Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Superparamagnetic nanoparticles, such as magnetite (FeO) and maghemite (γ-FeO), have been used to produce magnetic nanocomposites with several polymeric matrices including magnetic styrene-divinylbenzene nanocomposites. Through the incorporation of these nanoparticles, the nanocomposite presents superparamagnetism, low coercivity, and high magnetic susceptibility. Due to these features, magnetic nanomaterials can be removed from the site where they are inserted through an external magnetic field, thus distinguishing them from conventional systems such as those used to treat oily water, which require expensive chemical agents for removal. These properties depend directly on the size distribution of the nanoparticles and the presence or absence of interactions between the surface of the polymeric matrix and the contaminants. These materials have many applications. The objective of this article is to present a bibliographic review of the state-of-the-art evolution of magnetic styrene-divinylbenzene nanocomposites over the years. According to the reports in the literature, these systems are superior to those applied conventionally in the sectors of biotechnology, agriculture, oil/gas, and nuclear chemistry, mainly for the removal of toxic metals from aqueous media.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220304091807
2022-04-01
2024-12-25
Loading full text...

Full text loading...

References

  1. OkpalaC.C. Nanocomposites-An overview.Inter J Eng Res Develop2013811172310.1680/jemmr.15.00025
    [Google Scholar]
  2. BhateriaR. SinghR. A review on nanotechnological application of magnetic iron oxides for heavy metal removal.J. Water Process Eng.20193110.1016/j.jwpe.2019.100845
    [Google Scholar]
  3. BehrensS. AppelI. Magnetic nanocomposites.Curr. Opin. Biotechnol.201639899610.1016/j.copbio.2016.02.00526938504
    [Google Scholar]
  4. PokropovinyV.V. SkorokhodV.V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science.Mater. Sci. Eng. C20072799099310.1016/j.msec.2006.09.023
    [Google Scholar]
  5. RodriguezA. FariaF.S.E.D.V. CunhaR.M. Structural and magnetic investigation of styrene–divinylbenzene encapsulated iron oxide nanoparticles.Mater. Lett.201413013513810.1016/j.matlet.2014.04.085
    [Google Scholar]
  6. SinghH. BhardwajN. AryaS.K. KhatriM. Environmental impacts of oil spills and their remediation by magnetic nano-materials.Environ. Nanotechnol. Monit. Manag.202014: 100305.10.1016/j.enmm.2020.100305
    [Google Scholar]
  7. MaoJ. JiangW. GuJ. ZhouS. LuY. XieT. Synthesis of P(St-DVB)/Fe3O4 microspheres and application for oil removal in aqueous environment.Appl. Surf. Sci.201431778779310.1016/j.apsusc.2014.08.191
    [Google Scholar]
  8. GeF. LiM.M. YeH. ZhaoB.X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles.J. Hazard. Mater.2012211-21236637210.1016/j.jhazmat.2011.12.01322209322
    [Google Scholar]
  9. TaiY. WangLi GaoJ. AmerW.A. DingW. YuH. Synthesis of Fe3O4@poly(methyl methacrylate-co-divinylbenzene) magnetic porous microspheres and their application in these parathion of phenol from aqueous solutions.J. Colloid Interface Sci.201136073173810.1016/j.jcis.2011.04.09621601864
    [Google Scholar]
  10. ShirokikhS.A. KorolevaM.Y. Montalvan-EstradaA. YurtovE.V. Highly porous polymeric composite with γ-Fe2O3 nano-particles for oil products sorption.Rev. Cuba. Quím.2020321104116
    [Google Scholar]
  11. RosenJ.E. ChanL. ShiehD.B. GuF.X. Iron oxide nanoparticles for targeted cancer imaging and diagnostics.Nanomedicine20128327529010.1016/j.nano.2011.08.01721930108
