Skip to content
2000
Volume 4, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

The demand for novel biomaterials has exponentially increased in the last years as well as the search for new technologies able to produce more efficient products in both drug delivery systems and regenerative medicine.

The technique that can pretty well encompass the needs for novel and high-end materials with a relatively low-cost and easy operation is the electrospinning of polymer solutions.

Electrospinning usually produces ultrathin fibers that can be applied in a myriad of biomedical devices, including sustained delivery systems for drugs, proteins, biomolecules, hormones, ., and in a broad spectrum of applications, ranging from transdermal patches to cancer-related drugs.

Electrospun fibers can be produced to mimic certain tissues of the human body, being an option to create new scaffolds for implants with several advantages.

In this review, we aimed to elaborate the use of electrospun fibers in the field of biomedical devices, more specifically the electrospun nanofibers applications for the production of drug delivery systems and scaffolds for tissue regeneration.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666211122122557
2021-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. PersanoL. CamposeoA. TekmenC. PisignanoD. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromol. Mater. Eng.2013298550452010.1002/mame.201200290
    [Google Scholar]
  2. JhaA. KumarA. Biobased technologies for the efficient extraction of biopolymers from waste biomass.Bioprocess Biosyst. Eng.201942121893190110.1007/s00449‑019‑02199‑231542821
    [Google Scholar]
  3. ChengX. ZhouW. LiP. RenZ. WuD. LuoC. TangX. WangJ. LiangH. Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment.Chemosphere201923454555710.1016/j.chemosphere.2019.06.09031229716
    [Google Scholar]
  4. KhalilA.M. SchäferA.I. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water.J. Membr. Sci.202161811822810.1016/j.memsci.2020.118228
    [Google Scholar]
  5. LiangF-C. KuoC-C. ChenB-Y. ChoC.J. HungC.C. ChenW.C. BorsaliR. RGB-switchable porous electrospun nanofiber chemoprobe-filter prepared from multifunctional copolymers for versatile sensing of pH and heavy metals.ACS Appl. Mater. Interfaces2017919163811639610.1021/acsami.7b0097028441012
    [Google Scholar]
  6. ObaidM. BarakatN.A.M. FadaliO.A. MotlakM. AlmajidA.A. KhalilK.A. Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats.Chem. Eng. J.201525944945610.1016/j.cej.2014.07.095
    [Google Scholar]
  7. PatelS. HotaG. Synthesis of novel surface functionalized electrospun PAN nanofibers matrix for efficient adsorption of anionic CR dye from water.J. Environ. Chem. Eng.2018645301531010.1016/j.jece.2018.08.013
    [Google Scholar]
  8. ZhangQ. WangH. FanX. LvF. ChenS. QuanX. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment.Surf. Coat. Tech.2016298455210.1016/j.surfcoat.2016.04.054
    [Google Scholar]
  9. CleetonC. KeirouzA. ChenX. RadacsiN. Electrospun nanofibers for drug delivery and biosensing.ACS Biomater. Sci. Eng.2019594183420510.1021/acsbiomaterials.9b0085333417777
    [Google Scholar]
  10. HorneJ. McLoughlinL. BridgersB. WujcikE.K. Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring.Sense and Actuators Reports20202110000510.1016/j.snr.2020.100005
    [Google Scholar]
  11. KimS.J. ChoiS.J. JangJ.S. KimN.H. HakimM. TullerH.L. KimI.D. Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath.ACS Nano20161065891589910.1021/acsnano.6b0119627166639
    [Google Scholar]
  12. PandeyI. BairagiP.K. VermaN. Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: An electrochemical sensor for creatinine.Sens. Actuators B Chem.201827756257010.1016/j.snb.2018.09.036
    [Google Scholar]
  13. XueW. ZhangY. DuanJ. A highly sensitive fluorescent sensor based on small molecules doped in electrospun nanofibers: Detection of explosives as well as color modulation.J. Mater. Chem. C Mater. Opt. Electron. Devices20153318193819910.1039/C5TC00819K
    [Google Scholar]
  14. ZhangH. XiaJ. PangX. ZhaoM. WangB. YangL. WanH. WuJ. FuS. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering.Mater. Sci. Eng. C20177353754310.1016/j.msec.2016.12.11628183642
    [Google Scholar]
  15. AadilK.R. NathaniA. SharmaC.S. LenkaN. GuptaP. Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications.Mater. Technol.201833850751210.1080/10667857.2018.1473234
    [Google Scholar]
  16. RahmaniM. Faridi-MajidiR. KhaniM-M. MashaghiA. NoorizadehF. GhanbariH. Cross-linked PMS/PLA nanofibers with tunable mechanical properties and degradation rate for biomedical applications.Eur. Polym. J.202013010963310.1016/j.eurpolymj.2020.109633
    [Google Scholar]
  17. RamanathanG. SingaraveluS. RajaM.D. Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications.RSC Advances20166107914792210.1039/C5RA19529B
    [Google Scholar]
  18. da SilvaT.N. GonçalvesR.P. RochaC.L. ArchanjoB.S. BarbozaC.A.G. PierreM.B.R. ReynaudF. de Souza PiccianiP.H. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration.Mater. Sci. Eng. C20199760261210.1016/j.msec.2018.12.02030678947
    [Google Scholar]
  19. TianL. PrabhakaranM.P. HuJ. ChenM. BesenbacherF. RamakrishnaS. Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells.RSC Advances2015562498384984810.1039/C5RA05773F
    [Google Scholar]
  20. YangF. MiaoY. WangY. ZhangL-M. LinX. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells.Materials (Basel)20171010116810.3390/ma1010116829023390
    [Google Scholar]
  21. BasarA.O. CastroS. Torres-GinerS. LagaronJ.M. Turkoglu SasmazelH. Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug.Mater. Sci. Eng. C20178145946810.1016/j.msec.2017.08.02528887998
    [Google Scholar]
  22. LiJ.J. YangY.Y. YuD.G. DuQ. YangX.L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers.Eur. J. Pharm. Sci.201812219520410.1016/j.ejps.2018.07.00230008429
