Skip to content
2000
Volume 31, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673250752230921090452
2023-10-18
2024-11-02
Loading full text...

Full text loading...

References

  1. AyuD.F. AminahS. DiharmiA. Photo-oxidation stability of mayonnaise from striped catfish and red palm mixture oil.IOP Conf. Ser. Earth Environ. Sci.2021757101205210.1088/1755‑1315/757/1/012052
    [Google Scholar]
  2. OdabasogluF. HaliciZ. CakirA. HaliciM. AygunH. SuleymanH. CadirciE. AtalayF. Beneficial effects of vegetable oils (corn, olive and sunflower oils) and α-tocopherol on anti-inflammatory and gastrointestinal profiles of indomethacin in rats.Eur. J. Pharmacol.20085911-330030610.1016/j.ejphar.2008.06.075 18621042
    [Google Scholar]
  3. PachaiappanR. NagasathiyaK. SinghP.K. GopalakrishnanA.V. VelusamyP. RamasamyK. VelmuruganD. KandasamyR. RamasamyP. GopinathS.C.B. Phytochemical profile of black cumin (Nigella sativa L.) seed oil: Identification of bioactive anti-pathogenic compounds for traditional Siddha formulation.Biomass Convers. Biorefin.20231316146831469510.1007/s13399‑022‑02951‑x
    [Google Scholar]
  4. LiX. KongW. ShiW. ShenQ. A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils.Chemom. Intell. Lab. Syst.201615514515010.1016/j.chemolab.2016.03.028
    [Google Scholar]
  5. DorniC. SharmaP. SaikiaG. LongvahT. Fatty acid profile of edible oils and fats consumed in India.Food Chem.201823891510.1016/j.foodchem.2017.05.072 28867107
    [Google Scholar]
  6. LimK. PanK. YuZ. XiaoR.H. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures.Nat. Commun.2020111535310.1038/s41467‑020‑19137‑6 33097723
    [Google Scholar]
  7. LuoQ. LiuZ. YinH. DangZ. WuP. ZhuN. LinZ. LiuY. Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human.Sci. Total Environ.202070413536910.1016/j.scitotenv.2019.135369 31812395
    [Google Scholar]
  8. ZhouY. ZhaoW. LaiY. ZhangB. ZhangD. Edible plant oil: Global status, health issues, and perspectives.Front. Plant Sci.202011131510.3389/fpls.2020.01315 32983204
    [Google Scholar]
  9. PurbaH.J. SinagaB.M. NoviantiT. KustiariR. The impact of changes in external factors on the world vegetable oil market.Int. J. Econ. Financial Issues.201886176186
    [Google Scholar]
  10. NgT.T. SoP.K. ZhengB. YaoZ.P. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.Anal. Chim. Acta2015884707610.1016/j.aca.2015.05.013 26073811
    [Google Scholar]
  11. OzulkuG. YildirimR.M. TokerO.S. KarasuS. DurakM.Z. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric.Food Control201782212-21621221610.1016/j.foodcont.2017.06.034
    [Google Scholar]
  12. DurazzoA. Fawzy RamadanM. LucariniM. Editorial: Cold pressed oils: A green source of specialty oils.Front. Nutr.2022883665110.3389/fnut.2021.836651 35223938
    [Google Scholar]
  13. YadavS. Edible oil adulterations: Current issues, detection techniques, and health hazards.IJCS20186213931397
    [Google Scholar]
  14. Azadmard-DamirchiS. TorbatiM. Adulterations in some edible oils and fats and their detection methods.J. Food Qual.2015223844
    [Google Scholar]
  15. VijayakumarM. VasudevanD.M. SundaramK.R. KrishnanS. VaidyanathanK. NandakumarS. ChandrasekharR. MathewN. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease.Indian Heart J.201668449850610.1016/j.ihj.2015.10.384 27543472
    [Google Scholar]
  16. GanesanK. SukalingamK. XuB. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review.Trends Food Sci. Technol.20187113215410.1016/j.tifs.2017.11.003
