Skip to content
2000
Volume 5, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

This review explains the importance of polysaccharide derivatives in removing heavy metals and dyes from contaminated materials. With rising urbanization and industrialization, the availability of heavy metals and dyes in the environment is increasing. Heavy metals can cause a variety of health problems in individuals and offer major environmental dangers. This paper uses diverse techniques to discuss the most recent improvements in metal ion and dye adsorption from wastewater. Various derivatives of natural polymers can be used as good adsorbents for removing heavy metals and dyes from industrial wastewater and treated water released into the environment, lowering the risk of human disease and environmental problems. According to literature reviews, removing heavy metal ions from industrial effluent benefits both people and the environment. Graft copolymers are the most effective heavy metal ion and dye removal adsorbents, and the majority of them obey the pseudo-first and pseudo-second-order models. Also, an overview of each grafted co-polymers of polysaccharides for the adsorption of metal ions and dyes is mentioned in this review.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271606666221206105936
2022-12-01
2024-12-25
Loading full text...

Full text loading...

References

  1. GreyD GarrickD BlackmoreD KelmanJ MullerM SadoffC Water security in one blue planet: Twenty-first century policy challenges for science.Philos Trans- Royal Soc, Math Phys Eng Sci201337120022012040610.1098/rsta.2012.040624080615
    [Google Scholar]
  2. ZiaZ. HartlandA. MucaloM.R. Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water.Int. J. Environ. Sci. Technol.202017104389440610.1007/s13762‑020‑02764‑3
    [Google Scholar]
  3. ChaiW.S. CheunJ.Y. KumarP.S. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application.J. Clean. Prod.202129612658910.1016/j.jclepro.2021.126589
    [Google Scholar]
  4. GunatilakeS.K. Methods of removing heavy metals from industrial wastewater.J. Multidiscip Eng Sci Studi20151114
    [Google Scholar]
  5. ZhouQ. YangN. LiY. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017.Glob. Ecol. Conserv.202022e0092510.1016/j.gecco.2020.e00925
    [Google Scholar]
  6. ChengS.Y. ShowP.L. LauB.F. ChangJ.S. LingT.C. New prospects for modified algae in heavy metal adsorption.Trends Biotechnol.201937111255126810.1016/j.tibtech.2019.04.00731174882
    [Google Scholar]
  7. ChakrabortyR. AsthanaA. SinghA.K. JainB. SusanA.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review.Int. J. Environ. Anal. Chem.2022102234237910.1080/03067319.2020.1722811
    [Google Scholar]
  8. QuX. AlvarezP.J.J. LiQ. Applications of nanotechnology in water and wastewater treatment.Water Res.201347123931394610.1016/j.watres.2012.09.05823571110
    [Google Scholar]
  9. LiuL. GaoZ.Y. SuX.P. ChenX. JiangL. YaoJ.M. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent.ACS Sustain. Chem. Eng.20153343244210.1021/sc500848m
    [Google Scholar]
  10. DuttaS. GuptaB. SrivastavaS.K. GuptaA.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review.Mater Adv20212144497453110.1039/D1MA00354B
    [Google Scholar]
  11. SongW. GaoB. XuX. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater.Bioresour. Technol.201621012313010.1016/j.biortech.2016.01.07826852273
    [Google Scholar]
  12. YaoT. GuoS. ZengC. WangC. ZhangL. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres.J. Hazard. Mater.2015292909710.1016/j.jhazmat.2015.03.01425797927
    [Google Scholar]
  13. OyewoO.A. ElemikeE.E. OnwudiweD.C. OnyangoM.S. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater.Int. J. Biol. Macromol.20201642477249610.1016/j.ijbiomac.2020.08.07432795574
    [Google Scholar]
  14. O’ConnellD.W. BirkinshawC. O’DwyerT.F. Heavy metal adsorbents prepared from the modification of cellulose: A review.Bioresour. Technol.200899156709672410.1016/j.biortech.2008.01.03618334292
    [Google Scholar]
  15. SitiN. MohdH. MdL.K. ShamsulI. Adsorption process of heavy metals by low-cost adsorbent: A review.World Appl. Sci. J.2013281115181530
    [Google Scholar]
  16. FuF. WangQ. Removal of heavy metal ions from wastewaters: A review.J. Environ. Manage.201192340741810.1016/j.jenvman.2010.11.01121138785
    [Google Scholar]
  17. BhatnagarA. MinochaA.K. Conventional and non-conventional adsorbents for removal of pollutants from water–A review.Indian J. Chem. Technol.2006133203217
    [Google Scholar]
  18. AhmadM. AhmedS. SwamiB.L. IkramS. Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent.Carbohydr. Polym.201513216417210.1016/j.carbpol.2015.06.03426256337
    [Google Scholar]
  19. ChakrabortyR. VermaR. AsthanaA. VidyaS.S. SinghA.K. Adsorption of hazardous chromium (VI) ions from aqueous solutions using modified sawdust: Kinetics, isotherm and thermodynamic modelling.Int. J. Environ. Anal. Chem.2021101791192810.1080/03067319.2019.1673743
    [Google Scholar]
  20. BilalM. ShahJ.A. AshfaqT. Waste biomass adsorbents for copper removal from industrial wastewater-A review.J. Hazard. Mater.2013263Pt 232233310.1016/j.jhazmat.2013.07.07123972667
