Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

The nanoparticles as drug carriers have demonstrated enhanced targeting, and sustained/controlled drug release, as evident from numerous investigations that have shown promising outcomes facilitating the wellbeing of humans in the desired manner. The lipid-based nanoparticles are biodegradable and considered biocompatible by virtue of being composed of lipid moieties mimicking physiological lipids of biological systems which is their prime advantage over the other polymeric systems. A variety of such lipid carriers have been reported to be delivered from the parenteral route. However, there are certain pitfalls which are associated with lipid nanoparticles such as toxicity, poor scale up potential, immunological reactions and absence of straight forward regulatory guidelines that address the issues of lipoidal nanocarriers such as their classification, approval and compliance of governmental policies. Therefore attention must be given to address the technological and regulatory challenges associated with lipoidal nano-formulations for parenteral administration to smoothen the approval process throughout the world and bringing the same to the terminal users on time.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999200706014809
2021-04-01
2024-12-25
Loading full text...

Full text loading...

References

  1. AhireE. ThakkarS. DarshanwadM. MisraM. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications.Acta Pharm. Sin. B20188573375510.1016/j.apsb.2018.07.01130245962
    [Google Scholar]
  2. VermaS. BurgessD. Solid nanosuspensions: The emerging technology and pharmaceutical applications as nanomedicine.Pharmaceutical suspensions.New YorkSpringer2009285318
    [Google Scholar]
  3. LuY. LiY. WuW. Injected nanocrystals for targeted drug delivery.Acta Pharm. Sin. B20166210611310.1016/j.apsb.2015.11.00527006893
    [Google Scholar]
  4. ShegokarR. MüllerR.H. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives.Int. J. Pharm.20103991-212913910.1016/j.ijpharm.2010.07.04420674732
    [Google Scholar]
  5. NguyenK.C. WillmoreW.G. TayabaliA.F. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells.Toxicology201330611412310.1016/j.tox.2013.02.01023485651
    [Google Scholar]
  6. SchmidG. DeckerM. ErnstH. Small dimensions and material properties A definition of nanotechnology.Europäische Akademie20031135
    [Google Scholar]
  7. StyliosG.K. GiannoudisP.V. WanT. Applications of nanotechnologies in medical practice.Injury200536Suppl. 4S6S1310.1016/j.injury.2005.10.01116291325
    [Google Scholar]
  8. YokoyamaM. Drug targeting with nano-sized carrier systems.J. Artif. Organs200582778410.1007/s10047‑005‑0285‑016094510
    [Google Scholar]
  9. SuriS.S. FenniriH. SinghB. Nanotechnology-based drug delivery systems.J. Occup. Med. Toxicol.200721610.1186/1745‑6673‑2‑1618053152
    [Google Scholar]
  10. De JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  11. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.D.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  12. SurenyaR.S. NairS.K.V. KumarL.V. Pharmaceutical nano drug delivery route administration for cancer therapy.Adv. Sci. Eng. Med.2015773974510.1166/asem.2015.1767
    [Google Scholar]
  13. VermaP. ThakurA.S. DeshmukhK. JhaA.K. VermaS. Routes of drug administration.Int J Pharm Stud Res201015459
    [Google Scholar]
  14. BarenholzY. Doxil®--the first FDA-approved nano-drug: lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  15. JawaharN. MeyyanathanS.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review.Int. J. Health Allied Sci.2012121722310.4103/2278‑344X.107832
    [Google Scholar]
  16. MehnertW. MäderK. Solid lipid nanoparticles: Production, characterization and applications.Adv. Drug Deliv. Rev.2001472-316519610.1016/S0169‑409X(01)00105‑311311991
    [Google Scholar]
  17. BraddockM. Nanomedicines: Design, delivery and detection.CambridgeRoyal Society of Chemistry201610.1039/9781782622536
