2 software. The overall effect size was determined by a random-effects metaanalysis and the leave-one-out approach. Results: Random-effects meta-analysis of 5 studies consisting of 142 subjects demonstrated a significant increase in circulating TMAO levels after BS (SMD: 1.190, 95% CI: 0.521, 1.858, p<0.001; I2:89.30%). Conclusion: Considering that levels of TMAO are affected after BS due to gut microbial metabolism alteration, there has been a significant elevation in TMAO concentrations observed to occur after BS in obese subjects.
-
-
-
Synthesis and Anticancer Activity of Novel Indole Derivatives as Dual EGFR/SRC Kinase Inhibitors
Background: Recent studies showed that the cooperation between c-SRC and EGFR is responsible for more aggressive phenotype in diverse tumors, including glioblastomas and carcinomas of the colon, breast, and lung. Studies show that combination of SRC and EGFR inhibitors can induce apoptosis and delay the acquired resistance to chemotherapy. Therefore, such combination may lead to a new therapeutic strategy for the treatment of EGFR-mutant lung cancer. Osimertinib was developed as a third-generation EGFR-TKI to combat the toxicity of EGFR mutant inhibitors. Due to the resistance and adverse reaction of osimertinib and other kinase inhibitors, 12 novel compounds structurally similar to osimertinib were designed and synthesized. Methods: Compounds were synthesized by developing novel original synthesis methods and receptor interactions were evaluated through a molecular docking study. To evaluate their inhibitory activities against EGFR and SRC kinase, in vitro enzyme assays were used. Anticancer potencies were determined using lung, breast, prostate (A549, MCF6, PC3) cancer cell lines. Compounds were also tested against normal (HEK293) cell line to evaluate their cyctotoxic effects. Results: Although, none of compounds showed stronger inhibition compared to osimertinib in the EGFR enzyme inhibition studies, compound 16 showed the highest efficacy with an IC50 of 1.026 μM. It also presented potent activity against SRC kinase with an IC50 of 0.002 μM. Among the tested compounds, the urea containing derivatives 6-11 exhibited a strong inhibition profile (80.12-89.68%) against SRC kinase in comparison to the reference compound dasatinib (93.26%). Most of the compounds caused more than 50% of cell death in breast, lung and prostate cancer cell lines and weak toxicity for normal cells in comparison to reference compounds osimertinib, dasatinib and cisplatin. Compound 16 showed strong cytotoxicity on lung and prostate cancer cells. Treatment of prostate cancer cell lines with the most active compound, 16, significantly increased the caspase-3 (8-fold), caspase-8 (6-fold) and Bax (5.7-fold) levels and decreased the Bcl-2 level (2.3-fold) compared to the control group. These findings revealed that the compound 16 strongly induces apoptosis in the prostate cancer cell lines. Conclusion: Overall kinase inhibition, cytotoxicity and apoptosis assays presented that compound 16 has dual inhibitory activity against SRC and EGFR kinases while maintaining low toxicity against normal cells. Other compounds also showed considerable activity profiles in kinase and cell culture assays.
-
-
-
LINC00891 Promotes Tumorigenesis and Metastasis of Thyroid Cancer by Regulating SMAD2/3 via EZH2
Authors: Yuhao Si, Jialiang Wen, Chunlei Hu, Hao Chen, Lizhi Lin, Yiying Xu, Disuo Ren, Xinyu Meng, Yinghao Wang, Erjie Xia, Adheesh Bhandari and Ouchen WangBackground: Thyroid cancer (TC), the most common endocrine malignant tumor, is increasingly causing a huge threat to our health nowadays. Methods: To explore the tumorigenesis mechanism of thyroid cancer, we identified that long intergenic non-coding RNA-00891 (LINC00891) was upregulated in TC using the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and local databases. LINC00891 expression was correlated with histological type and lymph node metastasis (LNM). The high expression of LINC00891 could serve as a diagnostic marker for TC and its LNM. In vitro experiments demonstrated that LINC00891 knockdown could inhibit cell proliferation, migration, invasion and prompt apoptosis and G1 arrest of TC cells. We also investigated the related mechanisms of LINC00891 promoting TC progression using RNA sequencing, Gene Set Enrichment Analysis, and Western blotting. Results: Our experiments demonstrated that LINC00891 promoted TC progression via the EZH2-SMAD2/3 signaling axis. In addition, overexpression of EZH2 could reverse the suppressive epithelial-to-mesenchymal transition (EMT) caused by LINC00891 knockdown. Conclusion: In conclusion, the LINC00891/EZH2/SMAD2/3 regulatory axis participated in tumorigenesis and metastasis of thyroid cancer, which may provide a novel target for treatment.
-
-
-
Mass Spectrometry-based Detection of Mycotoxins in Imported Meat and their Perspective Role on Myocardial Apoptosis
Background: Fungal mycotoxins are the secondary metabolities and are harmful to plants, animals, and humans. Common aflatoxins are present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat. Methods: The present work is designed to select and collect the various samples of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat was found to be on sale. Results: Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) was positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively which were least among all with 16.66 and 11.11%. Discussion: A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues. Conclusion: The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.
-
-
-
Berberine Decreases Thrombosis Potential Induced by a High-choline Diet by Inhibiting CutC Enzyme
Authors: Hua Qu, Ying Zhang, Jun-he Shi, Yi-han Zhao, Jie Gao, Zhu-ye Gao and Da-zhuo ShiIntroduction: Gut microbes influence thrombosis potential by generating trimethylamine N-oxide (TMAO). However, whether the antithrombotic effect of berberine is associated with TMAO generation remains unclear. Objective: The present study was designed to explore whether berberine decreases the TMAO-induced thrombosis potential and the possible mechanism underneath it. Methods: C57BL/6J female mice under a high-choline diet or standard diet were treated with/without berberine for 6 weeks. The TMAO level, carotid artery occlusion time following FeCl3 injury and platelet responsiveness were measured. The binding of berberine to the CutC enzyme was analysed with molecular docking, and molecular dynamics simulations were verified with enzyme activity assays. Results: The results showed that berberine increased the carotid artery occlusion time following FeCl3 injury and decreased the platelet hyperresponsiveness induced by a high- choline diet, both offset by intraperitoneal injection of TMAO. The effect of berberine on thrombosis potential was associated with decreasing the generation of TMAO by inhibiting the CutC enzyme. Conclusion: Targeting TMAO generation with berberine might be a promising therapy for ischaemic cardiac-cerebral vascular diseases.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)