    [Google Scholar]
  21. YagubM.T. SenT.K. AfrozeS. AngH.M. Dye and its removal from aqueous solution by adsorption: A review.Adv. Colloid Interface Sci.201420917218410.1016/j.cis.2014.04.00224780401
    [Google Scholar]
  22. DassanayakeR.S. AcharyaS. AbidiN. Recent advances in biopolymer-based dye removal technologies.Molecules20212615469710.3390/molecules2615469734361855
    [Google Scholar]
  23. GopalakrishnanA. KrishnanR. ThangavelS. VenugopalG. KimS.J. Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics.J. Ind. Eng. Chem.201530141910.1016/j.jiec.2015.06.005
    [Google Scholar]
  24. MubarakN.M. SahuJ.N. AbdullahE.C. JayakumarN.S. GanesanP. Microwave assisted multiwall carbon nanotubes enhancing Cd(II) adsorption capacity in aqueous media.J. Ind. Eng. Chem.201524243310.1016/j.jiec.2014.09.005
    [Google Scholar]
  25. MarianaM HPSAK MistarEM Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption.J. Water Process Eng.20214310222110.1016/j.jwpe.2021.102221
    [Google Scholar]
  26. MuluE. M’ArimiM.M. RamkatR.C. A review of recent developments in application of low cost natural materials in purification and upgrade of biogas.Renew. Sustain. Energy Rev.202114511108110.1016/j.rser.2021.111081
    [Google Scholar]
  27. AnsariM. AroujalianA. RaisiA. DabirB. FathizadehM. Preparation and characterization of nano-NaX zeolite by microwave assisted hydrothermal method.Adv. Powder Technol.201425272272710.1016/j.apt.2013.10.021
    [Google Scholar]
  28. SirajudheenP. PoovathumkuzhiN.C. VigneshwaranS. ChelaveettilB.M. MeenakshiS. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review.Carbohydr. Polym.202127311860410.1016/j.carbpol.2021.11860434561004
    [Google Scholar]
  29. SakaC ŞahinÖ KüçükMM Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters.Int. J. Environ. Sci. Technol.20129237939410.1007/s13762‑012‑0041‑y
    [Google Scholar]
  30. FoongC.Y. WirzalM.D.H. BustamM.A. A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal.J. Mol. Liq.202029711179310.1016/j.molliq.2019.111793
    [Google Scholar]
  31. HosseiniS.M. AlibakhshiH. JashniE. A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water.J. Hazard. Mater.202038112088410.1016/j.jhazmat.2019.12088431352152
    [Google Scholar]
  32. KaratutluA. BarhoumA. SapelkinA. Liquid-phase synthesis of nanoparticles and nanostructured materials. In:Emerging Applications of Nanoparticles and Architecture Nanostructures.Elsevier2018128
    [Google Scholar]
  33. WuH. WangW. HuangY. Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants.J. Hazard. Mater.201937159260210.1016/j.jhazmat.2019.03.04830878910
    [Google Scholar]
  34. GaoX. GuoC. HaoJ. ZhaoZ. LongH. LiM. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives.Int. J. Biol. Macromol.20201644423443410.1016/j.ijbiomac.2020.09.04632931827
    [Google Scholar]
  35. KalidhasanS. SanthanaK.K.A. RajeshV. RajeshN. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective.Coord. Chem. Rev.201631715716610.1016/j.ccr.2016.03.004
    [Google Scholar]
  36. ZubairM. UllahA. Biopolymers in environmental applications: Industrial wastewater treatment. In:Biopolymers and Their Industrial Applications.Elsevier2021331349
    [Google Scholar]
  37. RussoT. FucileP. GiacomettiR. SanninoF. Sustainable removal of contaminants by biopolymers: A novel approach for wastewater treatment.Curr State Fut Perspect202194719
    [Google Scholar]
  38. JolyN. GhematiD. AlioucheD. MartinP. Interaction of metal ions with mono-and polysaccharides for wastewater treatment: A review.Nat. Prod. Chem. Res.20208373
    [Google Scholar]
  39. ZhengY. MontyJ. LinhardtR.J. Polysaccharide-based nanocomposites and their applications.Carbohydr. Res.2015405233210.1016/j.carres.2014.07.01625498200
    [Google Scholar]
  40. GaoX. ZhangY. ZhaoY. Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate.Carbohydr. Polym.201715910811510.1016/j.carbpol.2016.11.09528038738
    [Google Scholar]
  41. GuilhermeM.R. AouadaF.A. FajardoA.R. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review.Eur. Polym. J.20157236538510.1016/j.eurpolymj.2015.04.017
    [Google Scholar]
  42. OroojiY. NezafatZ. NasrollahzadehM. KamaliT.A. Polysaccharide-based (nano)materials for Cr(VI) removal.Int. J. Biol. Macromol.202118895097310.1016/j.ijbiomac.2021.07.18234343587
    [Google Scholar]
  43. MoremediT. Katata-SeruL. SardarS. BandyopadhyayA. MakhadoE. HatoM.J. Application of synthetic monomers grafted xanthan gum for rhodamine B removal in aqueous solution.Int J Mater Eng2020145123131
    [Google Scholar]
  44. DraganE. DinuM. Progress in polysaccharide/zeolites and polysaccharide hydrogel composite sorbents and their applications in removal of heavy metal ions and dyes.Curr. Green Chem.20152434235310.2174/2213346102666150918190635
    [Google Scholar]
  45. VargheseA.G. PaulS.A. LathaM.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents.Environ. Chem. Lett.201917286787710.1007/s10311‑018‑00843‑z
    [Google Scholar]