    [Google Scholar]
  23. QinZ.Y. JiaX-W. LiuQ. KongB.H. WangH. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers.Int. J. Biol. Macromol.201913722423110.1016/j.ijbiomac.2019.06.22431260763
    [Google Scholar]
  24. SedghiR. ShaabaniA. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms.Polymer (Guildf.)201610115115710.1016/j.polymer.2016.08.060
    [Google Scholar]
  25. YıldızA. KaraA.A. AcartürkF. Peptide-protein based nanofibers in pharmaceutical and biomedical applications.Int. J. Biol. Macromol.20201481084109710.1016/j.ijbiomac.2019.12.27531917213
    [Google Scholar]
  26. SzabóE. ZáhonyiP. BrecskaD. GalataD.L. MészárosL.A. MadarászL. CsorbaK. VassP. HirschE. Szafraniec-SzczęsnyJ. CsontosI. FarkasA. Van denMooterG. NagyZ.K. MarosiG. Comparison of amorphous solid dispersions of spironolactone prepared by spray drying and electrospinning: the influence of the preparation method on the dissolution properties.Mol. Pharm.202118131732710.1021/acs.molpharmaceut.0c0096533301326
    [Google Scholar]
  27. BarhoumA. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications.Appl. Mater. Today20191713510.1016/j.apmt.2019.06.015
    [Google Scholar]
  28. ArmedyaT.P. DzikriM.F. SaktiS.C.W. Kinetical release study of copper ferrite nanoparticle incorporated on PCL/collagen nanofiber for naproxen delivery.Bionanoscience20199227428410.1007/s12668‑019‑00618‑y
    [Google Scholar]
  29. FahmiM.Z. PrasetyaR.A. DzikriM.F. MnFe2O4 nanoparticles/cellulose acetate composite nanofiber for controllable release of naproxen.Mater. Chem. Phys.202025012305510.1016/j.matchemphys.2020.123055
    [Google Scholar]
  30. YooH.S. KimT.G. ParkT.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery.Adv. Drug Deliv. Rev.200961121033104210.1016/j.addr.2009.07.00719643152
    [Google Scholar]
  31. KimB. ParkH. LeeS-H. SigmundW.M. Poly(acrylic acid) nanofibers by electrospinning.Mater. Lett.200559782983210.1016/j.matlet.2004.11.032
    [Google Scholar]
  32. QasimS.B. ZafarM.S. NajeebS. KhurshidZ. ShahA.H. HusainS. RehmanI.U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine.Int. J. Mol. Sci.201819240710.3390/ijms1902040729385727
    [Google Scholar]
  33. BhardwajN. KunduS.C. Electrospinning: a fascinating fiber fabrication technique.Biotechnol. Adv.201028332534710.1016/j.biotechadv.2010.01.00420100560
    [Google Scholar]
  34. BraghirolliD.I. SteffensD. PrankeP. Electrospinning for regenerative medicine: a review of the main topics.Drug Discov. Today201419674375310.1016/j.drudis.2014.03.02424704459
    [Google Scholar]
  35. SuiT. YingS. TitovK. DolbnyaI.P. TanJ-C. KorsunskyA.M. Operando observation of the taylor cone during electrospinning by multiple synchrotron x-ray techniques.Mater. Des.201611093393410.1016/j.matdes.2016.08.097
    [Google Scholar]
  36. WindingC.C. HiattG.D. Polymeric Materials. New York McGraw-Hill1961
    [Google Scholar]
  37. JunZ HouH WendorffJH GreinerA Poly(vinyl alcohol) nanofibres by electrospinning: influence of molecular weight on fibre shape.e-Polymers2005513710.1515/epoly.2005.5.1.387
    [Google Scholar]
  38. TanS.H. InaiR. KotakiM. RamakrishnaS. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process.Polymer (Guildf.)200546166128613410.1016/j.polymer.2005.05.068
    [Google Scholar]
  39. LuoC.J. StrideE. EdirisingheM. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions.Macromolecules201245114669468010.1021/ma300656u
    [Google Scholar]
  40. YangQ. LiZ. HongY. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning.J. Polym. Sci., B, Polym. Phys.200442203721372610.1002/polb.20222
    [Google Scholar]
  41. HaghiA.K. AkbariM. Trends in electrospinning of natural nanofibers.Phys. Status Solidi., A Appl. Mater. Sci.200720461830183410.1002/pssa.200675301
    [Google Scholar]
  42. CuiW. LiX. ZhouS. WengJ. Investigation on process parameters of electrospinning system through orthogonal experimental design.J. Appl. Polym. Sci.200710353105311210.1002/app.25464
    [Google Scholar]
  43. JacobsV. AnandjiwalaR.D. MaazaM. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers.J. Appl. Polym. Sci.201011553130313610.1002/app.31396
    [Google Scholar]
  44. HeJ-H. WanY-Q. YuJ-Y. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers.Fibers Polym.20089214014210.1007/s12221‑008‑0023‑3
    [Google Scholar]
  45. DeitzelJ.M. KleinmeyerJ. HarrisD. Beck TanN.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles.Polymer (Guildf.)200142126127210.1016/S0032‑3861(00)00250‑0
    [Google Scholar]
  46. AmarieiN. ManeaL.R. BerteaA.P. BerteaA. PopaA. The influence of polymer solution on the properties of electrospun 3d nanostructures.IOP Conference Series: Materials Science and Engineering201720901209210.1088/1757‑899X/209/1/012092
    [Google Scholar]
  47. FongH. ChunI. RenekerD.H. Beaded nanofibers formed during electrospinning.Polymer (Guildf.)199940164585459210.1016/S0032‑3861(99)00068‑3
    [Google Scholar]
  48. SalehHudinH.S. MohamadE.N. MahadiW.N.L. Muhammad AfifiA. Multiple-jet electrospinning methods for nanofiber processing: A review.Mater. Manuf. Process.201833547949810.1080/10426914.2017.1388523
    [Google Scholar]
  49. AngammanaC.J. JayaramS.H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology.IEEE Trans. Ind. Appl.20114731109111710.1109/TIA.2011.2127431
    [Google Scholar]
  50. ZongX. KimK. FangD. RanS. HsiaoB.S. ChuB. Structure and process relationship of electrospun bioabsorbable nanofiber membranes.Polymer (Guildf.)200243164403441210.1016/S0032‑3861(02)00275‑6
    [Google Scholar]
  51. ChoiJ.S. LeeS.W. JeongL. BaeS.H. MinB.C. YoukJ.H. ParkW.H. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate- co-3-hydroxyvalerate).Int. J. Biol. Macromol.200434424925610.1016/j.ijbiomac.2004.06.00115374681
    [Google Scholar]
  52. HuanS. LiuG. HanG. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers.Materials (Basel)2015852718273410.3390/ma8052718