    [Google Scholar]
  18. TianX. LiH. ZhangD. LiuG. JiaL. ZhengD. ShenJ. ShenY. ZhangQ. Nanosuspension for parenteral delivery of a p-terphenyl derivative: Preparation, characteristics and pharmacokinetic studies.Colloids Surf. B Biointerfaces2013108293310.1016/j.colsurfb.2013.02.03823528604
    [Google Scholar]
  19. PanayiotisP.C. MaheshV.C. RobertS. Advances in lipid nanodispersions for parenteral drug delivery and targetting.Science200860757767
    [Google Scholar]
  20. JoshiM.D. MüllerR.H. Lipid nanoparticles for parenteral delivery of actives.Eur. J. Pharm. Biopharm.200971216117210.1016/j.ejpb.2008.09.00318824097
    [Google Scholar]
  21. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  22. WissingS.A. KayserO. MüllerR.H. Solid lipid nanoparticles for parenteral drug delivery.Adv. Drug Deliv. Rev.20045691257127210.1016/j.addr.2003.12.00215109768
    [Google Scholar]
  23. AntonN. BenoitJ.P. SaulnierP. Design and production of nanoparticles formulated from nano-emulsion templates-a review.J. Control. Release2008128318519910.1016/j.jconrel.2008.02.00718374443
    [Google Scholar]
  24. RossiJ. Principles in the development of intravenous lipid emulsions.Role of lipid excipients in modifying oral and parenteral drug delivery.Hoboken, New JerseyWiley-Interscience200788123
    [Google Scholar]
  25. WangZ. LiZ. ZhangD. MiaoL. HuangG. Development of etoposide-loaded bovine serum albumin nanosuspensions for parenteral delivery.Drug Deliv.2015221798510.3109/10717544.2013.87160024401038
    [Google Scholar]
  26. DoijadR.C. ManviF.V. SwatiS. RonyM.S. Niosomal drug delivery of Cisplatin: Development and characterization.Indian Drugs200845713718
    [Google Scholar]
  27. MamotC. DrummondD.C. HongK. KirpotinD.B. ParkJ.W. Liposome-based approaches to overcome anticancer drug resistance.Drug Resist. Updat.20036527127910.1016/S1368‑7646(03)00082‑714643297
    [Google Scholar]
  28. MarchioriM.L. LubiniG. Dalla NoraG. FriedrichR.B. FontanaM.C. OuriqueA.F. BastosM.O. RigoL.A. SilvaC.B. TedescoS.B. BeckR.C. Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: Preparation, characterization, and in vitro drug release study. Drug Dev. Ind. Pharm.201036896297110.3109/0363904100359896020590450
    [Google Scholar]
  29. BaeY. KataokaK. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers.Adv. Drug Deliv. Rev.2009611076878410.1016/j.addr.2009.04.01619422866
    [Google Scholar]
  30. TyrrellZ.L. ShenY.Q. RadoszM. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers.Prog. Polym. Sci.2010351128114310.1016/j.progpolymsci.2010.06.003
    [Google Scholar]
  31. RadtkeM. MullerR.H. Novel concept of topical cyclosporine delivery with supersaturated SLN creams.Int Symp Control Rel Bioact Mater200128470471
    [Google Scholar]
  32. CavalliR. CaputoO. GascoM.R. Solid lipospheres of doxorubicin and idarubicin.Int. J. Pharm.199389R9R1210.1016/0378‑5173(93)90313‑5
    [Google Scholar]
  33. zur MuhlenA. MehnertW. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles.Pharmazie199853552555
    [Google Scholar]
  34. ZhangL. PornpattananangkuD. HuC.M.J. HuangC.M. Development of nanoparticles for antimicrobial drug delivery.Curr. Med. Chem.201017658559410.2174/09298671079041629020015030
    [Google Scholar]
  35. ShahP. BhalodiaD. ShelatP. Nanoemulsion: A pharmaceutical review.Syst Rev Pharm20101243210.4103/0975‑8453.59509
    [Google Scholar]
  36. McClementsD.J. Colloidal bases of emulsion colour.Curr Opin Colloid In Sci2002745145510.1016/S1359‑0294(02)00075‑4
    [Google Scholar]
  37. AboofazeliR. Nanometric-scaled emulsions (nanoemulsions).Iran. J. Pharm. Res.20109432532624381596
    [Google Scholar]
  38. PatravaleV.B. DateA.A. KulkarniR.M. Nanosuspensions: A promising drug delivery strategy.J. Pharm. Pharmacol.200456782784010.1211/002235702369115233860
    [Google Scholar]
  39. PuX. SunJ. Moli and Zhonggui He. Formulation of nanosuspension as a new approach for the delivery of poorly soluble drugs.Curr. Nanosci.2009541742710.2174/157341309789378177