    [Google Scholar]
  17. JoshiJ.R. BhanderiK.K. PatelJ.V. A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications.J. Indian Chem. Soc.2023100110084910.1016/j.jics.2022.100849
    [Google Scholar]
  18. ManiS. BhattS.B. VasudevanV. PrabhuD. RajamanikandanS. VelusamyP. RamasamyP. RamanP. The updated review on plant peptides and their applications in human health.Int. J. Pept. Res. Ther.202228513510.1007/s10989‑022‑10437‑7 35911180
    [Google Scholar]
  19. HuR. HeT. ZhangZ. YangY. LiuM. Safety analysis of edible oil products via Raman spectroscopy.Talanta201919132433210.1016/j.talanta.2018.08.074 30262067
    [Google Scholar]
  20. GianazzaE. BrioschiM. Martinez FernandezA. CasalnuovoF. AltomareA. AldiniG. BanfiC. Lipid peroxidation in atherosclerotic cardiovascular diseases.Antioxid. Redox Signal.2021341499810.1089/ars.2019.7955 32640910
    [Google Scholar]
  21. ShiL.K. ZhangD-D. LiuY-L. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China.Food Control2016626216517010.1016/j.foodcont.2015.10.037
    [Google Scholar]
  22. SimB.I. KhorY.P. LaiO.M. YeohC.B. WangY. LiuY. NehdiI.A. TanC.P. Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining.Food Chem.202032812714710.1016/j.foodchem.2020.127147 32497897
    [Google Scholar]
  23. ChenC.H. JiangS.S. ChangI.S. WenH.J. SunC.W. WangS.L. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth.Environ. Res.201816226127010.1016/j.envres.2018.01.009 29367177
    [Google Scholar]
  24. LacosteF. Undesirable substances in vegetable oils: Anything to declare?Ocl201421110310.1051/ocl/2013060
    [Google Scholar]
  25. ShermaJ. RabelF. A review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements.J. Liq. Chromatogr. Relat. Technol.2018411064565710.1080/10826076.2018.1505637
    [Google Scholar]
  26. YousefiM. YousefiM. HosseiniH. Evaluation of hexane content in edible vegetable oils consumed in Iran.J. Expe. Cli. Toxi.201711273010.14302/issn.2641‑7669.ject‑17‑1790
    [Google Scholar]
  27. HassanzadazarH. GhayurdoostF. AminzareM. MottaghianpourE. TaamiB. Monitoring of edible oils quality in restaurants and fast food centers using peroxide and acid values.J. Chem. Health Risks201883
    [Google Scholar]
  28. HammW. HamiltonR.J. CalliauwG. Eds.;Edible oil processing.Wiley-BlackwellUK201334210.1002/9781118535202
    [Google Scholar]
  29. VasseghianY. MoradiM. DragoiE.N. KhaneghahA.M. A review on mycotoxins detection techniques in edible oils.J. Environ. Anal. Chem.202210292215221910.1080/03067319.2020.1750607
    [Google Scholar]
  30. JavanmardiF. KhodaeiD. SheidaeiZ. BashiryM. NayebzadehK. VasseghianY. KhaneghahM.A. Decontamination of aflatoxins in edible oils: A comprehensive review.Food Rev. Int.202066122125213210.1590/S1807‑59322011001200020
    [Google Scholar]
  31. MengYuZ. AbulaitiG. JunY. LingC. Simultaneous determination of free gossypol and its degradation product tetramethoxy gossypol in commercially available cottonseed oil by high performance liquid chromatography.Sh. Kexue. Shipin Kexue2019401626126610.7506/spkx1002‑6630‑20180926‑282
    [Google Scholar]
  32. ZioS. CisseH. ZongoO. GuiraF. TapsobaF. Siourime SomdaN. Hama-BaF. Toulsoumde Songre-OuattaraL. ZongoC. TraoreY. SavadogoA. The oils refining process and contaminants in edible oils: A review. J. Food.Tech. Res.20207194710.18488/journal.58.2020.71.9.47
    [Google Scholar]
  33. DuarteD.J. RuttenJ.M.M. van den BergM. WesterinkR.H.S. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures.Neurotoxicology20175922223010.1016/j.neuro.2016.02.001 26851706