    [Google Scholar]
  53. ZhangC. YuanX. WuL. HanY. ShengJ. Study on morphology of electrospun poly(vinyl alcohol) mats.Eur. Polym. J.200541342343210.1016/j.eurpolymj.2004.10.027
    [Google Scholar]
  54. ThompsonC.J. ChaseG.G. YarinA.L. RenekerD.H. effects of parameters on nanofiber diameter determined from electrospinning model.Polymer (Guildf.)200748236913692210.1016/j.polymer.2007.09.017
    [Google Scholar]
  55. LiZ. WangC. One-Dimensional Nanostructures Berlin Springer Briefs in Materials; Springer201310.1007/978‑3‑642‑36427‑3
    [Google Scholar]
  56. FallahiD. RafizadehM. MohammadiN. VahidiB. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions: effect of voltage on jet current and flow rate in electrospinning of PAN.Polym. Int.200857121363136810.1002/pi.2482
    [Google Scholar]
  57. BajiA. MaiY-W. WongS-C. AbtahiM. ChenP. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties.Compos. Sci. Technol.201070570371810.1016/j.compscitech.2010.01.010
    [Google Scholar]
  58. SaadatmandM.M. YazdanshenasM.E. KhajaviR. MighaniF. ToliyatT. Templated roughness on the surface of polyamide nanofibrous mat by mesh electrospinning.Orient. J. Chem.20173352356236210.13005/ojc/330527
    [Google Scholar]
  59. ChowdhuryM. StyliosG. Effect of Experimental parameters on the morphology of electrospun nylon 6 fibres.IJBAS201010069
    [Google Scholar]
  60. MacossayJ. MarruffoA. RinconR. EubanksT. KuangA. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate).Polym. Adv. Technol.200718318018310.1002/pat.844
    [Google Scholar]
  61. CasperC.L. StephensJ.S. TassiN.G. ChaseD.B. RaboltJ.F. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process.Macromolecules200437257357810.1021/ma0351975
    [Google Scholar]
  62. PelipenkoJ. KristlJ. JankovićB. BaumgartnerS. KocbekP. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers.Int. J. Pharm.2013456112513410.1016/j.ijpharm.2013.07.07823939535
    [Google Scholar]
  63. IbrahimH.M. KlingnerA. A review on electrospun polymeric nanofibers: production parameters and potential applications.Polym. Test.20209010664710.1016/j.polymertesting.2020.106647
    [Google Scholar]
  64. MedeirosE.S. GlennG.M. KlamczynskiA.P. OrtsW.J. MattosoL.H.C. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions.J. Appl. Polym. Sci.200911342322233010.1002/app.30275
    [Google Scholar]
  65. DaristotleJ.L. BehrensA.M. SandlerA.D. KofinasP. a review of the fundamental principles and applications of solution blow spinning.ACS Appl. Mater. Interfaces2016851349513496310.1021/acsami.6b1299427966857
    [Google Scholar]
  66. HuangY. SongJ. YangC. LongY. WuH. Scalable manufacturing and applications of nanofibers.Mater. Today2019289811310.1016/j.mattod.2019.04.018
    [Google Scholar]
  67. Kenry; Lim, C. T. Nanofiber technology: current status and emerging developments.Prog. Polym. Sci.20177011710.1016/j.progpolymsci.2017.03.002
    [Google Scholar]
  68. SaleemH. TrabzonL. KilicA. ZaidiS.J. Recent advances in nanofibrous membranes: production and applications in water treatment and desalination.Desalination202047811417810.1016/j.desal.2019.114178
    [Google Scholar]
  69. Manzanares PalenzuelaC.L. PumeraM. (Bio)analytical chemistry enabled by 3d printing: sensors and biosensors.Trends Analyt. Chem.201810311011810.1016/j.trac.2018.03.016
    [Google Scholar]
  70. TijingL.D. DizonJ.R.C. IbrahimI. NisayA.R.N. ShonH.K. AdvinculaR.C. 3D printing for membrane separation, desalination and water treatment.Appl. Mater. Today20201810048610.1016/j.apmt.2019.100486
    [Google Scholar]
  71. WangX. JiangM. ZhouZ. GouJ. HuiD.III Printing of polymer matrix composites: A review and prospective.Compos., Part B Eng.201711044245810.1016/j.compositesb.2016.11.034
    [Google Scholar]
  72. KriegelC. ArecchiA. KitK. McClementsD.J. WeissJ. Fabrication, functionalization, and application of electrospun biopolymer nanofibers.Crit. Rev. Food Sci. Nutr.200848877579710.1080/1040839080224132518756399
    [Google Scholar]
  73. TrovattiE. FreireC.S.R. PintoP.C. AlmeidaI.F. CostaP. SilvestreA.J. NetoC.P. RosadoC. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies.Int. J. Pharm.20124351838710.1016/j.ijpharm.2012.01.00222266531
    [Google Scholar]
  74. GeorgeA. SanjayM.R. SrisukR. ParameswaranpillaiJ. SiengchinS. A comprehensive review on chemical properties and applications of biopolymers and their composites.Int. J. Biol. Macromol.202015432933810.1016/j.ijbiomac.2020.03.12032179114
    [Google Scholar]
  75. NakajimaH. DijkstraP. LoosK. the recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed.Polymers (Basel)201791052310.3390/polym910052330965822
    [Google Scholar]
  76. LiX. DingC. LiX. Electronic biopolymers: from molecular engineering to functional devices.Chem. Eng. J.202039712549910.1016/j.cej.2020.125499
    [Google Scholar]
  77. TenchurinT.K. ShepelevA.D. BelousovS.I. YastremskiiE.V. ChvaunS.N. Production of nanofiber materials based on macromolecular hyaluronic acid by electrospinning.Nanotechnol. Russ.202116899510.1134/S2635167621010092
    [Google Scholar]
  78. JainR. ShettyS. YadavK.S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers.J. Drug Deliv. Sci. Technol.20205710160410.1016/j.jddst.2020.101604
    [Google Scholar]
  79. TangY. LanX. LiangC. ZhongZ. XieR. ZhouY. MiaoX. WangH. WangW. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing.Carbohydr. Polym.201921911312010.1016/j.carbpol.2019.05.00431151507
    [Google Scholar]
  80. ArdeshirzadehB. AnarakiN.A. IraniM. RadL.R. ShamshiriS. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds.Mater. Sci. Eng. C20154838439010.1016/j.msec.2014.12.03925579938
    [Google Scholar]
  81. HardiansyahA. TanadiH. YangM-C. LiuT-Y. Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers.J. Polym. Res.20152245910.1007/s10965‑015‑0704‑8
    [Google Scholar]