  46. Abdel-RaoufM.S. Abdul-RaheimA.R.M. Removal of heavy metals from industrial waste water by biomass-based materials: A review.J Pollut Eff Cont201751801519
    [Google Scholar]
  47. BobadeV. EshtiagiN. Heavy metals removal from wastewater by adsorption process: A review.ACAM2015201517
    [Google Scholar]
  48. KumarV. PariharR.D. SharmaA. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses.Chemosphere201923612436410.1016/j.chemosphere.2019.12436431326755
    [Google Scholar]
  49. GuptaP. DiwanB. Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies.Biotechnol. Rep.201713587110.1016/j.btre.2016.12.00628352564
    [Google Scholar]
  50. De GisiS. LofranoG. GrassiM. NotarnicolaM. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review.Sustain Mater Technol20169104010.1016/j.susmat.2016.06.002
    [Google Scholar]
  51. ShallaA.H. YaseenZ. BhatM.A. RangreezT.A. MaswalM. Recent review for removal of metal ions by hydrogels.Sep. Sci. Technol.20195418910010.1080/01496395.2018.1503307
    [Google Scholar]
  52. XiaM. ChenZ. LiY. Removal of Hg(ii) in aqueous solutions through physical and chemical adsorption principles.RSC Adv2019936209412095310.1039/C9RA01924C35515526
    [Google Scholar]
  53. Pavan KumarG.V.S.R. MallaK.A. YerraB. Srinivasa RaoK. Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks.Appl. Water Sci.2019934410.1007/s13201‑019‑0924‑x
    [Google Scholar]
  54. XuY. ChenJ. ChenR. YuP. GuoS. WangX. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent.Water Res.201916014815710.1016/j.watres.2019.05.05531136848
    [Google Scholar]
  55. PyrzynskaK. Removal of cadmium from wastewaters with low-cost adsorbents.J. Environ. Chem. Eng.20197110279510.1016/j.jece.2018.11.040
    [Google Scholar]
  56. DemirbaşE Adsorption of cobalt (II) ions from aqueous solution onto activated carbon prepared from hazelnut shells.Adsorpt. Sci. Technol.2003211095196310.1260/02636170360744380
    [Google Scholar]
  57. AsereT.G. StevensC.V. Du LaingG. Use of (modified) natural adsorbents for arsenic remediation: A review.Sci. Total Environ.201967670672010.1016/j.scitotenv.2019.04.23731054415
    [Google Scholar]
  58. MveM.Z. MakaniT. EbaF. Removal of Mn (II) from aqueous solutions by activated carbons prepared from Coula edulis nut shell.J. Environ. Sci. Technol.20169222623710.3923/jest.2016.226.237
    [Google Scholar]
  59. MahmoudA.M. IbrahimF.A. ShabanS.A. YoussefN.A. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt.J Pet20152412735
    [Google Scholar]
  60. GuptaS. KumarA. Removal of nickel (II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder.Appl. Water Sci.2019949610.1007/s13201‑019‑0973‑1
    [Google Scholar]
  61. AhamadK.U. JawedM. Kinetics, equilibrium and breakthrough studies for Fe(II) removal by wooden charcoal: A low-cost adsorbent.Desalination20102511-313714510.1016/j.desal.2009.08.007
    [Google Scholar]
  62. MittalH. RayS.S. OkamotoM. Recent progress on the design and applications of polysaccharide‐based graft copolymer hydrogels as adsorbents for wastewater purification.Macromol. Mater. Eng.2016301549652210.1002/mame.201500399
    [Google Scholar]
  63. DassanayakeR.S. AcharyaS. AbidiN. Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications. In:Advanced Sorption Process Applications.IntechOpen2018124
    [Google Scholar]
  64. ElgarahyA.M. ElwakeelK.Z. MohammadS.H. ElshoubakyG.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process.Clean Engin Technol2021410020910.1016/j.clet.2021.100209
    [Google Scholar]
  65. KudaibergenovS. KoetzJ. NurajeN. Nanostructured hydrophobic polyampholytes: Self-assembly, stimuli-sensitivity, and application.Adv. Compos. Hybrid Mater.20181464968410.1007/s42114‑018‑0059‑9
    [Google Scholar]
  66. GhalyA.E. AnanthashankarR. AlhattabM.V.V.R. RamakrishnanV.V. Production, characterization and treatment of textile effluents: A critical review.J Chem Eng Process Technol201451119
    [Google Scholar]
  67. AlyA.A. El-BisiM.K. Grafting of polysaccharides: Recent advances. In:Biopolymer Grafting.Elsevier2018469519
    [Google Scholar]
  68. IshakS.A. MurshedM.F. Md AkilH. IsmailN. Md RasibS.Z. Al-GheethiA.A.S. The application of modified natural polymers in toxicant dye compounds wastewater: A review.Water2020127203210.3390/w12072032
    [Google Scholar]
  69. NayakA.K. BeraH. HasnainM.S. PalD. Synthesis and characterization of graft copolymers of plant polysaccharides. In:Biopolymer Grafting.Elsevier2018162
    [Google Scholar]
  70. AzizH. RahimN. RamliS. AlazaizaM. OmarF. HungY.T. Potential use of Dimocarpus longan seeds as a flocculant in landfill leachate treatment.Water20181011167210.3390/w10111672
    [Google Scholar]
  71. LeónO. Muñoz-BonillaA. SotoD. Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans.Carbohydr. Polym.201819437538310.1016/j.carbpol.2018.04.07229801852
    [Google Scholar]
  72. PlucinskiA. LyuZ. SchmidtB.V.K.J. Polysaccharide nanoparticles: From fabrication to applications.J. Mater. Chem. B Mater. Biol. Med.20219357030706210.1039/D1TB00628B33928990
    [Google Scholar]
  73. FaustR. Ionic polymerization.Appl Polym Sci20009991020
    [Google Scholar]