    [Google Scholar]
  34. EFSAE. Panel on Food Additives and Nutrient Sources Added to Food (ANS): Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive.EFSA J.2010812194310.2903/j.efsa.2010.1943
    [Google Scholar]
  35. Al MassatiS.B. Synthesis and characterization of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils.PhD diss. Université Pierre et Marie Curie-Paris VI20171513596810.1016/j.chroma.2017.07.067
    [Google Scholar]
  36. NishadJ. DuttaA. SahaS. RudraS.G. VargheseE. SharmaR.R. TomarM. KumarM. KaurC. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil.Food Chem.202133412756110.1016/j.foodchem.2020.127561 32711272
    [Google Scholar]
  37. Al-JasassF.M. Al-JasserM.S. Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions.Sci. World. J.201220121510.1100/2012/859892 23319888
    [Google Scholar]
  38. MhatreS. RajaramanP. ChatterjeeN. BrayF. GoelM. PatkarS. DikshitR. Mustard oil consumption, cooking method, diet and gallbladder cancer risk in high‐and low‐risk regions of India.Int. J. Cancer202014761621162810.1002/ijc.32952 32142159
    [Google Scholar]
  39. BabuC.K. AnsariK.M. MehrotraS. KhannaR. KhannaS.K. DasM. Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning.Food Chem. Toxicol.20084672409241410.1016/j.fct.2008.03.031 18486295
    [Google Scholar]
  40. DasM. AnsariK.M. DhawanA. ShuklaY. KhannaS.K. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice.Int. J. Cancer2005117570971710.1002/ijc.21234 15981203
    [Google Scholar]
  41. SharmaB.D. MalhotraS. BhatiaV. RatheeM. Epidemic dropsy in India.Postgrad. Med. J.19997588965766110.1136/pgmj.75.889.657 10621875
    [Google Scholar]
  42. GuptaS. KoriC. KumarV. MisraS. AkhtarN. Epidemiological study of gallbladder cancer patients from North Indian Gangetic Planes-a high-volume centre’s experience.J. Gastrointest. Cancer2016471273510.1007/s12029‑015‑9781‑5 26585944
    [Google Scholar]
  43. DixitR. SrivastavaP. BasuS. SrivastavaP. MishraP.K. ShuklaV.K. Association of mustard oil as cooking media with carcinoma of the gallbladder.J. Gastrointest. Cancer201344217718110.1007/s12029‑012‑9458‑2 23180022
    [Google Scholar]
  44. MishraV. MishraM. AnsariK.M. ChaudhariB.P. KhannaR. DasM. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer.Eur. J. Cancer201248132075208510.1016/j.ejca.2011.09.026 22071130
    [Google Scholar]
  45. MotarjemiY. MoyG. ToddE. Eds.;Encyclopedia of food safety.Academic Press2013
    [Google Scholar]
  46. PoddarK.H. SikandG. KalraD. WongN. DuellP.B. Mustard oil and cardiovascular health: Why the controversy?J. Clin. Lipidol.2022161132210.1016/j.jacl.2021.11.002 34924350
    [Google Scholar]
  47. McDowellD. ElliottC.T. KoidisA. Characterization and comparison of UK, Irish, and French cold pressed rapeseed oils with refined rapeseed oils and extra virgin olive oils.Eur. J. Lipid Sci. Technol.20171198160032710.1002/ejlt.201600327
    [Google Scholar]
  48. SigerA. Gawrysiak-WitulskaM. Bartkowiak-BrodaI. Antioxidant (tocopherol and canolol) content in rapeseed oil obtained from roasted yellow-seeded brassica napus.J. Am. Oil Chem. Soc.2017941374610.1007/s11746‑016‑2921‑7 28163323
    [Google Scholar]
  49. AnsariK.M. DasM. Potentiation of tumour promotion by topical application of argemone oil/isolated sanguinarine alkaloid in a model of mouse skin carcinogenesis.Chem. Biol. Interact.2010188359159710.1016/j.cbi.2010.07.023 20691676
    [Google Scholar]