    [Google Scholar]
  12. KunK.A. KuninR. The pore structure of macroreticular ion exchange resins.J Polym Sci19671631457146910.1002/polc.5070160323
    [Google Scholar]
  13. SvecF. FréchetJ.M.J. New designs of macroporous polymers and supports: From separation to biocatalysis.Science1996273527220521110.1126/science.273.5272.2058662498
    [Google Scholar]
  14. KunK.A. KuninR. Macroreticular resins. III. Formation of macroreticular styrene-divinylbenzene copolymers.J. Polym. Sci. A119686102689270110.1002/pol.1968.150061001
    [Google Scholar]
  15. AlexandratosD.S. Ion-exchange resins: A retrospective from industrial and engineering chemistry research.Ind. Eng. Chem. Res.2009488839810.1021/ie801242v
    [Google Scholar]
  16. RabeloD. CoutinhoF.M.B. Porous structure formation and swelling properties of styrene-divinylbenzene copolymers.Eur. Polym. J.199430667568210.1016/0014‑3057(94)90115‑5
    [Google Scholar]
  17. CoutinhoF.M.B. NevesM.A.F.S. DiasM.L. Porous structure and swelling properties of styrene-divinylbenzene copolymers for size exclusion chromatography.J. Appl. Polym. Sci.19976571257126110.1002/(SICI)1097‑4628(19970815)65:7<1257::AID‑APP3>3.0.CO;2‑H
    [Google Scholar]
  18. ScharufangelR.A. RaseH.F. Levulinic acid from sucrose using acidic ion-exchange resins.Ind. Eng. Chem.197514404410.1021/i360053a009
    [Google Scholar]
  19. PoinesecuI.C. VladC. BeldieC. Styrene-divinylbenzene copolymers: influence of the diluent on network porosity.J. Appl. Polym. Sci.198429233410.1002/app.1984.070290103
    [Google Scholar]
  20. PoinesecuI.C. VladC. CarpovA. IoanidA. On the structure of macroreticular styrene-divinylbenzene copolymers.Angew. Makromol. Chem.198815610512110.1002/apmc.1988.051560110
    [Google Scholar]
  21. NevesM.A.F.S. DiasM.L. CoutinhoF.M.B. Styrene-divinylbenzene copolymers for application in size exclusion chromatography.Polym: Sci Technol1997737177
    [Google Scholar]
  22. BarbosaC.C.R. CunhaJ.W.S.D. TeixeiraV.G. CoutinhoF.M.B. Copolímeros de estireno-divinilbenzeno impregnados com agentes complexantes organofosforados para separação de terras raras. Polímeros:Ciência e Tecnologia1998843141
    [Google Scholar]
  23. RezendeS.M. SoaresB.G. CoutinhoF.M.B. Aplicação de resinas sulfônicas como catalisadores em reações de transesterificação de óleos vegetais. Polímeros:Ciência e Tecnologia2005153186192
    [Google Scholar]
  24. CunhaL GomesAS CoutinhoFMB TeixeiraVG Principais rotas de síntese de resinas complexantes de mercúrio.Polímeros: Ciência e Tecnologia20071721451572007;
    [Google Scholar]
  25. HanemannT. SzabóD.V. Polymer-nanoparticle composites: From synthesis to modern applications.Materials (Basel)2010363468351710.3390/ma3063468
    [Google Scholar]
  26. FarajiM. YaminiY. RezaeeM. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications.J Iran Chem Soc2010713710.1007/BF03245856
    [Google Scholar]
  27. MajidiS. SehrigF.Z. FarkhaniS.M. GoloujehM.S. AkbarzadehA. Current methods for synthesis of magnetic nanoparticles.Artif. Cells Nanomed. Biotechnol.201644272273410.3109/21691401.2014.98280225435409
    [Google Scholar]
  28. García-CerdalL.A. Chapa-RodríguezR. Bonilla-RíosJ. In situ synthesis of iron oxide nanoparticles in a styrene-divinylbenzene copolymer.Polym. Bull.20075898999410.1007/s00289‑006‑0715‑z
    [Google Scholar]
  29. WeisslederR. ReimerP. Superparamegnetic iron oxides for MRI.Eur. Radiol.1993319821210.1007/BF00425895
    [Google Scholar]
  30. LangeJ. KotitzR. HallerA. TrahmsL. SemmlerW. WeitschiesW. Magnetorelaxometry - a new binding specific detection method based on magnetic nanoparticles.J. Magn. Magn. Mater.200225238138310.1016/S0304‑8853(02)00657‑1