  74. MajiB. MaitiS. Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment.Carbohydr. Polym.202125111709510.1016/j.carbpol.2020.11709533142633
    [Google Scholar]
  75. MakhadoE. PandeyS. RamontjaJ. Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: An efficient adsorption of hexavalent chromium.Carbohydr. Polym.201922211498910.1016/j.carbpol.2019.11498931320081
    [Google Scholar]
  76. WuH. YangR. LiR. LongC. YangH. LiA. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology.Environ. Sci. Pollut. Res. Int.20152217130381304810.1007/s11356‑015‑4547‑y25921759
    [Google Scholar]
  77. LinQ. GaoM. ChangJ. MaH. Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes.Carbohydr. Polym.201615128329410.1016/j.carbpol.2016.05.06427474569
    [Google Scholar]
  78. LiuM. ChenQ. LuK. High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane.Separ. Purif. Tech.201717313514310.1016/j.seppur.2016.09.023
    [Google Scholar]
  79. DuS. WangL. XueN. PeiM. SuiW. GuoW. Polyethyleneimine modified bentonite for the adsorption of amino black 10B.J. Solid State Chem.201725215215710.1016/j.jssc.2017.04.034
    [Google Scholar]
  80. RocherV. SiaugueJ.M. CabuilV. BeeA. Removal of organic dyes by magnetic alginate beads.Water Res.2008424-51290129810.1016/j.watres.2007.09.02417980401
    [Google Scholar]
  81. YuB YangB LiG CongH Preparation of monodisperse crosslinked poly(glycidyl methacrylate)@Fe3O4@diazoresin magnetic microspheres with dye removal property.J. Mater. Sci.20185396471648110.1007/s10853‑018‑2018‑9
    [Google Scholar]
  82. ZengL. XiaoL. LongY. ShiX. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes.J. Colloid Interface Sci.201851627428310.1016/j.jcis.2018.01.07029408114
    [Google Scholar]
  83. KumarR. SharmaR.K. SinghA.P. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review.J. Mol. Liq.2017232629310.1016/j.molliq.2017.02.050
    [Google Scholar]
  84. Al-GhoutiM.A. Da’anaD.A. Guidelines for the use and interpretation of adsorption isotherm models: A review.J. Hazard. Mater.202039312238310.1016/j.jhazmat.2020.12238332369889
    [Google Scholar]
  85. BelhachemiM. AddounF. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons.Appl. Water Sci.201113-411111710.1007/s13201‑011‑0014‑1
    [Google Scholar]
  86. VadiM. MansoorabadA.O. MohammadiM. RostamiN. Investigation of Langmuir, Freundlich and Temkin adsorption isotherm of tramadol by multi-wall carbon nanotube.Asian J. Chem.201325105467546910.14233/ajchem.2013.14786
    [Google Scholar]
  87. RajV. LeeJ.H. ShimJ.J. LeeJ. Recent findings and future directions of grafted gum karaya polysaccharides and their various applications: A review.Carbohydr. Polym.202125811768710.1016/j.carbpol.2021.11768733593560
    [Google Scholar]
  88. LahaB. DasS. MaitiS. SenK.K. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance.Colloids Surf. B Biointerfaces201918026327210.1016/j.colsurfb.2019.04.06431059984
    [Google Scholar]
  89. DhuaM. MaitiS. SenK.K. Modified karaya gum colloidal particles for the management of systemic hypertension.Int. J. Biol. Macromol.20201641889189710.1016/j.ijbiomac.2020.08.01432768479
    [Google Scholar]
  90. SinghB. SharmaV. PalL. Formation of sterculia polysaccharide networks by gamma rays induced graft copolymerization for biomedical applications.Carbohydr. Polym.20118631371138010.1016/j.carbpol.2011.06.041
    [Google Scholar]
  91. BahulkarS.S. MunotN.M. SurwaseS.S. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties.Carbohydr. Polym.201513018319010.1016/j.carbpol.2015.04.06426076615
    [Google Scholar]
  92. BashirS. TeoY.Y. RameshS. RameshK. Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin.Polymer201814710812010.1016/j.polymer.2018.05.071
    [Google Scholar]
  93. RakhshaeeR. PanahandehM. Stabilization of a magnetic nano-adsorbent by extracted pectin to remove methylene blue from aqueous solution: A comparative studying between two kinds of cross-likened pectin.J. Hazard. Mater.20111891-215816610.1016/j.jhazmat.2011.02.01321398031
    [Google Scholar]
  94. JuniorO.M.C. BarrosM.A.S.D. PereiraN.C. Study on coagulation and flocculation for treating effluents of textile industry.Acta Sci. Technol.20133518388
    [Google Scholar]
  95. Elieh-Ali-KomiD. HamblinM.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials.Int. J. Adv. Res.20164341142727819009
    [Google Scholar]
  96. DasM. AdholeyaA. Potential uses of immobilized bacteria, fungi, algae, and their aggregates for treatment of organic and inorganic pollutants in wastewater.ACS Symp Ser2015120631933710.1021/bk‑2015‑1206.ch015
    [Google Scholar]
  97. JiaH. YuanQ. Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia.Cogent Environ. Sci.201621127508910.1080/23311843.2016.1275089
    [Google Scholar]
  98. RobinsonT. McMullanG. MarchantR. NigamP. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative.Bioresour. Technol.200177324725510.1016/S0960‑8524(00)00080‑811272011
    [Google Scholar]
  99. SenG. GhoshS. JhaU. PalS. RETRACTED: Hydrolyzed polyacrylamide grafted carboxymethylstarch (Hyd. CMS-g-PAM): An efficient flocculant for the treatment of textile industry wastewater.Chem. Eng. J.2011171249550110.1016/j.cej.2011.04.016