  50. MesseguerA. Potential implication of aniline derivatives in the toxic oil syndrome (TOS).Chem. Biol. Interact.20111921-213614110.1016/j.cbi.2010.10.006 20970410
    [Google Scholar]
  51. BujonsJ. LadonaM.G. MesseguerA. MoratóA. AmpurdanésC. Metabolism of (R)- and (S)-3-(phenylamino)propane-1,2-diol in C57BL/6- and A/J-strain mice. Identification of new metabolites with potential toxicological significance to the toxic oil syndrome.Chem. Res. Toxicol.20011481097110610.1021/tx010001k 11511184
    [Google Scholar]
  52. GallardoS. CárdabaB. PosadaM. del PozoV. MesseguerA. DavidC.S. LahozC. Toxic oil syndrome: Genetic restriction and immunomodulatory effects due to adulterated oils in a model of HLA transgenic mice.Toxicol. Lett.2005159217318110.1016/j.toxlet.2005.05.009 15979827
    [Google Scholar]
  53. de la PazM.P. PhilenR.M. BordaI.A. Toxic oil syndrome: the perspective after 20 years.Epidemiol. Rev.200123223124710.1093/oxfordjournals.epirev.a000804 12192735
    [Google Scholar]
  54. DebMandalM. MandalS. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention.Asian Pac. J. Trop. Med.20114324124710.1016/S1995‑7645(11)60078‑3 21771462
    [Google Scholar]
  55. BoatengL. AnsongR. OwusuW. Steiner-AsieduM. Coconut oil and palm oil’s role in nutrition, health and national development: A review.Ghana Med. J.201650318919610.4314/gmj.v50i3.11 27752194
    [Google Scholar]
  56. BhatnagarA.S. Prasanth KumarP.K. HemavathyJ. Gopala KrishnaA.G. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil.J. Am. Oil Chem. Soc.2009861099199910.1007/s11746‑009‑1435‑y
    [Google Scholar]
  57. RohmanA. Che ManY.B. AliM.E. The authentication of virgin coconut oil from grape seed oil and soybean oil using ftir spectroscopy and chemometrics.Int. J. Appl. Pharm.20191125926310.22159/ijap.2019v11i2.31758
    [Google Scholar]
  58. ParthasarathyS. SoundararajanP. KrishnanN. KaruppiahK. DevadasanV. PrabhuD. RajamanikandanS. VelusamyP. GopinathS.C.B. RamanP. Detection of adulterants from common edible oils by GC-MS.Biomass Conv. Bioref202212110.1007/s13399‑022‑02913‑3
    [Google Scholar]
  59. PandiselvamR. ManikantanM.R. RameshS.V. BeegumS. MathewA.C. Adulteration in coconut and virgin coconut oil.Impl. Det. Methods20196271922
    [Google Scholar]
  60. ShuklaA.K. DixitA.K. SinghR.P. Detection of adulteration in edible oils.J. Oleo Sci.200554631732410.5650/jos.54.317
    [Google Scholar]
  61. Rema ShreeA.B. BalachandranI. DeepakM. KumarP.U. NithaB. Quality parameters, fatty acid profiling and estimation of umbelliferone in grahaṇimihira tailam: An ayurvedic oil preparation.Anc. Sci. Life2013331101410.4103/0257‑7941.134557 25161324
    [Google Scholar]
  62. ChandravanshiS. L. Epidemic dropsy glaucoma.Gems of Ophthalmology: Glaucoma2018213
    [Google Scholar]
  63. KrishnamurthyN.M.N. PashupathyK.S. NagarajaK.V. KapurO.P. Evaluation of the turbidity and thin layer chromatographic tests for detection of castor oil.J. Am. Oil Chem. Soc.198259833733910.1007/BF02541015
    [Google Scholar]
  64. KrishnamurthyM. N. NagarajaK. V. Methods for detection of rice‐bran, mustard, karanja oils and rice‐bran deoiled cake.Lipid/Fett1992941245745810.1002/lipi.19920941205
    [Google Scholar]
  65. NayakB.S. PatelK.N. Physicochemical characterization of seed and seed oil of Jatropha curcas L. collected from Bardoli (South Gujarat).Sains Malays.2010396951955
    [Google Scholar]