    [Google Scholar]
  31. PetrS. DanielH. MichalB. PEG-modified magnetic hypercrosslinked poly(styrene-co-divinylbenzene) microspheres to minimize sorption of serum proteins.React. Funct. Polym.20137381122112910.1016/j.reactfunctpolym.2013.05.011
    [Google Scholar]
  32. LaiB-H. ChangC-H. YehC-C. ChenD-H. Direct binding of Concanvalin A onto iron oxide nanoparticles for fast magnetic selective separation of lactoferrin.Separ. Purif. Tech.2013108838810.1016/j.seppur.2013.02.020
    [Google Scholar]
  33. HuangG. SunZ. QinH. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides.Analyst (Lond.)201413992199220610.1039/c4an00076e24615010
    [Google Scholar]
  34. BogoyevitchM.A. KendrickT.S. NgD.C.H. BarrR.K. Taking the cell by stealth or storm? Protein transduction domains (PTDs) as versatile vectors for delivery.DNA Cell Biol.2002211287989410.1089/10445490276205384612573048
    [Google Scholar]
  35. YuW. XuL. GrahamN. QuJ. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pretreatment.Sci. Rep.2015513067a10.1038/srep1306726268589
    [Google Scholar]
  36. PereiraK.A.B. AguiarK.L.N.P. PedrosaM.S. NevesM.A.F.S. Obtenção do reagente polimérico poli(acrilato de etila-co-divinilbenzeno) magnetizado modificado por hidrazina.Perspectivas da Ciência e Tecnologia20181012613410.22407/1984‑5693.2018.v10.p.126‑134
    [Google Scholar]
  37. CostaC.N. CostaM.A.S. Maria LuizC de S Silva ManoelR Souza Jr. FernandoG MichelR. Síntese e Caracterização de Copolímeros à base de Metacrilato de Metila e Divinilbenzeno com Propriedades Magnéticas. Polímeros:Ciência e Tecnologia200693260266
    [Google Scholar]
  38. CardosoA.M. LucasE.F. BarbosaC.C.R. Influência das condições reacionais nas características de copolímeros de metacrilato de metila e divinilbenzeno obtidos por polimerização em suspensão. Polímeros:Ciência e Tecnologia2004143201205
    [Google Scholar]
  39. CastanharoJ.A. FerreiraI.L.M. CostaM.A.S. CostaM.R. GeraldoM. OliveiraM.G. Microesferas magnéticas à base de poli(metacrilato de metila-co-divinilbenzeno) obtidas por polimerização em suspensão. Polímeros:Ciência e Tecnologia2015252192199
    [Google Scholar]
  40. LiuJ. QiaoS.Z. HuQ.H. LuG.Q. Magnetic nanocomposites with mesoporous structures: synthesis and applications.Small20117442544310.1002/smll.20100140221246712
    [Google Scholar]
  41. PhilippovaO. BarabanovaA. MolchanovV. KhokhlovA. Magnetic polymer beads: recent trends and developments in synthetic design and applications.Eur. Polym. J.20114754255910.1016/j.eurpolymj.2010.11.006
    [Google Scholar]
  42. AkbarzadehA. SamieiM. DavaranS. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine.Nanoscale Res. Lett.20127114410.1186/1556‑276X‑7‑14422348683
    [Google Scholar]
  43. WillardM.A. KuriharaL.K. CarpenterE.E. CalvinS. HarrisV.G. Chemically prepared magnetic nanoparticles.Int. Mater. Rev.20044912517010.1179/095066004225021882
    [Google Scholar]
  44. HuJ. LoI. ChenG. Performance and mechanism of chromate (VI) adsorption by γ -FeOOH-coated maghemite γ –Fe2O3) nanoparticles.Separ. Purif. Tech.200758768210.1016/j.seppur.2007.07.023
    [Google Scholar]
  45. SharmaS. VermaA. KumarA. KamyabH. Magnetic Nano-Composites and their Industrial Applications.Nano Hybrids and Composites20182014917210.4028/www.scientific.net/NHC.20.149
    [Google Scholar]
  46. FabianK. ShcherbakovV.P. McEnroeS.A. Measuring the curie temperature.Geochem. Geophys. Geosyst.201314494796110.1029/2012GC004440
    [Google Scholar]
