- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 31, Issue 34, 2024
Current Medicinal Chemistry - Volume 31, Issue 34, 2024
Volume 31, Issue 34, 2024
-
-
Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
-
-
-
Medicinal Aspects of PTP1B Inhibitors as Anti-Breast Cancer Agents: An Overview
Protein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. Therefore, huge research is being carried out on PTP1B inhibitors and their activity against breast cancer development. To date, only two PTP1B inhibitors, viz. ertiprotafib and trodusquemine, have entered clinical trials. The discovery of selective inhibitors of PTP1B could open a new avenue in breast cancer treatment. In this review, we provide an extensive overview on the involvement of PTP1B in breast cancer, its pathophysiology, with special attention on the discovery and development of various natural as well as synthetic PTP1B inhibitors. This study will provide significant information to the researchers developing PTP1B inhibitors for breast cancer treatment.
-
-
-
Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
-
-
-
CircRNAs as a Novel Class of Potential Diagnostic Biomarkers in Bipolar Disorders
Authors: Reza Asemi, Amrollah Ebrahimi, Michael R. Hamblin, Hamed Mirzaei and Zatollah AsemiBipolar disorder (BD) is a severe mood disorder with uncertain causes and debilitating signs and symptoms. Gene expression is crucial to the pathophysiology of BD and could be influenced by genetic or epigenetic factors, by either direct modification of mRNA templates or by regulation of post-transcriptional translation. Recent evidence has shown that several critical processes in psychiatric diseases, such as neuronal activity or plasticity, synaptic transmission, and neuronal depolarization, have all been linked to circular RNAs (circRNAs). The circRNA profile of neuronal cells, which may be easily ascertained by a liquid biopsy, may shed light on the molecular pathophysiology of psychiatric disorders, including BD. This approach could aid in future development in diagnosis and treatment. In this review, we provide an in-depth understanding of the roles of circRNAs in the pathophysiology of BD and offer new insight into their potential as emerging diagnostic tools and therapeutic targets.
-
-
-
Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson's Disease
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.
-
-
-
Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis
Authors: Yimeng Zhao, Qian Xu, Naiqi He, Mulin Jiang, Yingzhuo Chen, Zhong Ren, Zhihan Tang, Chunyan Wu and Lushan LiuAtherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
-
-
-
The Pharmacokinetic Interaction of Tirabrutinib with Voriconazole, Itraconazole, and Fluconazole in SD Rats by UPLC-MS/MS
Authors: Mengming Xia, Ya-Nan Liu, Jie Chen, Ren-Ai Xu and Gexin DaiBackground: Tirabrutinib is an orally effective, approved, and highly selective second-generation Bruton's tyrosine kinase (BTK) inhibitor for the treatment of recurrent or refractory primary central nervous system lymphoma (PCNSL). Objective: This study aimed to develop an ultra-high performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS) method for the determination of tirabrutinib concentration in rat plasma, where zanubrutinib was used as an internal standard (IS). This method was also applied to study whether tirabrutinib would interact with voriconazole, itraconazole, and fluconazole in rats, providing a reference value for clinical medication guidance. Methods: In the current study, the organic solvent protein precipitation method was used to treat plasma samples, which is simple and reproducible. Tirabrutinib (m/z 455.32 → 320.21) and zanubrutinib (m/z 472.13 → 455.04) were separated on a Waters Acquity BEH C18 column (2.1 × 50 mm, 1.7 μm) and detected by multiple reaction monitoring (MRM) in positive ionization mode. Results: The method showed good linearity in the range of 5−3000 ng/mL for tirabrutinib with the lower limit of quantification (LLOQ) of 5 ng/mL. The recovery and matrix effects were 85.7-91.0% and 102.0-113.3%, respectively. The accuracy, precision, stability, and carry-over effect were also acceptable. The method could also be used for determining the pharmacokinetic interaction of tirabrutinib in rats. The results showed AUC0→∞ of tirabrutinib to be increased by 139.3% and 83.9% in the presence of voriconazole and fluconazole, respectively, while itraconazole had little effect. Conclusion: It is necessary to monitor the concentration of tirabrutinib in patients when it is combined with voriconazole and fluconazole to achieve a better therapeutic effect and reduce the risk of adverse reaction. Further research should be conducted in the future.