    [Google Scholar]
  40. MuthuM.S. SinghS. Poly (D, L-lactide) nanosuspensions of risperidone for parenteral delivery: Formulation and in-vitro evaluation. Curr. Drug Deliv.200961626810.2174/15672010978704830219418957
    [Google Scholar]
  41. UchegbuI.F. VyasS.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery.Int. J. Pharm.1998172337010.1016/S0378‑5173(98)00169‑0
    [Google Scholar]
  42. AkhileshD. BiniK.B. KamathJ.V. Review on span-60 based non-ionic surfactant vesicles (niosomes) as novel drug delivery.Int. J. Res. Pharm. Biomed. Sci.20123612
    [Google Scholar]
  43. SeleciD.A. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.2016737230611310.1155/2016/7372306
    [Google Scholar]
  44. FangJ.Y. HongC.T. ChiuW.T. WangY.Y. Effect of liposomes and niosomes on skin permeation of enoxacin.Int. J. Pharm.20012191-2617210.1016/S0378‑5173(01)00627‑511337166
    [Google Scholar]
  45. CarafaM. MarianecciC. Di MarzioL. De CaroV. GiandaliaG. GiannolaL.I. SantucciE. Potential dopamine prodrug-loaded liposomes: Preparation, characterization, and in vitro stability studies. J. Liposome Res.201020325025710.3109/0898210090338412919958070
    [Google Scholar]
  46. SharmaA. SharmaU.S. Liposomes in drug delivery: Progress and limitations.Int. J. Pharm.199715412314010.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  47. VemuriS. RhodesC.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review.Pharm. Acta Helv.19957029511110.1016/0031‑6865(95)00010‑77651973
    [Google Scholar]
  48. ZhangL. GranickS. How to stabilize phospholipid liposomes (using nanoparticles).Nano Lett.20066469469810.1021/nl052455y16608266
    [Google Scholar]
  49. CevcG. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.1996133-425738810.1615/CritRevTherDrugCarrierSyst.v13.i3‑4.309016383
    [Google Scholar]
  50. MinkovI. IvanovaT. PanaiotovI. ProustJ. SaulnierP. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film.Colloids Surf. B Biointerfaces200544419720310.1016/j.colsurfb.2005.07.00116081256
    [Google Scholar]
  51. VonarbourgA. SaulnierP. PassiraniC. BenoitJ.P. Electrokinetic properties of noncharged lipid nanocapsules: Influence of the dipolar distribution at the interface.Electrophoresis200526112066207510.1002/elps.20041014515852355
    [Google Scholar]
  52. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.02619409468
    [Google Scholar]
  53. HoarauD. DelmasP. DavidS. RouxE. LerouxJ.C. Novel long-circulating lipid nanocapsules.Pharm. Res.200421101783178910.1023/B:PHAM.0000045229.87844.2115553223
    [Google Scholar]
  54. FachinettoJ.M. OuriqueA.F. LubiniG. TedescoS.B. SilvaA.C.F. BeckR.C.R. Tretinoin-loaded polymeric nanocapsules: Evaluation of the potential to improve the antiproliferative activities on Allium cepa root-tip compared to the free drug.Lat. Am. J. Pharm.200827668673
    [Google Scholar]
  55. FontanaM.C. CoradiniK. GuterresS.S. PohlmannA.R. BeckR.C.R. Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: Influence of the nanostructured system.J. Biomed. Nanotechnol.20095325426310.1166/jbn.2009.103020055007
    [Google Scholar]
  56. ConstantinidesP.P. ChaubalM.V. ShorrR. Advances in lipid nanodispersions for parenteral drug delivery and targeting.Adv. Drug Deliv. Rev.200860675776710.1016/j.addr.2007.10.01318096269
    [Google Scholar]
  57. KlibanovA.L. MaruyamaK. TorchilinV.P. HuangL. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.FEBS Lett.1990268123523710.1016/0014‑5793(90)81016‑H2384160
    [Google Scholar]
  58. TrubetskoyV.S. TorchilinV.P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents.Adv. Drug Deliv. Rev.19951631132010.1016/0169‑409X(95)00032‑3
    [Google Scholar]
  59. LasicD.D. WoodleM.C. MartinF.J. ValentincicT. Phase behavior of ‘stealth-lipid’ decithin mixtures.Period. Biol.199193287290
    [Google Scholar]
  60. LasicD.D. Mixed micelles in drug delivery.Nature1992355635727928010.1038/355279a01731228