    [Google Scholar]
  100. LiuG. GuZ. HongY. ChengL. LiC. Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications.J. Control. Release20172529510710.1016/j.jconrel.2017.03.01628284833
    [Google Scholar]
  101. AshrafR. SofiH.S. MalikA. BeighM.A. HamidR. SheikhF.A. Recent trends in the fabrication of starch nanofibers: Electrospinning and non-electrospinning routes and their applications in biotechnology.Appl. Biochem. Biotechnol.20191871477410.1007/s12010‑018‑2797‑029882194
    [Google Scholar]
  102. SalehM. Abdel-NabyA. Al-GhamdiA. Al-ShahraniN. Graft copolymerization of Diallylamine onto starch for water treatment use characterization, removal of Cu (II) cations and antibacterial activity.J. Polym. Res.202128620210.1007/s10965‑021‑02558‑2
    [Google Scholar]
  103. El-ZahharA.A. IdrisA.M. Mercury(II) decontamination using a newly synthesized poly(acrylonitrile-acrylic acid)/ammonium molybdophosphate composite exchanger.Toxin Rev.20201113
    [Google Scholar]
  104. SunJ. SuX. LiuZ. Removal of mercury (Hg (II)) from seaweed extracts by electrodialysis and process optimization using response surface methodology.J. Ocean Univ. China202019113514210.1007/s11802‑020‑4069‑1
    [Google Scholar]
  105. Abdel-AalS.E. GadY.H. DessoukiA.M. The use of wood pulp and radiation-modified starch in wastewater treatment.J. Appl. Polym. Sci.20069952460246910.1002/app.22801
    [Google Scholar]
  106. IguraM. OkazakiM. Selective sorption of heavy metal on phosphorylated sago starch-extraction residue.J. Appl. Polym. Sci.2012124154955910.1002/app.34899
    [Google Scholar]
  107. FengK. WenG. Absorbed Pb 2+ and Cd 2+ Ions in Water by Cross-Linked Starch Xanthate.Int. J. Polym. Sci.201720171910.1155/2017/6470306
    [Google Scholar]
  108. ShahzamaniM. TaheriS. RoghanizadA. NaseriN. DinariM. Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea.Int. J. Biol. Macromol.202014718719310.1016/j.ijbiomac.2020.01.03831917218
    [Google Scholar]
  109. SaberiA. SadeghiM. AlipourE. Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II).J. Polym. Environ.202028390691710.1007/s10924‑020‑01651‑9
    [Google Scholar]
  110. ZhuW. YangZ. YasinA. LiuY. ZhangL. Preparation of poly(acrylic acid-acrylamide/starch) composite and its adsorption properties for mercury (II).Mater20211412327710.3390/ma1412327734198504
    [Google Scholar]
  111. González-LópezM.E. Laureano-AnzaldoC.M. Pérez-FonsecaA.A. ArellanoM. Robledo-OrtízJ.R. Chemically modified polysaccharides for hexavalent chromium adsorption.Separ. Purif. Rev.202150433336210.1080/15422119.2020.1783311
    [Google Scholar]
  112. KoricheY. DarderM. ArandaP. SemsariS. Ruiz-HitzkyE. Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal.Dalton Trans.20144327105121052010.1039/C4DT00330F24658793
    [Google Scholar]
  113. SinghP.N. TiwaryD. SinhaI. Starch-functionalized magnetite nanoparticles for hexavalent chromium removal from aqueous solutions.Desalination Water Treat.20165727126081261910.1080/19443994.2015.1061453
    [Google Scholar]
  114. ChenH. XieH. ZhouJ. Removal efficiency of hexavalent chromium from wastewater using starch-stabilized nanoscale zero-valent iron.Water Sci. Technol.20198061076108410.2166/wst.2019.35831799951
    [Google Scholar]
  115. JiB. ShuY. LiY. WangJ. ShiY. ChenW. Chromium (VI) removal from water using starch coated nanoscale zerovalent separation & purification reviews 29 iron particles supported on activated carbon.Chem. Eng. Commun.2019206670871510.1080/00986445.2018.1521390
    [Google Scholar]
  116. IbrahimB.M. FakhreN.A. Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater.Int. J. Biol. Macromol.2019123708010.1016/j.ijbiomac.2018.11.05830439424
    [Google Scholar]
  117. ZhouL. ZhouH. YangX. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment.Separ. Purif. Tech.2019210939910.1016/j.seppur.2018.07.089
    [Google Scholar]
  118. GunawardeneO.H.P. GunathilakeC.A. AmaraweeraA.P.S.M. Removal of Pb (II) ions from aqueous solution using modified starch.Journal of Composites Science2021524610.3390/jcs5020046
    [Google Scholar]
  119. Abdul-RaheimA.R.M. El-Saeed ShimaaM. FaragR.K. Abdel-Raouf ManarE. ReemK.F. Abdel-Raouf ManarE. Low cost biosorbents based on modified starch iron oxide nanocomposites for selective removal of some heavy metals from aqueous solutions.Adv. Mater. Lett.20167540240910.5185/amlett.2016.6061
    [Google Scholar]
  120. KolyaH. SasmalD. TripathyT. Novel biodegradable flocculating agents based on grafted starch family for the industrial effluent treatment.J. Polym. Environ.201725240841810.1007/s10924‑016‑0825‑0
    [Google Scholar]
  121. ZhouH ZhouL YangX Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: Through response surface methodology.Int J Biol Macromol2018118Pt B1431143710.1016/j.ijbiomac.2018.06.15529972768
    [Google Scholar]
  122. FaragAM SokkerHH ZayedEM Nour EldienFA Abd AlrahmanNM Removal of hazardous pollutants using bifunctional hydrogel obtained from modified starch by grafting copolymerization.Int J Biol Macromol2018120Pt B2188219910.1016/j.ijbiomac.2018.06.17130009903
