- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 21, Issue 25, 2015
Current Pharmaceutical Design - Volume 21, Issue 25, 2015
Volume 21, Issue 25, 2015
-
-
Astrocytes: New Targets for the Treatment of Neurodegenerative Diseases
Authors: Charles Finsterwald, Pierre J. Magistretti and Sylvain LengacherThe causes of neurodegenerative disorders are multiple, and for most of them a mechanistic understanding is still lacking. However, neurodegenerative diseases such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) all share common features that include elevated oxidative stress levels and impaired energy metabolism in the nervous system. Most of the current treatments are only successful at alleviating some of the pathological symptoms, but fail at preventing neurodegeneration. There is therefore an urgent need for innovative and more efficient treatments for neurodegenerative disorders. We review here the central role played by astrocytes in the regulation of brain homeostasis, protection and function by supporting neuronal health and activity. In particular, astrocytes are key partners of neuronal metabolism, notably through activation of the astrocyteneuron lactate shuttle (ANLS). They also control the levels of extracellular glutamate, production of antioxidant molecules, disposal of neuronal waste products, storage of energy in the form of glycogen, and expression of neurotrophic factors. These mechanisms, which are key for brain activity and cognition, also largely contribute to neuronal degeneration in pathological situations. Thus, as astrocytes appear to play a key role in the etiology of neurodegenerative disorders, a growing interest has arisen for astrocytemediated pathways as targets for drugs that aim at treating the root causes of the pathology. We present here the most recent and promising astrocyte-based therapeutic approaches - from fundamental discoveries to clinical trials - that intent to sustain neuronal health and function in neurodegenerative disorders.
-
-
-
The Innate Immunity in Alzheimer Disease- Relevance to Pathogenesis and Therapy
The genetic, cellular, and molecular changes associated with Alzheimer disease provide evidence of immune and inflammatory processes involvement in its pathogenesis. These are supported by epidemiological studies, which show some benefit of long-term use of NSAID. The hypothesis that AD is in fact an immunologically mediated and even inflammatory pathological process may be in fact scientifically intriguing. There are several obstacles that suggest the need for more complex view, in the process of targeting inflammation and immunity in AD. In our previous studies we proposed a reliable methodology to assess innate immunity in Alzheimer patients and controls. The methodology is based on the phenomenon of human leukocytes being resistant to viral infection. The unspecific character of the resistance, dependent on interferons and tumor necrosis factor, and occurrence in cells ex vivo indicate that an in vivo mechanism of innate immunity may be involved. The above mentioned resistance could be estimated in a test based on peripheral blood leukocytes infection by vesicular stomachs virus.
-
-
-
Nicotine-Derived Compounds as Therapeutic Tools Against Post-Traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after experiencing trauma. Actual therapies do not help majority of patients with PTSD. Moreover, extinguished fear memories usually reappear in the individuals when exposed to trauma cues. New drugs to reduce the impact of conditioned cues in eliciting abnormal fear responses are urgently required. Cotinine, the main metabolite of nicotine, decreased anxiety and depressive-like behavior, and enhanced fear extinction in mouse models of PTSD. Cotinine, considered a positive modulator of the α7 nicotinic acetylcholine receptor (α7nAChR), enhances fear extinction in rodents in a manner dependent on the activity of the αnAChRs. Cotinine stimulates signaling pathways downstream of α7nAChR including the protein kinase B (Akt)/glycogen synthase kinase 3β (GSK3β) pathway and the extracellular signal-regulated kinases (ERKs). The stimulation of these factors promotes synaptic plasticity and the extinction of fear. In this review, we discuss the hypothesis that cotinine relieves PTSD symptoms and facilitates fear memory extinction by promoting brain plasticity through the positive modulation of presynaptic nAChRs and its effectors in the brain.
-
-
-
Hypothalamic Leptin and Ghrelin Signaling as Targets for Improvement in Metabolic Control
Authors: Laura M. Frago and Julie A. ChowenMetabolic homeostasis requires a tight balance between energy intake and energy expenditure; hence, the physiological circuits implicated in the regulation of energy metabolism must be able to quickly adjust to changes in either side of the equation. Circulating orexigenic and anorexigenic factors, including ghrelin and leptin, are produced in the gastrointestinal tract and adipose tissue, respectively, in relation to an individual’s nutritional status. These signals interact with central metabolic circuits to regulate the production and secretion of neuropeptides implicated in the control of appetite and energy expenditure. However, this physiological equilibrium can be perturbed by diverse processes, with weight gain occurring due to a positive energy balance and weight loss taking place if there is a negative energy balance. If a situation of positive energy balance continues for an extended period of time, excess weight is accumulated and this can eventually result in obesity. Obesity has become one of the most important health problems facing the industrialized world, indicating that metabolic equilibrium is frequently disrupted. Understanding how and why this occurs will allow new therapeutical targets to be identified.