    [Google Scholar]
  61. HwangS.R. LimS.J. ParkJ.S. KimC.K. Phospholipid-based microemulsion formulation of all-trans-retinoic acid for parenteral administration.Int. J. Pharm.20042761-217518310.1016/j.ijpharm.2004.02.02515113624
    [Google Scholar]
  62. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑112176234
    [Google Scholar]
  63. RadtkeM. MullerR.H. NLC-nanostructured lipid carriers: The new generation of lipid drug carriers.New Drugs2001297138
    [Google Scholar]
  64. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  65. ShidhayeS.S. VaidyaR. SutarS. PatwardhanA. KadamV.J. Solid lipid nanoparticles and nanostructured lipid carriers innovative generations of solid lipid carriers.Curr. Drug Deliv.20085432433110.2174/15672010878591508718855604
    [Google Scholar]
  66. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.2002b54Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  67. TeeranachaideekulV. MüllerR.H. JunyaprasertV.B. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC) effects of formulation parameters on physicochemical stability.Int. J. Pharm.20073401-219820610.1016/j.ijpharm.2007.03.02217482778
    [Google Scholar]
  68. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  69. SolaroR. ChielliniF. BattistiA. Targeted delivery of protein drugs by nanocarriers.Materials (Basel)201031928198010.3390/ma3031928
    [Google Scholar]
  70. DinF.U. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  71. LiJ. WangX. ZhangT. A review on phospholipids and their main applications in drug delivery systems.Asian J Pharm Sci201510819810.1016/j.ajps.2014.09.004
    [Google Scholar]
  72. GabizonA.A. Applications of liposomal drug delivery systems to cancer therapy.Nanotechnology for cancer therapy. AmijiM.M. Boca RatonCRC Press2007595611
    [Google Scholar]
  73. KaurC.D. NaharM. JainN.K. Lymphatic targeting of zidovudine using surface-engineered liposomes.J. Drug Target.2008161079880510.1080/1061186080247568819005941
    [Google Scholar]
  74. HuF.Q. YuanH. ZhangH.H. FangM. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization.Int. J. Pharm.20022391-212112810.1016/S0378‑5173(02)00081‑912052697
    [Google Scholar]
  75. WestesenK. BunjesH. KochM.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential.J. Control. Release19974822323610.1016/S0168‑3659(97)00046‑1
    [Google Scholar]
  76. KimJ.K. ParkJ.S. KimC.K. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release.Int. J. Pharm.20103831-220921510.1016/j.ijpharm.2009.09.00819747966
    [Google Scholar]
  77. ChinsriwongkulA. ChareanputtakhunP. NgawhirunpatT. RojanarataT. Sila-onW. RuktanonchaiU. OpanasopitP. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug.AAPS PharmSciTech201213115015810.1208/s12249‑011‑9733‑822167418
    [Google Scholar]
  78. JiaL. ZhangD. LiZ. DuanC. WangY. FengF. WangF. LiuY. ZhangQ. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies.Colloids Surf. B Biointerfaces201080221321810.1016/j.colsurfb.2010.06.00820621458
    [Google Scholar]
  79. LiuD. LiuZ. WangL. ZhangC. ZhangN. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel.Colloids Surf. B Biointerfaces201185226226910.1016/j.colsurfb.2011.02.03821435845
    [Google Scholar]
  80. ConstantinidesP.P. LambertK.J. TustianA.K. SchneiderB. LaljiS. MaW. WentzelB. KesslerD. WorahD. QuayS.C. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel.Pharm. Res.200017217518210.1023/A:100756523013010751032
    [Google Scholar]
  81. AraújoF.A. KelmannR.G. AraújoB.V. FinattoR.B. TeixeiraH.F. KoesterL.S. Development and characterization of parenteral nanoemulsions containing thalidomide.Eur. J. Pharm. Sci.201142323824510.1016/j.ejps.2010.11.01421130164
    [Google Scholar]
  82. WangT. FengL. YangS. LiuY. ZhangN. Ceramide lipid-based nanosuspension for enhanced delivery of docetaxel with synergistic antitumor efficiency.Drug Deliv.201724180081010.1080/10717544.2016.122585328502199
    [Google Scholar]