  82. RijalN.P. AdhikariU. KhanalS. PaiD. SankarJ. BhattaraiN. Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications.Mater. Sci. Eng. B2018228182710.1016/j.mseb.2017.11.006
    [Google Scholar]
  83. JoanneP. KitsaraM. BoitardS-E. NaemetallaH. VanneauxV. PernotM. LargheroJ. ForestP. ChenY. MenaschéP. AgbulutO. Nanofibrous clinical- grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy.Biomaterials20168015716810.1016/j.biomaterials.2015.11.03526708641
    [Google Scholar]
  84. Aguirre-ChagalaY.E. AltuzarV. León-SarabiaE. Tinoco-MagañaJ.C. Yañez-LimónJ.M. Mendoza-BarreraC. Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning.Mater. Sci. Eng. C20177689790710.1016/j.msec.2017.03.11828482605
    [Google Scholar]
  85. LeeF-Y. LeeD. LeeT-C. ChenJ.K. WuR.C. LiuK.C. LiuS.J. Fabrication of multi-layered lidocaine and epinephrine-eluting PLGA/collagen nanofibers: In vitro and in vivo study.Polymers (Basel)20179941610.3390/polym909041630965721
    [Google Scholar]
  86. SangQ. WilliamsG.R. WuH. LiuK. LiH. ZhuL-M. Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems.Mater. Sci. Eng. C20178135936510.1016/j.msec.2017.08.00728887984
    [Google Scholar]
  87. ChoiJ. PanthiG. LiuY. Keratin/poly (vinyl alcohol) blended nanofibers with high optical transmittance.Polymer (Guildf.)20155814615210.1016/j.polymer.2014.12.052
    [Google Scholar]
  88. EntekhabiE Haghbin NazarpakM MoztarzadehF SadeghiA. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.Mater Sci Eng C20166938038710.1016/j.msec.2016.06.078
    [Google Scholar]
  89. ChandaA. AdhikariJ. GhoshA. ChowdhuryS.R. ThomasS. DattaP. SahaP. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications.Int. J. Biol. Macromol.201811677478510.1016/j.ijbiomac.2018.05.09929777811
    [Google Scholar]
  90. Huerta-ÁngelesG. KnotkováK. KnotekP. ŽidekO. BrandejsováM. PokornýM. VagnerováH. RoyI. VelebnýV. Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications.J. Mater. Sci. Mater. Med.20182933210.1007/s10856‑018‑6045‑529546462
    [Google Scholar]
  91. MutluG. CalamakS. UlubayramK. GuvenE. Curcumin-loaded electrospun phbv nanofibers as potential wound-dressing material.J. Drug Deliv. Sci. Technol.20184318519310.1016/j.jddst.2017.09.017
    [Google Scholar]
  92. Baradaran-RafiiA. BiazarE. Heidari-KeshelS. Cellular response of limbal stem cells on phbv/gelatin nanofibrous scaffold for ocular epithelial regeneration.Int. J. Polym. Mater.2015641787988710.1080/00914037.2015.1030658
    [Google Scholar]
  93. LiX. LiuY. ZhangJ. YouR. QuJ. LiM. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing.Mater. Sci. Eng. C20177239440410.1016/j.msec.2016.11.08528024602
    [Google Scholar]
  94. DuJ. ZhuT. YuH. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering.Appl. Surf. Sci.201844726927810.1016/j.apsusc.2018.03.077
    [Google Scholar]
  95. SheikhF.A. JuH.W. LeeJ.M. MoonB.M. ParkH.J. LeeO.J. KimJ.H. KimD.K. ParkC.H. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin.Nanomedicine201511368169110.1016/j.nano.2014.11.00725555351
    [Google Scholar]
  96. AhnS. ChantreC.O. GannonA.R. LindJ.U. CampbellP.H. GrevesseT. O’ConnorB.B. ParkerK.K. Soy Protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing.Adv. Healthc. Mater.201879e170117510.1002/adhm.20170117529359866
    [Google Scholar]
  97. WaghmareV.S. WadkeP.R. DyawanapellyS. DeshpandeA. JainR. DandekarP. Starch based nanofibrous scaffolds for wound healing applications.Bioact. Mater.20173325526610.1016/j.bioactmat.2017.11.00629744465
    [Google Scholar]
  98. Ranjbar-MohammadiM. PrabhakaranM.P. BahramiS.H. RamakrishnaS. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.Carbohydr. Polym.201614010411210.1016/j.carbpol.2015.12.01226876833
    [Google Scholar]
  99. ÇangaE.M. DudakF.C. Characterization of cellulose acetate/gum arabic fibers loaded with extract of Viburnum opulus l. fruit.Lebensm. Wiss. Technol.201911024725410.1016/j.lwt.2019.04.085
    [Google Scholar]
  100. AzizS. HosseinzadehL. ArkanE. AzandaryaniA.H. Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application.Int. J. Polym. Mater.2019681163964610.1080/00914037.2018.1482464
    [Google Scholar]
  101. AnsariA.Q. AnsariS.J. KhanM.Q. Electrospun zein nanofibers as drug carriers for controlled delivery of levodopa in parkinson syndrome.Mater. Res. Express20196707540510.1088/2053‑1591/ab16bf
    [Google Scholar]
  102. VogtL. LiveraniL. RoetherJ.A. BoccacciniA.R. Electrospun zein fibers incorporating poly(glycerol sebacate) for soft tissue engineering.Nanomaterials (Basel)20188315010.3390/nano803015029518041
    [Google Scholar]
  103. AsadiN. Del BakhshayeshA.R. DavaranS. AkbarzadehA. Common biocompatible polymeric materials for tissue engineering and regenerative medicine.Mater. Chem. Phys.202024212252810.1016/j.matchemphys.2019.122528
    [Google Scholar]
  104. ManoukianO.S. SardashtiN. StedmanT. Encyclopedia of Biomedical Engineering.Biomaterials for tissue engineering and regenerative medicine.Elsevier Inc2019462482
    [Google Scholar]
  105. TchobanianA. Van OosterwyckH. FardimP. Polysaccharides for tissue engineering: Current landscape and future prospects.Carbohydr. Polym.201920560162510.1016/j.carbpol.2018.10.03930446147
    [Google Scholar]
  106. AhmadiS. HivechiA. BahramiS.H. MilanP.B. AshrafS.S. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity.Int. J. Biol. Macromol.202117358059010.1016/j.ijbiomac.2021.01.15633513421
    [Google Scholar]
  107. Radhika RajasreeS.R. GobalakrishnanM. AranganathanL. KarthihM.G. Fabrication and characterization of chitosan based collagen/gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications.Mater. Sci. Eng. C202010711027010.1016/j.msec.2019.11027031761224
    [Google Scholar]
  108. SilvaS.S. RodriguesL.C. FernandesE.M. ReisR.L. Fundamentals on biopolymers and global demand.Biopolymer Membranes and Films - Health, Food, Environment, and Energy Applications. Elsevier Inc.2020334
    [Google Scholar]