-
-
-
Antidiabetic Drugs: Mechanisms of Action and Potential Outcomes on Cellular Metabolism
Authors: Maria J. Meneses, Branca M. Silva, Mario Sousa, Rosalia Sá, Pedro F. Oliveira and Marco G. AlvesDiabetes mellitus (DM) is one of the most prevalent chronic diseases and has been a leading cause of death in the last decades. Thus, methods to detect, prevent or delay this disease and its co-morbidities have long been a matter of discussion. Nowadays, DM patients, particularly those suffering with type 2 DM, are advised to alter their diet and physical exercise regimens and then proceed progressively from monotherapy, dual therapy, and multi-agent therapy to insulin administration, as the disease becomes more severe. Although progresses have been made, the pursuit for the “perfect” antidiabetic drug still continues. The complexity of DM and its impact on whole body homeodynamics are two of the main reasons why there is not yet such a drug. Moreover, the molecular mechanisms by which DM can be controlled are still under an intense debate. As the associated risks, disadvantages, side effects and mechanisms of action vary from drug to drug, the choice of the most suitable therapy needs to be thoroughly investigated. Herein we propose to discuss the different classes of antidiabetic drugs available, their applications and mechanisms of action, particularly those of the newer and/or most widely prescribed classes. A special emphasis will be made on their effects on cellular metabolism, since these drugs affect those pathways in several cellular systems and organs, promoting metabolic alterations responsible for either deleterious or beneficial effects. This is a crucial property that needs to be carefully investigated when prescribing an antidiabetic.
-
-
-
Impact of Metformin on Male Reproduction
Authors: Carolina Ferreira, Mário Sousa, Ana Rabaca, Pedro F. Oliveira, Marco G. Alves and Rosalia SaMale infertility has been increasing over the last decades being nowadays a pressing health problem. Diabetes mellitus (DM) can contribute directly or indirectly to male infertility due to an abnormal spermatogenesis, which results in a decreased sperm quality. Type 2 Diabetes mellitus (T2DM) is responsible for the vast majority of DM cases, being frequently treated with oral antidiabetic drugs. Metformin is the most cost-effective therapy for the treatment of T2DM. This biguanide is an oral insulin-sensitizing agent capable of increasing insulin sensitivity and decreasing plasma fasting insulin levels. The main metabolic action of this drug occurs in the liver. However, it has been shown that metformin acts on a variety of organs including the male reproductive system. With the rising numbers of diabetic individuals among younger populations, there is an increase in the consumption of metformin in individuals of this age group. As a result, it is important to discuss the role of metformin in male fertility. This review presents the most recent data available from studies on the effects of metformin on male reproductive system. Together with the discussion of these effects, their significance to male fertility is also debated.
-
-
-
The Function and Regulation of BMP6 in Various Kinds of Stem Cells
Authors: Ruinan Shen, Ruobing Jia, Wenjie Liu, Qisheng Lin, Yanan Hai and Zuping HeStem cells, by definition, are the primitive cells that have the potential of both self-renewal and differentiation into a number of mature and functional cells, and thus they have great applications in cell therapy and tissue engineering for regenerative medicine. Bone morphogenetic protein 6 (BMP6) belongs to transforming growth factor β(TGF-β) superfamily. The fate determinations of stem cells require complex regulatory networks that involve BMP6 signaling pathway. Recent studies have demonstrated that BMP6 plays crucial roles in controlling the self-renewal and differentiation of stem cells. In this review, we address the expression, function and regulation of BMP6 in various kinds of stem cells, with focus on mesenchymal stem cells (MSCs), germline stem cells (GSCs), hematopoietic stem cells (HSCs), and neural stem cells (NSCs). Notably, there are distinct effects of BMP6 on promoting self-renewal and differentiation of these stem cells. We also discuss the involement of BMP6 in diseases, including leukemia, astrocytic glioma, and Alzheimer’s disease, and the therapy of these diseases via gene targeting. We further highlight certain issues for further investigation on the regulation and function of BMP6 in stem cells. Significantly, a thorough understanding of BMP6 regulation on a variety of adult stem cells could make them feasible for applications in both regenerative and reproductive medicine, and it would shed novel insights into the etiology of the diseases and offer new targets for drug design to treat these disorders.
-
-
-
The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs
More LessThe current global portfolio of oncology drugs is unlikely to produce durable disease remission for millions of cancer patients worldwide. This is due, in part, to the existence of so-called cancer stem cells (CSCs), a particularly aggressive type of malignant cell that is capable of indefinite self-replication, is refractory to conventional treatments, and is skilled at spreading and colonizing distant organs. To date, no drugs from big-league Pharma companies are capable of killing CSCs. Why? Quite simply, a classic drug development approach based on mutated genes and pathological protein products cannot efficiently target the plastic, epigenetic proclivity of cancer tissues to generate CSCs. Recent studies have proposed that certain elite metabolites (oncometabolites) and other common metabolites can significantly influence the establishment and maintenance of epigenetic signatures of stemness and cancer. Consequently, cellular metabolism and the core epigenetic codes, DNA methylation and histone modification, can be better viewed as an integrated metaboloepigenetic dimension of CSCs, which we have recently termed cancer metabostemness. By targeting weaknesses in the bridge connecting metabolism and epigenetics, a new generation of metabostemnessspecific drugs can be generated for potent and long-lasting elimination of life-threatening CSCs. Here I evaluate the market potential of re-modeling the oncology drug pipeline by discovering and developing new metabolic approaches able to target the apparently undruggable epigenetic programs that dynamically regulate the plasticity of non-CSC and CSC cellular states.