    [Google Scholar]
  123. Abdel-HalimE.S. Al-DeyabS.S. Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions.React. Funct. Polym.2014751810.1016/j.reactfunctpolym.2013.12.003
    [Google Scholar]
  124. XuY. ZhangY. FengQ. The dynamic adsorption performance of the cross-linked starch/acrylonitrile graft copolymer for copper ions in water. Colloids Surf. A Physicochem.Eng2013430812
    [Google Scholar]
  125. Laureano-AnzaldoC.M. González-LópezM.E. Pérez-FonsecaA.A. Cruz-BarbaL.E. Robledo-OrtízJ.R. Plasma-enhanced modification of polysaccharides for wastewater treatment: A review.Carbohydr. Polym.202125211719510.1016/j.carbpol.2020.11719533183635
    [Google Scholar]
  126. OliveraS. MuralidharaH.B. VenkateshK. GunaV.K. GopalakrishnaK. KumarK.Y. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review.Carbohydr. Polym.201615360061810.1016/j.carbpol.2016.08.01727561533
    [Google Scholar]
  127. WangJ. ChenC. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides.Bioresour. Technol.201416012914110.1016/j.biortech.2013.12.11024461334
    [Google Scholar]
  128. SalehA.S. IbrahimA.G. AbdelhaiF. ElsharmaE.M. MetwallyE. SiyamT. Preparation of poly(chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu(II) and Ni(II) ions.Radiat. Phys. Chem.2017134333910.1016/j.radphyschem.2017.01.019
    [Google Scholar]
  129. LalitaS.A. SinghA.P. SharmaR.K. Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions.Int. J. Biol. Macromol.20179940942610.1016/j.ijbiomac.2017.02.09128263811
    [Google Scholar]
  130. GalhoumA.A. HassanK.M. DesoukyO.A. Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption.React. Funct. Polym.2017113132210.1016/j.reactfunctpolym.2017.02.001
    [Google Scholar]
  131. TranT.H. NguyenT.M. TranT.T. Preparation of poly (acrylic acid)-chitosan hydrogels by gamma irradiation for metal ions sorption. VINATOM-AR.2012286294Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/058/45058926.pdf
    [Google Scholar]
  132. LinY. HongY. SongQ. ZhangZ. GaoJ. TaoT. Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent.Colloid Polym. Sci.2017295462763510.1007/s00396‑017‑4042‑8
    [Google Scholar]
  133. LavanyaR GomathiT VijayalakshmiK SaranyaM SudhaPN AnilS Adsorptive removal of copper (II) and lead (II) using chitosan-g -maleic anhydride- g -methacrylic acid copolymer.Int J Biol Macromol2017104Pt B1495150810.1016/j.ijbiomac.2017.04.11628472686
    [Google Scholar]
  134. SugumaranD. KarimK.J.A. Removal of copper (II) ion using chitosan-graft-poly (methyl methacrylate) as adsorbent.Eproc Chem20172111
    [Google Scholar]
  135. XuB. ZhengH. WangY. Poly(2-acrylamido-2-methylpropane sulfonic acid) grafted magnetic chitosan microspheres: Preparation, characterization and dye adsorption.Int. J. Biol. Macromol.201811264865510.1016/j.ijbiomac.2018.02.02429421492
    [Google Scholar]
  136. NaseeruteenF HamidNSA SuahFBM NgahWSW MehamodFS Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads.Int J Biol Macromol2018107Pt A1270127710.1016/j.ijbiomac.2017.09.11128965968
    [Google Scholar]
  137. KarthikR. MeenakshiS. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan.Chem. Eng. J.201526326316817710.1016/j.cej.2014.11.015
    [Google Scholar]
  138. LalhmunsiamaLalchhingpuii NautiyalBP Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic(V).J. Colloid Interface Sci.201646720321210.1016/j.jcis.2016.01.01926802278
    [Google Scholar]
  139. KyzasG.Z. SiafakaP.I. PavlidouE.G. ChrissafisK.J. BikiarisD.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures.Chem. Eng. J.201525943844810.1016/j.cej.2014.08.019
    [Google Scholar]
  140. HuangL. YuanS. LvL. TanG. LiangB. PehkonenS.O. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.J. Colloid Interface Sci.201340517118210.1016/j.jcis.2013.05.00723755995
    [Google Scholar]
  141. MalekiA. PajootanE. HayatiB. Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies.J. Taiwan Inst. Chem. Eng.20155112713410.1016/j.jtice.2015.01.004
    [Google Scholar]
  142. Santhana Krishna KumarA. Uday KumarC. RajeshV. RajeshN. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption.Int. J. Biol. Macromol.20146613514310.1016/j.ijbiomac.2014.02.00724530325
    [Google Scholar]
  143. XuC. WangJ. YangT. ChenX. LiuX. DingX. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology.Carbohydr. Polym.2015121798510.1016/j.carbpol.2014.12.02425659674
    [Google Scholar]
  144. SutirmanZ.A. SanagiM.M. Abd KarimK.J. NaimA.A. IbrahimW.A.W. Chitosan-based adsorbents for the removal of metal ions from aqueous solutions.Malays. J. Anal. Sci.2018225839850
    [Google Scholar]
  145. BarsbayM. GüvenO. Surface modification of cellulose via conventional and controlled radiation-induced grafting.Radiat. Phys. Chem.20191601810.1016/j.radphyschem.2019.03.002
    [Google Scholar]
  146. EssawyH.A. MohamedM.F. AmmarN.S. IbrahimH.S. Potassium fulvate-functionalized graft copolymer of polyacrylic acid from cellulose as a promising selective chelating sorbent.RSC Advances2017733201782018510.1039/C7RA02646C
    [Google Scholar]