  109. Del BakhshayeshA.R. AsadiN. AlihemmatiA. Tayefi NasrabadiH. MontaseriA. DavaranS. SaghatiS. AkbarzadehA. AbedelahiA. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering.J. Biol. Eng.20191318510.1186/s13036‑019‑0209‑931754372
    [Google Scholar]
  110. RahmatiM. PennisiC.P. BuddE. MobasheriA. MozafariM. Biomaterials for regenerative medicine: Historical perspectives and current trends.Advances in Experimental Medicine and Biology - Cell Biology and Translational Medicine. Springer Nature201811910.1007/5584_2018_278
    [Google Scholar]
  111. SuescaE. DiasA.M.A. BragaM.E.M. de SousaH.C. FontanillaM.R. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds.Mater. Sci. Eng. C20177733334110.1016/j.msec.2017.03.24328532037
    [Google Scholar]
  112. ArchanaD. UpadhyayL. TewariR.P. DuttaJ. HuangY.B. DuttaP.K. Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications.Indian J. Biotechnol.2013124475482
    [Google Scholar]
  113. Bombaldi de SouzaF.C. Bombaldi de SouzaR.F. DrouinB. PopatK.C. MantovaniD. MoraesÂ.M. Polysaccharide-based tissue-engineered vascular patches.Mater. Sci. Eng. C201910410997310.1016/j.msec.2019.10997331499972
    [Google Scholar]
  114. CoimbraP. FerreiraP. de SousaH.C. BatistaP. RodriguesM.A. CorreiaI.J. GilM.H. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications.Int. J. Biol. Macromol.201148111211810.1016/j.ijbiomac.2010.10.00620955729
    [Google Scholar]
  115. MartinsJ.G. CamargoS.E.A. BishopT.T. PopatK.C. KipperM.J. MartinsA.F. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation.Carbohydr. Polym.2018197475610.1016/j.carbpol.2018.05.06230007637
    [Google Scholar]
  116. XueF. ZhangH. HuJ. LiuY. Hyaluronic acid nanofibers crosslinked with a nontoxic reagent.Carbohydr. Polym.202125911775710.1016/j.carbpol.2021.11775733674011
    [Google Scholar]
  117. BiranjeS. MadiwaleP. AdivarekarR.V. Porous electrospun casein/PVA nanofibrous mat for its potential application as wound dressing material.J. Porous Mater.2019261294010.1007/s10934‑018‑0602‑7
    [Google Scholar]
  118. NiuY. StadlerF.J. FuM. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat.Mater. Sci. Eng. C202112111185810.1016/j.msec.2020.11185833579490
    [Google Scholar]
  119. GhafoorB. AleemA. Najabat AliM. MirM. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems.J. Drug Deliv. Sci. Technol.201848828710.1016/j.jddst.2018.09.005
    [Google Scholar]
  120. SofiH.S. Abdal-HayA. IvanovskiS. ZhangY.S. SheikhF.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives.Mater. Sci. Eng. C202011111075610.1016/j.msec.2020.11075632279775
    [Google Scholar]
  121. MohammadianF. EatemadiA. Drug loading and delivery using nanofibers scaffolds.Artif. Cells Nanomed. Biotechnol.201745588188810.1080/21691401.2016.118572627188394
    [Google Scholar]
  122. GoyalR. MacriL.K. KaplanH.M. KohnJ. Nanoparticles and nanofibers for topical drug delivery.J. Control. Release2016240779210.1016/j.jconrel.2015.10.04926518723
    [Google Scholar]
  123. PatelG.C. YadavB.K. Polymeric Nanofibers for Controlled Drug Delivery Applications.Organic Materials as Smart Nanocarriers for Drug Delivery. Elsevier201814717510.1016/B978‑0‑12‑813663‑8.00004‑X
    [Google Scholar]
  124. FleigeE. QuadirM.A. HaagR. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.02022349241
    [Google Scholar]
  125. GuoX. ChengY. ZhaoX. LuoY. ChenJ. YuanW-E. Advances in redox-responsive drug delivery systems of tumor microenvironment.J. Nanobiotechnology20181617410.1186/s12951‑018‑0398‑230243297
    [Google Scholar]
  126. KojimaC. Design of stimuli-responsive dendrimers.Expert Opin. Drug Deliv.20107330731910.1517/1742524090353065120095875
    [Google Scholar]
  127. LeeJ.H. YeoY. Controlled drug release from pharmaceutical nanocarriers.Chem. Eng. Sci.2015125758410.1016/j.ces.2014.08.04625684779
    [Google Scholar]
  128. QuT. WangA. YuanJ. GaoQ. Preparation of an amphiphilic triblock copolymer with pH- and thermo-responsiveness and self-assembled micelles applied to drug release.J. Colloid Interface Sci.2009336286587110.1016/j.jcis.2009.04.00119464019
    [Google Scholar]
  129. LangerR. PeppasN. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review.J Macromol Sci19832316112610.1080/07366578308079439
    [Google Scholar]
  130. LengyelM. Kállai-SzabóN. AntalV. LakiA.J. AntalI. Microparticles, microspheres, and microcapsules for advanced drug delivery.Sci. Pharm.20198732010.3390/scipharm87030020
    [Google Scholar]
  131. PeppasN.A. BuresP. LeobandungW. IchikawaH. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑410840191
    [Google Scholar]
  132. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.201067321722320524422
    [Google Scholar]
  133. KambleP. SadaraniB. MajumdarA. BhullarS. Nanofiber based drug delivery systems for skin: a promising therapeutic approach.J. Drug Deliv. Sci. Technol.20174112413310.1016/j.jddst.2017.07.003
    [Google Scholar]
  134. PelipenkoJ. KocbekP. KristlJ. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration.Int. J. Pharm.20154841-2577410.1016/j.ijpharm.2015.02.04325701683
    [Google Scholar]
  135. ThakkarS. MisraM. Electrospun polymeric nanofibers: New horizons in drug delivery.Eur. J. Pharm. Sci.201710714816710.1016/j.ejps.2017.07.00128690099
    [Google Scholar]
  136. PhamQ.P. SharmaU. MikosA.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review.Tissue Eng.20061251197121110.1089/ten.2006.12.119716771634
    [Google Scholar]
  137. CuiW. ZhouY. ChangJ. Electrospun nanofibrous materials for tissue engineering and drug delivery.Sci. Technol. Adv. Mater.201011101410810.1088/1468‑6996/11/1/01410827877323
    [Google Scholar]
  138. VasitaR. KattiD.S. Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine200611153010.2147/nano.2006.1.1.1517722259
    [Google Scholar]
  139. BhattaraiR.S. BachuR.D. BodduS.H.S. BhaduriS. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery.Pharmaceutics2018111510.3390/pharmaceutics1101000530586852