  47. ShokrollahiH. A review of the magnetic properties, synthesis methods and applications of maghemite.J. Magn. Magn. Mater.2017426748110.1016/j.jmmm.2016.11.033
    [Google Scholar]
  48. Morup SMossbauerSpectroscopy studies suspension of Fe3O4 microcrystals.J. Magn. Magn. Mater.19834016310.1016/0304‑8853(83)90394‑3
    [Google Scholar]
  49. WangY.X. HussainS.M. KrestinG.P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging.Eur. Radiol.200111112319233110.1007/s00330010090811702180
    [Google Scholar]
  50. MedeirosS.F. SantosA.M. FessiH. ElaissariA. Stimuli-responsive magnetic particles for biomedical applications.Int. J. Pharm.20114031-213916110.1016/j.ijpharm.2010.10.01120951779
    [Google Scholar]
  51. YoonS. Preparation and physical characterizations of superparamagnetic maghemite nanoparticles.J. Magn.201419432332610.4283/JMAG.2014.19.4.323
    [Google Scholar]
  52. SchwamingerS.P. BauerD. Fraga-GarcíaP. WagnerF.E. BerensmeierS. Oxidation of magnetite nanoparticles: Impact on surface and crystal properties.CrystEngComm200719224625510.1039/C6CE02421A
    [Google Scholar]
  53. RocaA.G. MarcoJ.F. MoralesM.P. SernaC.J. Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles.J. Phys. Chem. C200711150185771858410.1021/jp075133m
    [Google Scholar]
  54. WallynJ. AntonN. VandammeT.F. Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications-a review.Pharmaceutics2019111160110.3390/pharmaceutics1111060131726769
    [Google Scholar]
  55. PapaefthymiouG.C. Nanoparticle magnetism.Nano Today20094543844710.1016/j.nantod.2009.08.006
    [Google Scholar]
  56. O’HandleyR.C. Modern Magnetic Materials, Principles and Applications.New YorkJohn Wiley and Sons2000768
    [Google Scholar]
  57. MendesM.S.L. RamosG.S.M. NevesM.A.F.S. PedrosaM.S. Síntese e caracterização de material nanoparticulado a base de γ-Fe2O3 e Fe3O4.Perspectivas da Ciência e Tecnologia201911556710.22407/1984‑5693.2019.v11.p.55‑67
    [Google Scholar]
  58. SalazarS. PerezL. AbrilO. Magnetic iron oxide nanoparticles in 10−40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties.Chem. Mater.2011231379138610.1021/cm103188a
    [Google Scholar]
  59. FrisonR. CernutoG. CervellinoA. Magnetite-maghemite nanoparticles in the 5-15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study.Chem. Mater.201325234820482710.1021/cm403360f
    [Google Scholar]
  60. YuP. SunQ. PanJ. Performance of poly(styrene-divinylbenzene) magnetic porous microspheres prepared by suspension polymerization for the adsorption of 2, 4-dichlorophenol and 2, 6-dichlorophenol from aqueous solutions.Adsorpt. Sci. Technol.201331764165610.1260/0263‑6174.31.7.641
    [Google Scholar]
  61. YuL. HaoG. GuJ. ZhouS. ZhangN. JiangW. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water.J. Magn. Magn. Mater.2015394142110.1016/j.jmmm.2015.06.045
    [Google Scholar]
  62. AvilésM.O. ChenH. EbnerA.D. RosengartA.J. KaminskiM.D. RitterJ.A. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting.J. Magn. Magn. Mater.2007311130631110.1016/j.jmmm.2006.11.156
    [Google Scholar]
  63. RodriguezC. CastroE. MartinA. MarínJ.R. BerganzaJ. CuevasJ.M. Magnetic poly (styrene/divinylbenzene/acrylic acid)-based hybrid microspheres for bio-molecular recognition.Micro Nano Lett.20116634935210.1049/mnl.2011.0098
    [Google Scholar]
  64. BentoH.B.S. CastroH.F. OliveiraP.C. FreitasL. Magnetized poly (STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation.J. Magn. Magn. Mater.20174269510110.1016/j.jmmm.2016.11.061
    [Google Scholar]
  65. SilvaM V C. AguiarL.G. De CastroH.F. FreitasL. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases.World J. Microbiol. Biotechnol.2018341116910.1007/s11274‑018‑2553‑1