  147. JilalI. El BarkanyS. BahariZ. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal.Carbohydr. Polym.201818015616710.1016/j.carbpol.2017.10.01229103491
    [Google Scholar]
  148. DaiL. SiC.L. Cellulose-graft-poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery.Mater. Lett.201720721321610.1016/j.matlet.2017.07.090
    [Google Scholar]
  149. SeabraA.B. BernardesJ.S. FávaroW.J. PaulaA.J. DuránN. Cellulose nanocrystals as carriers in medicine and their toxicities: A review.Carbohydr. Polym.201818151452710.1016/j.carbpol.2017.12.01429254002
    [Google Scholar]
  150. KumarR. SharmaR.K. SinghA.P. Grafted cellulose: A bio-based polymer for durable applications.Polym. Bull.20187552213224210.1007/s00289‑017‑2136‑6
    [Google Scholar]
  151. MisraN. GoelN.K. ShelkarS.A. VarshneyL. KumarV. Catalase immobilized-radiation grafted functional cellulose matrix: A novel biocatalytic system.J. Mol. Catal., B Enzym.2016133S172S17810.1016/j.molcatb.2017.01.001
    [Google Scholar]
  152. CoradiM. ZanettiM. ValérioA. Production of antimicrobial textiles by cotton fabric functionalization and pectinolytic enzyme immobilization.Mater. Chem. Phys.2018208283410.1016/j.matchemphys.2018.01.019
    [Google Scholar]
  153. SharmaR.K. KumarR. Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications.Int. J. Biol. Macromol.201913470472110.1016/j.ijbiomac.2019.05.05931082422
    [Google Scholar]
  154. OyewoO.A. OnyangoM.S. WolkersdorferC. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water.J. Environ. Radioact.201616436937610.1016/j.jenvrad.2016.08.01427569449
    [Google Scholar]
  155. JiangF. DinhD.M. HsiehY.L. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.Carbohydr. Polym.201717328629410.1016/j.carbpol.2017.05.09728732868
    [Google Scholar]
  156. RuanC.Q. StrømmeM. LindhJ. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.Carbohydr. Polym.201818120020710.1016/j.carbpol.2017.10.07229253964
    [Google Scholar]
  157. MaatarW. BoufiS. Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes.Cellulose20172421001101510.1007/s10570‑016‑1162‑0
    [Google Scholar]
  158. SharmaR.K. KumarR. SinghA.P. Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers.Separ. Purif. Tech.201920968469710.1016/j.seppur.2018.09.011
    [Google Scholar]
  159. EssawyH.A. MohamedM.F. AmmarN.S. IbrahimH.S. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.Int. J. Biol. Macromol.201710326126710.1016/j.ijbiomac.2017.05.05228526344
    [Google Scholar]
  160. OzbasZ. SahinC.P. EsenE. GurdagG. KasgozH. The effect of extractant on the removal of heavy metal ions by thermoresponsive cellulose graft copolymer.J. Environ. Chem. Eng.2016421948195410.1016/j.jece.2016.03.006
    [Google Scholar]
  161. MaatarW. BoufiS. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent.Carbohydr. Polym.201512619920710.1016/j.carbpol.2015.03.01525933540
    [Google Scholar]
  162. WangY. ZhaoL. PengH. WuJ. LiuZ. GuoX. Removal of anionic dyes from aqueous solutions by cellulose-based adsorbents: Equilibrium, kinetics, and thermodynamics.J. Chem. Eng. Data20166193266327610.1021/acs.jced.6b00340
    [Google Scholar]
  163. ZhouY. ZhangM. WangX. Removal of crystal violet by a novel cellulose-based adsorbent: Comparison with native cellulose.Ind. Eng. Chem. Res.201453135498550610.1021/ie404135y
    [Google Scholar]
  164. QiaoH. ZhouY. YuF. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.Chemosphere201514129730310.1016/j.chemosphere.2015.07.07826298027
    [Google Scholar]
  165. ZhouY. MinY. QiaoH. HuangQ. WangE. MaT. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.Int. J. Biol. Macromol.20157427127710.1016/j.ijbiomac.2014.12.02025542168
    [Google Scholar]
  166. GuleriaA. KumariG. LimaE.C. Cellulose-g-poly-(acrylamide-coacrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters.Carbohydr. Polym.202022811539610.1016/j.carbpol.2019.11539631635743
    [Google Scholar]
  167. KumarR. SharmaR.K. SinghA.P. Removal of organic dyes and metal ions by cross-linked graft copolymers of cellulose obtained from the agricultural residue.J. Environ. Chem. Eng.2018656037604810.1016/j.jece.2018.09.021
    [Google Scholar]
  168. El-NaggarM.E. RadwanE.K. El-WakeelS.T. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal.Int. J. Biol. Macromol.201811324825810.1016/j.ijbiomac.2018.02.12629476854
    [Google Scholar]
  169. Abdel-HalimE.S. Al-HoqbaniA.A. Utilization of poly (acrylic acid)/cellulose graft copolymer for dye and heavy metal removal.BioResources20151023112313010.15376/biores.10.2.3112‑3130
    [Google Scholar]
  170. PetriD.F. Xanthan gum: A versatile biopolymer for biomedical and technological applications.J. Appl. Polym. Sci.20151322311310.1002/app.42035
    [Google Scholar]
  171. LopesB.D.M. LessaV.L. SilvaB.M. La CerdaL.G. Xanthan gum: Properties, production conditions, quality and economic perspective.J. Food Nutr. Res.2015543185194
    [Google Scholar]
  172. Nur HazirahM.A.S.P. IsaM.I.N. SarbonN.M. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends.Food Packag. Shelf Life20169556310.1016/j.fpsl.2016.05.008
    [Google Scholar]