    [Google Scholar]
  140. SunH. MengF. DiasA.A. HendriksM. FeijenJ. ZhongZ. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.Biomacromolecules20111261937195510.1021/bm200043u21469742
    [Google Scholar]
  141. JannesariM. VarshosazJ. MorshedM. ZamaniM. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs.Int. J. Nanomedicine20116993100321720511
    [Google Scholar]
  142. DoostmohammadiM. ForootanfarH. RamakrishnaS. Regenerative medicine and drug delivery: Progress via electrospun biomaterials.Mater. Sci. Eng. C202010911052110.1016/j.msec.2019.11052132228899
    [Google Scholar]
  143. Aboutalebi AnarakiN. Roshanfekr RadL. IraniM. HaririanI. Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery.J. Appl. Polym. Sci.201513234128610.1002/app.41286
    [Google Scholar]
  144. ZhangY. ChanH.F. LeongK.W. Advanced materials and processing for drug delivery: the past and the future.Adv. Drug Deliv. Rev.201365110412010.1016/j.addr.2012.10.00323088863
    [Google Scholar]
  145. FrancoL. ValleJ.L. PuiggalíJ. mart Systems Related to Polypeptide Sequences. Laboratory of Synthetic Polymers, Structure and Properties (PSEP), Chemical Engineering Department, Polytechnic University of Catalonia (UPC), Barcelona, Spain.S AIMS Mater Sci20163128932310.3934/matersci.2016.1.289
    [Google Scholar]
  146. YuS. ZhangX. TanG. TianL. LiuD. LiuY. YangX. PanW. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery.Carbohydr. Polym.201715520821710.1016/j.carbpol.2016.08.07327702506
    [Google Scholar]
  147. ProwT.W. GriceJ.E. LinL.L. FayeR. ButlerM. BeckerW. WurmE.M. YoongC. RobertsonT.A. SoyerH.P. RobertsM.S. Nanoparticles and microparticles for skin drug delivery.Adv. Drug Deliv. Rev.201163647049110.1016/j.addr.2011.01.01221315122
    [Google Scholar]
  148. RobertsM.S. MohammedY. PastoreM.N. NamjoshiS. YousefS. AlinaghiA. HaridassI.N. AbdE. Leite-SilvaV.R. BensonH. GriceJ.E. Topical and cutaneous delivery using nanosystems.J. Control. Release20172478610510.1016/j.jconrel.2016.12.02228024914
    [Google Scholar]
  149. ShahP.P. DesaiP.R. PatelA.R. SinghM.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs.Biomaterials20123351607161710.1016/j.biomaterials.2011.11.01122118820
    [Google Scholar]
  150. MatalanisA. JonesO.G. McClementsD.J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds.Food Hydrocoll.20112581865188010.1016/j.foodhyd.2011.04.014
    [Google Scholar]
  151. TalebianS. ForoughiJ. WadeS.J. VineK.L. Dolatshahi-PirouzA. MehraliM. CondeJ. WallaceG.G. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook.Adv. Mater.20183031e170666510.1002/adma.20170666529756237
    [Google Scholar]
  152. HoareT.R. KohaneD.S. Hydrogels in drug delivery: progress and challenges.Polymer (Guildf.)20084981993200710.1016/j.polymer.2008.01.027
    [Google Scholar]
  153. ZylberbergC. MatosevicS. Bioengineered liposome-scaffold composites as therapeutic delivery systems.Ther. Deliv.20178642544510.4155/tde‑2017‑001428530145
    [Google Scholar]
  154. NgawhirunpatT. OpanasopitP. RojanarataT. AkkaramongkolpornP. RuktanonchaiU. SupapholP. Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent.Pharm. Dev. Technol.2009141707910.1080/1083745080240942018800295
    [Google Scholar]
  155. OpanasopitP. Sila-OnW. RojanarataT. NgawhirunpatT. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches.Pharm. Dev. Technol.20131851140114710.3109/10837450.2012.72700423033938
    [Google Scholar]
  156. RahmaniM. Arbabi BidgoliS. RezayatS.M. Electrospun polymeric nanofibers for transdermal drug delivery.Nanomed. J.2017426170
    [Google Scholar]
  157. ShenX XuQ XuS LiJ ZhangN ZhangL Preparation and transdermal diffusion evaluation of the prazosin hydrochloride-loaded electrospun poly(vinyl alcohol) fiber mats.J nanosci nanotech201414752585265
    [Google Scholar]
  158. ChoS. LoweL. HamiltonT.A. FisherG.J. VoorheesJ.J. KangS. Long-term treatment of photoaged human skin with topical retinoic acid improves epidermal cell atypia and thickens the collagen band in papillary dermis.J. Am. Acad. Dermatol.200553576977410.1016/j.jaad.2005.06.05216243124
    [Google Scholar]
  159. KatariaK. GuptaA. RathG. MathurR.B. DhakateS.R. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch.Int. J. Pharm.2014469110211010.1016/j.ijpharm.2014.04.04724751731
    [Google Scholar]
  160. AndreuV. MendozaG. ArrueboM. IrustaS. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds.Materials (Basel)2015885154519310.3390/ma808515428793497
    [Google Scholar]
  161. ZahediP. KaramiZ. RezaeianI. Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends.J. Appl. Polym. Sci.201212454174418310.1002/app.35372
    [Google Scholar]
  162. CaramellaC.M. RossiS. FerrariF. BonferoniM.C. SandriG. Mucoadhesive and thermogelling systems for vaginal drug delivery.Adv. Drug Deliv. Rev.201592395210.1016/j.addr.2015.02.00125683694
    [Google Scholar]
  163. GowthamarajanK. JawaharN. WakeP. JainK. SoodS. Development of buccal tablets for curcumin using anacardium occidentale gum.Carbohydr. Polym.20128841177118310.1016/j.carbpol.2012.01.072
    [Google Scholar]
  164. SharmaA. GuptaA. RathG. GoyalA. MathurR.B. DhakateS.R. Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery.J. Mater. Chem. B Mater. Biol. Med.20131273410341810.1039/c3tb20487a32260931
    [Google Scholar]
  165. Pérez-GonzálezG.L. Villarreal-GómezL.J. Serrano-MedinaA. Torres-MartínezE.J. Cornejo-BravoJ.M. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles.Int. J. Nanomedicine2019145271528510.2147/IJN.S19332831409989
    [Google Scholar]
  166. PotrčT. BaumgartnerS. RoškarR. PlaninšekO. LavričZ. KristlJ. KocbekP. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs.Eur. J. Pharm. Sci.20157510111310.1016/j.ejps.2015.04.00425910438
    [Google Scholar]
  167. GrewalH. DhakateS.R. GoyalA.K. MarkandeywarT.S. MalikB. RathG. Development of transmucosal patch using nanofibers.Artif. Cells Blood Substit. Immobil. Biotechnol.2012401-214615010.3109/10731199.2011.63792422192072