-
-
-
Molecular Subtypes and Prognostic Models for Predicting Prognosis of Lung Adenocarcinoma based on MiRNA-related Genes
Authors: Yuxi Wei, Wei Zhong, Yalan Bi, Xiaoyan Liu, Qing Zhou, Jia Liu, Mengzhao Wang, Hong Zhang and Minjiang ChenBackground: MicroRNAs (miRNAs) are crucial in cancer development and progression, and therapies targeting miRNAs demonstrate great therapeutic promise. Aim: We sought to predict the prognosis and therapeutic response of lung adenocarcinoma (LUAD) by classifying molecular subtypes and constructing a prognostic model based on miRNA-related genes. Methods: This study was based on miRNA-mRNA action pairs and ceRNA networks in the Cancer Genome Atlas (TCGA) database. Three molecular subtypes were determined based on 64 miRNA-associated target genes identified in the ceRNA network. The S3 subtype had the best prognosis, and the S2 subtype had the worst prognosis. The S2 subtype had a higher tumor mutational load (TMB) and a lower immune score. The S2 subtype was more suitable for immunotherapy and sensitive to chemotherapy. The least absolute shrinkage and selection operator (LASSO) algorithm was performed to determine eight miRNA-associated target genes for the construction of prognostic models. Result: High-risk patients had a poorer prognosis, lower immune score, and lower response to immunotherapy. Robustness was confirmed in the Gene-Expression Omnibus (GEO) database cohort (GSE31210, GSE50081, and GSE37745 datasets). Overall, our study deepened the understanding of the mechanism of miRNA-related target genes in LUAD and provided new ideas for classification. Conclusion: Such miRNA-associated target gene characterization could be useful for prognostic prediction and contribute to therapeutic decision-making in LUAD.
-
-
-
Role of S100 and YKL40 on Intraventricular Cerebral Hemorrhages in the Preterm Infant and the Neuroprotective Role of miR-138- siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 in Neonatal Mice with Nerve Injury
Background: Epilepsy and intraventricular-cerebral hemorrhage is a common complication irreversible in preterm infants. Inflammation leads to an increase in intracellular calcium, acidosis, and oxygen usage, and finally, may damage brain cells. Increases in HIF-1a and HVCN1 can reduce the complications of oxygen consumption and acidosis in infants with intraventricular hemorrhage (IVH). On the other hand, decreases in S100B can shield nerve cells from apoptosis and epilepsy by reducing brain damage. Objective: In this research, we investigated how miR-138-siRNAs-HIF-1a and miR-21- siRNAs-HVCN1 affect apoptosis in hypoxic mice. Methods: On the first and third days after delivery, the YKL40, HIF-1a, HVCN1, and S100b genes were compared between two groups of preterm infants with and without maternal inflammation. Afterward, the miRNAs were transfected into cell lines to monitor variations in YKL40, HIF-1a, HVCN1, and S100b gene expression and nerve cell apoptosis. We changed the expression of S100b, HVCN1, and HIF-1a genes by using specific siRNAs injected into mice. Using real-time PCR, Western blotting, flow cytometry (FCM), and immunofluorescence, and changes in gene expression were evaluated (IHC). Results: HVCN1 gene expression showed a strong negative correlation with epilepsy in both groups of infants (Pβ0.001). Significant correlations between epilepsy and the expression levels of the S100b, YKL40, and HIF-1a genes were found (Pβ0.001). According to FCM, after transfecting miRNA-431 and miRNA-34a into cell lines, the apoptosis index (A.I.) were 41.6 3.3 and 34.5 5.2%, respectively, while the A.I. were 9.6 2.7 and 7.1 4.2% after transfecting miRNA-21 and miRNA-138. MiR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 were simultaneously injected into hypoxic mice, and IHC double-labeling revealed that this reduced apoptosis and seizures compared to the hypoxic group. Conclusion: Our findings demonstrate that miR-138-siRNAs-HIF-1a and miR-21-siRNAs- HVCN1 injections prevent cerebral ischemia-induced brain damage in hypoxia mice by increasing HVCN1 and HIF-1a and decreasing S100b, which in turn lessens apoptosis and epilepsy in hypoxic mice.
-
-
-
Novel Pyrazino[2,3-b] Pyrazines as mTOR Kinase Inhibitors for Treating Cancer and other Diseases
By Surya K. DeThis paper describes the synthesis of some heteroaryl compounds and compositions comprising an effective amount of one or more such compounds and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway, comprising administering an adequate amount of a heteroaryl compound to a patient in need thereof. These compounds are mTOR/PI3K/Akt pathway inhibitors.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)