    [Google Scholar]
  66. AdelantadoC. MurtadaK. RíosÁ. ZougaghM. Magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) for propranolol extraction and separation by capillary electrophoresis.Bioanalysis201810151193120510.4155/bio‑2018‑004530033745
    [Google Scholar]
  67. MurtadaK. de AndrésF. RíosA. ZougaghM. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis.J Electrophor201839141808181510.1002/elps.201700496
    [Google Scholar]
  68. MurtadaK. de AndrésF. GalvánI. RíosÁ. ZougaghM. LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191136: 121878.10.1016/j.jchromb.2019.12187831812837
    [Google Scholar]
  69. EskandariH. Naderi-DarehshoriA. Preparation of magnetite/poly(styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples.Anal. Chim. Acta201274313714410.1016/j.aca.2012.07.01222882834
    [Google Scholar]
  70. KermaniM. SereshtiH. NikfarjamN. Application of magnetic nanocomposite of cross-linked poly(styrene/divinylbenzene) as adsorbent for magnetic dispersive solid phase extraction-dispersive liquid-liquid micro-extraction of atrazine in soil and aqueous samples.Anal. Methods2020121834184410.1039/D0AY00374C
    [Google Scholar]
  71. HuanW Xian-ZhangS QingT JiY. Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation.Nucl Sci Tech20145: 250310.13538/j.1001‑8042/nst.25.030301
    [Google Scholar]
  72. SharafatM.K. AhmadH. AlamM.A. RahmanM.M. Preparation of highly cross-linked magnetic polymer composite particles and application in the separation of arsenic from water.Rajshahi Univ J Sci Eng201644677410.3329/rujse.v44i0.30389
    [Google Scholar]
  73. ZhuH. TanX. TanL. Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb2+ and Cd2.ACS Sustain. Chem. Eng.2018645206521310.1021/acssuschemeng.7b04868
    [Google Scholar]
  74. ChangJ. GuanX. PanS. JiaM. ChenY. FanH. Sulfonated poly(styrene-divinylbenzene-glycidyl methacrylate)-capsulated magnetite nanoparticles as a recyclable catalyst for one-step biodiesel production from high free fatty acid-containing feedstocks.New J. Chem.201842130741308010.1039/C7NJ05075E
    [Google Scholar]
  75. BassiJ.J. ToderoL.M. LageF.A.P. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester.Int. J. Biol. Macromol.20169290090910.1016/j.ijbiomac.2016.07.09727477246
    [Google Scholar]
  76. RodriguesR.C. Virgen-OrtízJ.J. Dos SantosJ.C.S. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions.Biotechnol. Adv.201937574677010.1016/j.biotechadv.2019.04.00330974154
    [Google Scholar]
  77. Oil tanker spill statistics. 50 years of data, 1970-2019.2020Available from: https://www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf
    [Google Scholar]
  78. FioccoR.J. LewisA. Oil spill dispersants.Pure Appl. Chem.1999711274210.1351/pac199971010027
    [Google Scholar]
  79. KujawinskiE.B. KidoM.C. ValentineD.L. Fate of dispersants associated with the deepwater horizon oil spill.Environ. Sci. Technol.20114541298130610.1021/es103838p21265576
    [Google Scholar]
  80. AtlasR.M. Petroleum biodegradation and oil spill bioremediation.Mar. Pollut. Bull.19953117818210.1016/0025‑326X(95)00113‑2
    [Google Scholar]
  81. AliN. DashtiN. KhanaferM. Al-AwadhiH. RadwanS. Bioremediation of soils saturated with spilled crude oil.Sci. Rep.2020101111610.1038/s41598‑019‑57224‑x31980664
    [Google Scholar]
  82. BhardwajN BhaskarwarA N A review on sorbent devices for oil-spill control.Environ Pollut2018243Pt B17581771
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220304091807
Loading
/content/journals/caps/10.2174/2452271605666220304091807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test