    [Google Scholar]
  168. HuX. LiuS. ZhouG. HuangY. XieZ. JingX. Electrospinning of polymeric nanofibers for drug delivery applications.J. Control. Release2014185122110.1016/j.jconrel.2014.04.01824768792
    [Google Scholar]
  169. YanE. FanY. SunZ. GaoJ. HaoX. PeiS. WangC. SunL. ZhangD. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer.Mater. Sci. Eng. C20144121722310.1016/j.msec.2014.04.05324907754
    [Google Scholar]
  170. Pour KhaliliN. MoradiR. KavehpourP. IslamzadaF. Boron nitride nanotube clusters and their hybrid nanofibers with polycaprolacton: thermo-ph sensitive drug delivery functional materials.Eur. Polym. J.202012710958510.1016/j.eurpolymj.2020.109585
    [Google Scholar]
  171. WangC. MaC. WuZ. LiangH. YanP. SongJ. MaN. ZhaoQ. Enhanced bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber: In vitro and in vivo study.Nanoscale Res. Lett.201510143910.1186/s11671‑015‑1146‑226573930
    [Google Scholar]
  172. ZhouH. LiuX. WuF. Preparation, Characterization, and antitumor evaluation of electrospun resveratrol loaded nanofibers.J. Nanomater.20162016591846210.1155/2016/5918462
    [Google Scholar]
  173. ChewS.Y. WenJ. YimE.K.F. LeongK.W. Sustained release of proteins from electrospun biodegradable fibers.Biomacromolecules2005642017202410.1021/bm050114916004440
    [Google Scholar]
  174. HuJ. KaiD. YeH. TianL. DingX. RamakrishnaS. LohX.J. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering.Mater. Sci. Eng. C201770Pt 21089109410.1016/j.msec.2016.03.03527772709
    [Google Scholar]
  175. ValmikinathanC.M. DefrodaS. YuX. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor.Biomacromolecules20091051084108910.1021/bm801249919323510
    [Google Scholar]
  176. ChewS.Y. MiR. HokeA. LeongK.W. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform.Adv. Funct. Mater.20071781288129610.1002/adfm.20060044118618021
    [Google Scholar]
  177. HuJ. TianL. PrabhakaranM.P. DingX. RamakrishnaS. Fabrication of nerve growth factor encapsulated aligned poly(ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold.Polymers (Basel)2016825410.3390/polym802005430979150
    [Google Scholar]
  178. NabaA. ClauserK.R. DingH. WhittakerC.A. CarrS.A. HynesR.O. The extracellular matrix: Tools and insights for the “omics” era.Matrix Biol.201649102410.1016/j.matbio.2015.06.00326163349
    [Google Scholar]
  179. TallawiM. RoselliniE. BarbaniN. CasconeM.G. RaiR. Saint-PierreG. BoccacciniA.R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.J. R. Soc. Interface2015121082015025410.1098/rsif.2015.025426109634
    [Google Scholar]
  180. SharifiF. AtyabiS.M. NorouzianD. ZandiM. IraniS. BakhshiH. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application.Int. J. Biol. Macromol.201811524324810.1016/j.ijbiomac.2018.04.04529654862
    [Google Scholar]
  181. SaadatkishN. Nouri KhorasaniS. MorshedM. AllafchianA.R. BeigiM.H. Masoudi RadM. Esmaeely NeisianyR. Nasr-EsfahaniM.H. A ternary nanofibrous scaffold potential for central nerve system tissue engineering.J. Biomed. Mater. Res. A201810692394240110.1002/jbm.a.3643129637736
    [Google Scholar]
  182. ChenJ. YuM. GuoB. MaP.X. YinZ. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration.J. Colloid Interface Sci.201851451752710.1016/j.jcis.2017.12.06229289734
    [Google Scholar]
  183. Abdal-HayA. HusseinK.H. CasettariL. KhalilK.A. HamdyA.S. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.Mater. Sci. Eng. C20166014315010.1016/j.msec.2015.11.02426706517
    [Google Scholar]
  184. TianL. PrabhakaranM.P. HuJ. ChenM. BesenbacherF. RamakrishnaS. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.Colloids Surf. B Biointerfaces201614542042910.1016/j.colsurfb.2016.05.03227232305
    [Google Scholar]
  185. ToledoA.L.M.M. RamalhoB.S. PiccianiP.H.S. BaptistaL.S. MartinezA.M.B. DiasM.L. Effect of three different amines on the surface properties of electrospun polycaprolactone mats.Inter J Polym Mater Polym Biomater20207017113
    [Google Scholar]
  186. MochaneM.J. MotsoenengT.S. SadikuE.R. MokhenaT.C. SefadiJ.S. morphology and properties of electrospun pcl and its composites for medical applications: a mini review.Appl. Sci. (Basel)2019911220510.3390/app9112205
    [Google Scholar]
  187. MondalS. Review on nanocellulose polymer nanocomposites.Polym. Plast. Technol. Eng.201857131377139110.1080/03602559.2017.1381253
    [Google Scholar]
  188. HanJ. MaB. LiuH. WangT. WangF. XieC. LiM. LiuH. GeS. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model.J. Biomed. Mater. Res. A2018106123099311010.1002/jbm.a.3650230325096
    [Google Scholar]
  189. ChenP. LiuL. PanJ. MeiJ. LiC. ZhengY. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.Mater. Sci. Eng. C20199732533510.1016/j.msec.2018.12.02730678918
    [Google Scholar]
  190. SerioF. MiolaM. VernèE. PisignanoD. BoccacciniA.R. LiveraniL. Electrospun filaments embedding bioactive glass particles with ion release and enhanced mineralization.Nanomaterials (Basel)20199218210.3390/nano902018230717161
    [Google Scholar]
  191. TongH-W. WangM. LiZ-Y. LuW.W. Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles.Biomed. Mater.20105505411110.1088/1748‑6041/5/5/05411120876957
    [Google Scholar]
  192. JanuariyasaI.K. AnaI.D. YusufY. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.Mater. Sci. Eng. C202010711034710.1016/j.msec.2019.11034731761152
    [Google Scholar]
  193. SaburiE. IslamiM. HosseinzadehS. MoghadamA.S. MansourR.N. AzadianE. JoneidiZ. NikpoorA.R. GhadianiM.H. KhodaiiZ. ArdeshirylajimiA. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.Gene2019696727910.1016/j.gene.2019.02.02830772518
    [Google Scholar]
  194. SedghiR. SayyariN. ShaabaniA. NiknejadH. TayebiT. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application.Polymer (Guildf.)201814224425510.1016/j.polymer.2018.03.045