  173. MakhadoE. PandeyS. KangM. Fosso-KankeE. Microwave assisted synthesis of xanthan gum-cl-Dimethyl acrylamide hydrogel based silica hydrogel as adsorbent for cadmium (II) removal.Int'l Conference on Science, Engineering, Technology & Waste Management (SETWM-19)Nov 18-19, 2019Johannesburg (S.A.)pp. 16
    [Google Scholar]
  174. Abu ElellaM.H. SabaaM.W. ElHafeezE.A. MohamedR.R. Crystal violet dye removal using crosslinked grafted xanthan gum.Int. J. Biol. Macromol.20191371086110110.1016/j.ijbiomac.2019.06.24331279059
    [Google Scholar]
  175. SharmaG. KumarA. GhfarA.A. García-PeñasA. NaushadM. StadlerF.J. Fabrication and characterization of xanthan Gum-clpoly(acrylamide-co-alginic acid) hydrogel for adsorption of cadmium ions from aqueous medium.Gels2021812310.3390/gels801002335049556
    [Google Scholar]
  176. PalA. MajumderK. BandyopadhyayA. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.Carbohydr. Polym.2016152415010.1016/j.carbpol.2016.06.06427516248
    [Google Scholar]
  177. ZhangM. HuangY. PanW. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing.Carbohydr. Polym.202125311721310.1016/j.carbpol.2020.11721333278978
    [Google Scholar]
  178. LiuY. HuL. TanB. Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent.Int. J. Biol. Macromol.201914173874610.1016/j.ijbiomac.2019.09.04431499105
    [Google Scholar]
  179. QiX. TongX. PanW. ZengQ. YouS. ShenJ. Recent advances in polysaccharide-based adsorbents for wastewater treatment.J. Clean. Prod.202131512822110.1016/j.jclepro.2021.128221
    [Google Scholar]
  180. Amini-FazlM.S. AhmariA. Dextran-graft-poly(hydroxyethyl methacrylate) biosorbents for removal of dyes and metal cations.Mater. Res. Express20196505532410.1088/2053‑1591/ab0072
    [Google Scholar]
  181. ZhaoC. ZhengH. SunY. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles.Sci. Total Environ.2018640-64124325410.1016/j.scitotenv.2018.05.28629859440
    [Google Scholar]
  182. ZengT. HuX. WuH. YangJ. ZhangH. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan.Int. J. Biol. Macromol.201913176076810.1016/j.ijbiomac.2019.03.11630902714
    [Google Scholar]
  183. YarandpourM.R. RashidiA. KhajaviR. EslahiN. YazdanshenasM.E. Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions.J. Taiwan Inst. Chem. Eng.20189356658110.1016/j.jtice.2018.09.002
    [Google Scholar]
  184. DasM. YadavM. ShuklaF. AnsariS. JadejaR.N. ThakoreS. Facile design of a dextran derived polyurethane hydrogel and metallopolymer: A sustainable approach for elimination of organic dyes and reduction of nitrophenols.New J. Chem.20204444191221913410.1039/D0NJ01871F
    [Google Scholar]
  185. StanciuM.C. NichiforM. Influence of dextran hydrogel characteristics on adsorption capacity for anionic dyes.Carbohydr. Polym.2018199758310.1016/j.carbpol.2018.07.01130143176
    [Google Scholar]
  186. NadtokaO. VirychP. NadtokaS. KutsevolN. Synthesis and performance of hybrid hydrogels loaded with methylene blue and its use for antimicrobial photodynamic inactivation.J. Chem.2020202011010.1155/2020/6679960
    [Google Scholar]
  187. ShanmugapriyaA. RamyaR. RamasubramaniamS. SudhaP.N. Studies on removal of Cr (VI) and Cu (II) ions using chitosan grafted polyacrylonitrile.Arch. Appl. Sci. Res.201133424435
    [Google Scholar]
  188. AhmadM. AhmedS. SwamiB.L. IkramS. Adsorption of heavy metal ions: Role of chitosan and cellulose for water treatment.Langmuir201579109155
    [Google Scholar]
  189. PandeyS. MishraS.B. Microwave synthesized xanthan gum-gpoly(ethylacrylate): An efficient Pb2+ ion binder.Carbohydr. Polym.201290137037910.1016/j.carbpol.2012.05.05324751054
    [Google Scholar]
  190. KaurA. SinghD. SudD. A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions.J. Polym. Res.2020271029710.1007/s10965‑020‑02271‑6
    [Google Scholar]
  191. MenJ. ShiH. DongC. Preparation of poly(sodium 4-styrene sulfonate) grafted magnetic chitosan microspheres for adsorption of cationic dyes.Int. J. Biol. Macromol.202118181082310.1016/j.ijbiomac.2021.04.07933865891
    [Google Scholar]
  192. ZhangW. XuF. WangY. LuoM. WangD. Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+.Chem. Eng. J.201425531632610.1016/j.cej.2014.06.024
    [Google Scholar]
  193. PanjaS. HansonS. WangC. EDTA-inspired polydentate hydrogels with exceptionally high heavy metal adsorption capacity as reusable adsorbents for wastewater purification.ACS Appl. Mater. Interfaces20201222252762528510.1021/acsami.0c0368932383581
    [Google Scholar]
  194. GuanX. ZhangB. LiD. HeM. HanQ. ChangJ. Remediation and resource utilization of chromium(III)-containing tannery effluent based on chitosan-sodium alginate hydrogel.Carbohydr. Polym.202228411917910.1016/j.carbpol.2022.11917935287899
    [Google Scholar]
  195. CoimbraR.N. OteroM. Current trends and perspectives in the application of polymeric materials to wastewater treatment.Polymers2021137108910.3390/polym1307108933808111
    [Google Scholar]
/content/journals/caps/10.2174/2452271606666221206105936
Loading
/content/journals/caps/10.2174/2452271606666221206105936
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test