  66. ChettiS.O. AkuskarS.K. MalveM.K. KrishnamurthyR. Identification of tricresyl phosphate (TCP) an adulterant in edible oils by HPTLC-densitometer.Int. J. Med.201214121124
    [Google Scholar]
  67. SetiowatyG. Che ManY.B. Multivariate determination of cloud point in palm oil using partial least squares and principal component regression based on FTIR spectroscopy.J. Am. Oil Chem. Soc.200481171110.1007/s11746‑004‑0852‑4
    [Google Scholar]
  68. DeepamL.S.A. ArumughanC. Effect of saponification on composition of unsaponifiable matter in rice bran oil.J. Oleo Sci.201261524124710.5650/jos.61.241 22531051
    [Google Scholar]
  69. Ochando-PulidoJ.M. HodaifaG. Victor-OrtegaM.D. Rodriguez-VivesS. Martinez-FerezA. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment.J. Hazard. Mater.2013263Pt 115816710.1016/j.jhazmat.2013.07.015 23910394
    [Google Scholar]
  70. Aalto-KorteK. PesonenM. KuulialaO. SuuronenK. Occupational allergic contact dermatitis caused by coconut fatty acids diethanolamide.Contact Dermat.201470316917410.1111/cod.12151 24588369
    [Google Scholar]
  71. MyintD. GilaniS.A. KawaseM. WatanabeK.N. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar.Sustainability2020129351510.3390/su12093515
    [Google Scholar]
  72. BhatK.V. KumariR. PathakN. RaiA.K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability.Pharmacogn. Rev.201481614715510.4103/0973‑7847.134249 25125886
    [Google Scholar]
  73. DhayalG.L. AgarwalH. MathurA. MathurS. KishoriaN. JainS. ChoudharyR. SharmaR. BishnoiS. MathurS. Case report of a small outbreak of epidemic dropsy.J. Indian Med. Assoc.20131113200201 24592766
    [Google Scholar]
  74. BoeningD.W. Ecological effects, transport, and fate of mercury: A general review.Chemosphere200040121335135110.1016/S0045‑6535(99)00283‑0 10789973
    [Google Scholar]
  75. WexlerP. AndersonB.D. GadS.C. HakkinenP.B. KamrinM. De PeysterA. ShugartL.R. Eds.;Encyclopedia of toxicology.Academic Press20051
    [Google Scholar]
  76. ZhuF. FanW. WangX. QuL. YaoS. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China.Food Chem. Toxicol.201149123081308510.1016/j.fct.2011.09.019 21964195
    [Google Scholar]
  77. KarthikD. VijayarekhaK. Chemometric identification of a few heavy metals, pesticides and plasticides in edible sunflower oil for health risk assessment.Int. J. Food Prop.20182111442144810.1080/10942912.2018.1494192
    [Google Scholar]
  78. Cold pressed oils In: Ramadan, M.F., Ed.;Green technology, bioactive compounds, functionality, and applications.Academic Press202015
    [Google Scholar]
  79. CarterC. FinleyW. FryJ. JacksonD. WillisL. Palm oil markets and future supply.Eur. J. Lipid Sci. Technol.2007109430731410.1002/ejlt.200600256
    [Google Scholar]
  80. MontoyaC. CochardB. FloriA. CrosD. LopesR. CuellarT. EspeoutS. SyaputraI. VilleneuveP. PinaM. RitterE. LeroyT. BillotteN. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés.PLoS One201495e9541210.1371/journal.pone.0095412 24816555
    [Google Scholar]
  81. RosqvistF. IggmanD. KullbergJ. CedernaesJ. JohanssonH.E. LarssonA. JohanssonL. AhlströmH. ArnerP. DahlmanI. RisérusU. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans.Diabetes20146372356236810.2337/db13‑1622 24550191
    [Google Scholar]
  82. MacArthurR.L. TeyeE. DarkwaS. Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models.Vib. Spectrosc.202011010312910.1016/j.vibspec.2020.103129
    [Google Scholar]