    [Google Scholar]
  195. PatelK.D. KimT-H. MandakhbayarN. SinghR.K. JangJ.H. LeeJ.H. KimH.W. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses.Acta Biomater.20201089711010.1016/j.actbio.2020.03.01232165193
    [Google Scholar]
  196. SanfeliceR.C. MercanteL.A. PavinattoA. Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications.J. Mater. Sci.20175241919192910.1007/s10853‑016‑0481‑8
    [Google Scholar]
  197. GhoshP. HanG. DeM. KimC.K. RotelloV.M. Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev.200860111307131510.1016/j.addr.2008.03.01618555555
    [Google Scholar]
  198. DreadenE.C. MackeyM.A. HuangX. KangB. El-SayedM.A. Beating cancer in multiple ways using nanogold.Chem. Soc. Rev.20114073391340410.1039/c0cs00180e21629885
    [Google Scholar]
  199. SahaK. AgastiS.S. KimC. LiX. RotelloV.M. Gold nanoparticles in chemical and biological sensing.Chem. Rev.201211252739277910.1021/cr200117822295941
    [Google Scholar]
  200. LeeD. HeoD.N. LeeS.J. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis.Appl. Surf. Sci.201843230030710.1016/j.apsusc.2017.05.237
    [Google Scholar]
  201. SaderiN. RajabiM. AkbariB. FirouziM. HassannejadZ. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering.J. Mater. Sci. Mater. Med.201829913410.1007/s10856‑018‑6144‑330120577
    [Google Scholar]
  202. CardosoV.F. FranceskoA. RibeiroC. Bañobre-LópezM. MartinsP. Lanceros-MendezS. Advances in Magnetic Nanoparticles for Biomedical Applications.Adv. Healthc. Mater.201875170084510.1002/adhm.20170084529280314
    [Google Scholar]
  203. NazariH. Heirani-TabasiA. HajiabbasM. Salimi BaniM. NazariM. Pirhajati MahabadiV. RadI. KehtariM. Ahmadi TaftiS.H. SoleimaniM. Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering.J. Cell. Biochem.202012142981299310.1002/jcb.2955331724234
    [Google Scholar]
  204. PearceM.E. MelankoJ.B. SalemA.K. Multifunctional nanorods for biomedical applications.Pharm. Res.200724122335235210.1007/s11095‑007‑9380‑717684708
    [Google Scholar]
  205. AugustineR. NethiS.K. KalarikkalN. ThomasS. PatraC.R. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications.J. Mater. Chem. B Mater. Biol. Med.20175244660467210.1039/C7TB00518K32264308
    [Google Scholar]
  206. ZouY. ZhangL. YangL. ZhuF. DingM. LinF. WangZ. LiY. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering.J. Control. Release201827316017910.1016/j.jconrel.2018.01.02329382547
    [Google Scholar]
  207. Hidalgo PitalugaL. Trevelin SouzaM. Dutra ZanottoE. Santocildes RomeroM.E. HattonP.V. Electrospun F18 Bioactive Glass/PCL-Poly (ε-caprolactone)-Membrane for Guided Tissue Regeneration.Materials (Basel)201811340010.3390/ma1103040029517988
    [Google Scholar]
  208. DuX. WeiD. HuangL. ZhuM. ZhangY. ZhuY. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.Mater. Sci. Eng. C201910310973110.1016/j.msec.2019.05.01631349472
    [Google Scholar]
  209. SarkerB. HumJ. NazhatS.N. BoccacciniA.R. Combining collagen and bioactive glasses for bone tissue engineering: a review.Adv. Healthc. Mater.20154217619410.1002/adhm.20140030225116596
    [Google Scholar]
  210. WangY. CuiW. ChouJ. WenS. SunY. ZhangH. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering.Colloids Surf. B Biointerfaces2018172909710.1016/j.colsurfb.2018.08.03230142529
    [Google Scholar]
  211. ParkS. KimJ. LeeM-K. Fabrication of strong, bioactive vascular grafts with pcl/collagen and pcl/silica bilayers for small-diameter vascular applications.Mater. Des.201918110807910.1016/j.matdes.2019.108079
    [Google Scholar]
  212. LinY. ZhangL. LiuN.Q. YaoQ. Van HandelB. XuY. WangC. EvseenkoD. WangL. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications.Int. J. Nanomedicine2019145831584810.2147/IJN.S21050931534327
    [Google Scholar]
  213. TuT. ShenY. WangX. Tendon ECM modified bioactive electrospun fibers promote msc tenogenic differentiation and tendon regeneration.Appl. Mater. Today20201810049510.1016/j.apmt.2019.100495
    [Google Scholar]
  214. GrantR. HallettJ. ForbesS. HayD. CallananA. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments.Sci. Rep.201991629310.1038/s41598‑019‑42627‑731000735
    [Google Scholar]
  215. WenM. ZhiD. WangL. CuiC. HuangZ. ZhaoY. WangK. KongD. YuanX. Local delivery of dual microRNAs in trilayered electrospun grafts for vascular regeneration.ACS Appl. Mater. Interfaces20201266863687510.1021/acsami.9b1945231958006
    [Google Scholar]
  216. LevengoodS.L. EricksonA.E. ChangF.C. ZhangM. Chitosan-poly(caprolactone) nanofibers for skin repair.J. Mater. Chem. B Mater. Biol. Med.2017591822183310.1039/C6TB03223K28529754
    [Google Scholar]
  217. WangJ. TianL. LuoB. RamakrishnaS. KaiD. LohX.J. YangI.H. DeenG.R. MoX. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell.Colloids Surf. B Biointerfaces201816935636510.1016/j.colsurfb.2018.05.02129803151
    [Google Scholar]
  218. BabithaS. AnnamalaiM. DykasM.M. SahaS. PoddarK. VenugopalJ.R. RamakrishnaS. VenkatesanT. KorrapatiP.S. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.J. Tissue Eng. Regen. Med.2018124991100110.1002/term.256328871656
    [Google Scholar]
  219. HokmabadV.R. DavaranS. AghazadehM. AlizadehE. SalehiR. RamazaniA. Effect of incorporating Elaeagnus angustifolia extract in pcl-peg-pcl nanofibers for bone tissue engineering.Front. Chem. Sci. Eng.201913110811910.1007/s11705‑018‑1742‑7
    [Google Scholar]
  220. ShiraniK. NourbakhshM.S. RafieniaM. electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering.Int. J. Polym. Mater.2019681060761510.1080/00914037.2018.1482461
    [Google Scholar]
  221. ŞafakŞ. VatanÖ. In vitro evaluation of electrospun polysaccharide based nanofibrous mats as surgical adhesion barriers.Textile Apparel202030299107
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666211122122557
Loading
/content/journals/caps/10.2174/2452271604666211122122557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test