-
-
-
Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets
Authors: Arata Fukushima, Kenneth Milner, Abhishek Gupta and Gary D. LopaschukDespite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure.
-
-
-
Skeletal Muscle Cell Behavior After Physical Agent Treatments
Apoptosis is essential for skeletal muscle development and homeostasis. It has been frequently involved in several muscle myopathies and sarcopenia, as well as in denervation, in disuse and acute strenuous or eccentric physical exercise. In this work skeletal muscle cell death, induced in vitro by a variety of physical triggers, has been investigated. C2C12 myoblasts and myotubes were exposed to UVB for 30 min, hyperthermia for 1 h at 43 °C, low pH for 3 h, hypothermia for 4h at 0 - 6°C, all followed by 2 - 4 h recovery. Their effects have been analysed by means of morpho- functional and molecular approaches. After UVB radiation, hyperthermia and acidosis, morphological apoptotic features and in situ DNA fragmentation appeared, more evident in myoblasts. Interestingly, apoptotic, non apoptotic and necrotic nuclei could be occasionally observed within the same myotube. Low pH induced apoptosis and necrosis, both characterized by swollen nuclei. In all these experimental conditions, the molecular investigations revealed a caspase pathway involvement in inducing cell death. Differently, hypothermia showed a scant and initial chromatin margination, in the presence of a diffused autophagic component. In this case, in situ DNA fragmentation and caspase activation have not been detected. Myoblasts and myotubes appeared sensitive to physical agents, some of which, induced apoptotic cell death. Moreover, hypothermia exposure seemed to enhance autophagic response, thus representing a way to delay trauma-correlated muscle inflammation. This study permits to highlight skeletal muscle cell behavior in response to physical agents, by adding important information to muscle cell death knowledge. UVB radiation and hyperthermia, usually used in clinical therapy, have also adverse effects on skeletal muscle such as myonuclei loss and cell death, contributing to muscle mass decrease. Acidosis occurs physiologically in muscular fatigue, reducing not only the athlete performance, but causing muscle cell damage or death too. Finally, hypothermia, stimulating the autophagic response, could have a key role in muscle injury prevention.
-
-
-
Anticancer Advances of Matrine and Its Derivatives
Authors: Jianping Yong, Xiaoyuan Wu and Canzhong LuAs the second leading cause of death in the world, the total number caused by cancer in 2008 is 1.4 million. The great cancer incidence worldwide increases the search for new, safer and efficient anticancer agents (especially to find the new structures and more active anticancer drugs from the natural products) aiming the prevention or the cure of such illness. For a century, matrine (an alkaloid isolated from sophorae flavescens Ait.) has been widely studied in the field of cancer. This review briefly describes the progress of matrine, its derivatives and their anticancer activity.
-
-
-
The Physicochemical and Pharmacokinetic Relationships of Barbiturates – From the Past to the Future
Authors: Britton J. Ernst, Gerald F. Clark and Oliver GrundmannThe pharmacokinetics of different barbiturates have been studied extensively and the relationship of their duration of action to their clinical use has been known for decades. While these particular compounds have largely been displaced by agents with better therapeutic indices, barbiturate use remains relatively common and important in both inpatient and outpatient settings. Their mechanism of action is to bind to inhibitory GABAA receptors in the CNS causing and potentiating the opening of neuronal chloride ion channels thus having a sedative and CNS depressant effect. All psychotropic barbiturates feature di-substitution at the C5 position of the barbituric acid prototype. This is also the primary factor by which physiologically active barbiturates differ from one another and a major mediator of lipophilicity and duration of action. However, in this review, inconsistencies in certain commonly held notions about the structure-activity relationship of barbiturates were found. Commonly accepted chemistry for the structure-activity relationship of barbiturates holds that substitution of larger alkyl groups, alicyclic, and aromatic groups, as well as branching and unsaturation, lead in general to more lipophilic compounds with a shorter biological half-life. This rationale may have limitations in the case of barbiturates as proposed in this review. There is poor correlation between nine clinically used barbiturates’ octanol:water partition coefficients (log(P) values) and their respective half-lives. However, a strong correlation between pKa values and half-life was found. The current clinical relevance of these findings is discussed as well as their pertinence to future design and use of barbiturates.
-
-
-
Applications of Important Polysaccharides in Drug Delivery
Authors: Gangliang Huang, Xinya Mei, Feng Xiao, Xin Chen, Qilin Tang and Daquan PengPolysaccharide is a kind of biological material, which has good biocompatibility, non-toxicity, and non-immunogenicity. So, the polysaccharide has widely been applied in drug delivery system. The applications of chitosan, hyaluronic acid and dextran in drug delivery have been summarized herein.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)