  83. IdrissiZ.L.E. El MouddenH. MghazliN. BouyahyaA. GuezzaneC.E. AlshahraniM.M. Al AwadhA.A. GohK.W. MingL.C. HarharH. TabyaouiM. Effects of extraction methods on the bioactivities and nutritional value of virginia and valencia-type peanut oil.Molecules20222722770910.3390/molecules27227709 36431807
    [Google Scholar]
  84. GahukarR.T. Food adulteration and contamination in India: Occurrence, implication and safety measures.Int. J. Basic Appl. Sci.2014314710.14419/ijbas.v3i1.1727
    [Google Scholar]
  85. PalladinoC. BreitenederH. Peanut allergens.Mol. Immunol.2018100587010.1016/j.molimm.2018.04.005 29680589
    [Google Scholar]
  86. GhobadiS. AkhlaghiM. ShamsS. MazloomiS.M. Acid and peroxide values and total polar compounds of frying oils in fast food restaurants of Shiraz, Southern Iran.Int. J. Food Sci. Nutr.2018312530
    [Google Scholar]
  87. GuillaumeC. De AlzaaF. RavettiL. Evaluation of chemical and physical changes in different commercial oils during heating.Act. Sci. Nutr.2018914348
    [Google Scholar]
  88. ReitznerováA. ŠulekováM. NagyJ. MarcinčákS. SemjonB. ČertíkM. KlempováT. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-Thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography.Molecules20172211198810.3390/molecules22111988 29144423
    [Google Scholar]
  89. BaumS.J. Kris-EthertonP.M. WillettW.C. LichtensteinA.H. RudelL.L. MakiK.C. WhelanJ. RamsdenC.E. BlockR.C. Fatty acids in cardiovascular health and disease: A comprehensive update.J. Clin. Lipidol.20126321623410.1016/j.jacl.2012.04.077 22658146
    [Google Scholar]
  90. MohiuddinA. The mysterious domination of food contaminants and adulterants in Bangladesh.Int. J. Environ. Sci. Nat. Resour.2019164345610.19080/IJESNR.2019.16.555941
    [Google Scholar]
  91. SeoW.D. KangJ.E. ChoiS.W. LeeK.S. LeeM.J. ParkK.D. LeeJ.H. Comparison of nutritional components (isoflavone, protein, oil, and fatty acid) and antioxidant properties at the growth stage of different parts of soybean [Glycine max (L.) Merrill].Food Sci. Biotechnol.201726233934710.1007/s10068‑017‑0046‑x 30263548
    [Google Scholar]
  92. PapazzoA. ConlanX.A. LexisL. LewandowskiP.A. Differential effects of dietary canola and soybean oil intake on oxidative stress in stroke-prone spontaneously hypertensive rats.Lipids Health Dis.20111019810.1186/1476‑511X‑10‑98 21669000
    [Google Scholar]
  93. AnanthD.A. DeviramG. MahalakshmiV. SivasudhaT. TietelZ. Phytochemical composition and antioxidant characteristics of traditional cold pressed seed oils in South India.Biocatal. Agric. Biotechnol.20191741642110.1016/j.bcab.2018.12.018
    [Google Scholar]
  94. AduO.B. FajanaO.O. OgunrinolaO.O. OkonkwoU.V. EvuarherheP. ElemoB.O. Effect of continuous usage on the natural antioxidants of vegetable oils during deep-fat frying.Sci. Am.20195e0014410.1016/j.sciaf.2019.e00144
    [Google Scholar]
  95. LeongX.F. AishahA. Nor AiniU. DasS. JaarinK. Heated palm oil causes rise in blood pressure and cardiac changes in heart muscle in experimental rats.Arch. Med. Res.200839656757210.1016/j.arcmed.2008.04.009 18662587
    [Google Scholar]
  96. JaarinK. MustafaM.R. LeongX.F. The effects of heated vegetable oils on blood pressure in rats.Clinics201166122125213210.1590/S1807‑59322011001200020 22189740
    [Google Scholar]
  97. LeongX.F. MustafaM.R. DasS. JaarinK. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil.Lipids Health Dis.2010916610.1186/1476‑511X‑9‑66 20573259
    [Google Scholar]
  98. ClementeT.E. CahoonE.B. Soybean oil: genetic approaches for modification of functionality and total content.Plant Physiol.200915131030104010.1104/pp.109.146282 19783644
    [Google Scholar]
  99. RakhshandehrooM. KnochB. MüllerM. KerstenS. Peroxisome proliferator-activated receptor alpha target genes.PPAR Res.2010201012010.1155/2010/612089 20936127
    [Google Scholar]
  100. XianT.K. OmarN.A. YingL.W. HamzahA. RajS. JaarinK. HussanF. Reheated palm oil consumption and risk of atherosclerosis: Evidence at ultrastructural level.Evid. Based Complement. Alternat. Med.2012201282817010.1155/2012/828170
    [Google Scholar]
  101. AdamS.K. DasS. SoelaimanI.N. UmarN.A. JaarinK. Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats.Tohoku J. Exp. Med.2008215321922610.1620/tjem.215.219 18648182
    [Google Scholar]
  102. ChistiakovD.A. BobryshevY.V. OrekhovA.N. Macrophage‐mediated cholesterol handling in atherosclerosis.J. Cell. Mol. Med.2016201172810.1111/jcmm.12689 26493158
    [Google Scholar]
  103. SalahW.A. NofalM. Review of some adulteration detection techniques of edible oils.J. Sci. Food Agric.2021101381181910.1002/jsfa.10750 32833235
    [Google Scholar]
  104. NgT.T. LiS. NgC.C.A. SoP.K. WongT.F. LiZ.Y. ChanS.T. YaoZ.P. Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry.Food Chem.201825233534210.1016/j.foodchem.2018.01.125 29478551
    [Google Scholar]
  105. JergovićA.M. PeršurićŽ. SaftićL. Kraljević PavelićS. Evaluation of MALDI‐TOF/MS technology in olive oil adulteration.J. Am. Oil Chem. Soc.201794674975710.1007/s11746‑017‑2994‑y
    [Google Scholar]
  106. BiedermannM. MunozC. GrobK. Epoxidation for the analysis of the mineral oil aromatic hydrocarbons in food. An update.J. Chromatogr. A2020162446123610.1016/j.chroma.2020.461236 32540076
    [Google Scholar]
  107. SrbinovskaA. ConchioneC. Menegoz UrsolL. LucciP. MoretS. Occurrence of n-Alkanes in vegetable oils and their analytical determination.Foods2020911154610.3390/foods9111546 33114601
    [Google Scholar]
  108. NestolaM. SchmidtT.C. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins.J. Chromatogr. A20171505697610.1016/j.chroma.2017.05.035 28533029
    [Google Scholar]
  109. Criado-NavarroI. Mena-BravoA. Calderón-SantiagoM. Priego-CapoteF. Determination of glycerophospholipids in vegetable edible oils: Proof of concept to discriminate olive oil categories.Food Chem.201929912513610.1016/j.foodchem.2019.125136 31302429
    [Google Scholar]
  110. RohmanA. The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review.Appl. Spectrosc. Rev.201752758960410.1080/05704928.2016.1266493
    [Google Scholar]
  111. PereiraC.G. LeiteA.I.N. AndradeJ. BellM.J.V. AnjosV. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses.Lebensm. Wiss. Technol.20191071810.1016/j.lwt.2019.02.072
    [Google Scholar]
  112. Sota-UbaI. BamideleM. MoultonJ. BookshK. LavineB.K. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods.Chemom. Intell. Lab. Syst.202121010425110.1016/j.chemolab.2021.104251
    [Google Scholar]
  113. WangX. WangG. HouX. NieS. A rapid screening approach for authentication of olive oil and classification of binary blends of olive oils using low-field nuclear magnetic resonance spectra and support vector machine.Food Anal. Methods202013101894190510.1007/s12161‑020‑01799‑z
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673250752230921090452
Loading
/content/journals/cmc/10.2174/0109298673250752230921090452
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): adulteration; cooking oil; edible oils; human health; Lipid; triglyceride
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test