  83. WangL. LiM. ZhangN. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy.Int. J. Nanomedicine201273281329422802688
    [Google Scholar]
  84. RuckmaniK. SankarV. SivakumarM. Tissue distribution, pharmacokinetics and stability studies of zidovudine delivered by niosomes and proniosomes.J. Biomed. Nanotechnol.201061435110.1166/jbn.2010.110120499831
    [Google Scholar]
  85. AllardE. PassiraniC. GarcionE. PigeonP. VessièresA. JaouenG. BenoitJ.P. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas.J. Control. Release2008130214615310.1016/j.jconrel.2008.05.02718582507
    [Google Scholar]
  86. OuriqueA.F. AzoubelS. FerreiraC.V. SilvaC.B. MarchioriM.C. PohlmannA.R. GuterresS.S. BeckR.C. Lipid-core nanocapsules as a nanomedicine for parenteral administration of tretinoin: Development and in vitro antitumor activity on human myeloid leukaemia cells. J. Biomed. Nanotechnol.20106321422310.1166/jbn.2010.112021179938
    [Google Scholar]
  87. KhalidM.N. SimardP. HoarauD. DragomirA. LerouxJ.C. Long circulating poly(ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors.Pharm. Res.200623475275810.1007/s11095‑006‑9662‑516550475
    [Google Scholar]
  88. Alkan-OnyukselH. RamakrishnanS. ChaiH.B. PezzutoJ.M. A mixed micellar formulation suitable for the parenteral administration of taxol.Pharm. Res.199411220621210.1023/A:10189430217057909371
    [Google Scholar]
  89. HjelmR.P. ThiyagarajanP. OnyukselH.A. Organization of phosphatidycholine and bile salt in rodlike mixed micelles.J. Phys. Chem.1992968653866110.1021/j100200a080
    [Google Scholar]
  90. SahooB.K. PattajoshiS.P. Challenges of nano drug delivery and its safety issues.Int J Pharm and Pharm Res20166523531
    [Google Scholar]
  91. WinterE. PizzolC.D. LocatelliC. Crezkynski-PasaT.B. Development and evaluation of lipid nanoparticles for drug delivery: Study of toxicity in vitro and in vivo . J. Nanosci. Nanotechnol.20151511027433582
    [Google Scholar]
  92. PowersK.W. BrownS.C. KrishnaV.B. WasdoS.C. MoudgilB.M. RobertsS.M. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation.Toxicol. Sci.200690229630310.1093/toxsci/kfj09916407094
    [Google Scholar]
  93. OberdosterG. Safety assessment for nanotechnology and nanomedicine: Concept of nanotoxicology.J. Intern. Med.20092678910510.1111/j.1365‑2796.2009.02187.x
    [Google Scholar]
  94. SharmaA. MadhunapantulaS.V. RobertsonG.P. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems.Expert Opin. Drug Metab. Toxicol.201281476910.1517/17425255.2012.63791622097965
    [Google Scholar]
  95. DhawanA. SharmaV. Toxicity assessment of nanomaterials: Methods and challenges.Anal. Bioanal. Chem.2010398258960510.1007/s00216‑010‑3996‑x20652549
    [Google Scholar]
  96. YangY. QinZ. ZengW. Toxicity assessment of nanoparticles in various systems and organs.Nanotechnol. Rev.2017627928910.1515/ntrev‑2016‑0047
    [Google Scholar]
  97. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  98. MillerC.R. BondurantB. McLeanS.D. McGovernK.A. O’BrienD.F. Liposome-cell interactions in vitro : Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry19983737128751288310.1021/bi980096y9737866
    [Google Scholar]
  99. ThanosC. SandorM. JongY. Inter-species uptake of polymeric particles.Proc. MRS1999550657010.1557/PROC‑550‑65
    [Google Scholar]
  100. Galindo-RodríguezS.A. PuelF. BriançonS. AllémannE. DoelkerE. FessiH. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles.Eur. J. Pharm. Sci.2005254-535736710.1016/j.ejps.2005.03.01315916889
    [Google Scholar]
  101. ColomboA.P. BriançonS. LietoJ. FessiH. Project, design, and use of a pilot plant for nanocapsule production.Drug Dev. Ind. Pharm.200127101063107210.1081/DDC‑10010836911794809
    [Google Scholar]
  102. PurushothamH. Transfer of nanotechnologies from R&D institutions to SMEs in India.Tech Monitor20122333
    [Google Scholar]
  103. KhanM.U. Problems of technology transfer from laboratory to industry and policy issues in India.Int. J. Serv. Technol. Manag.2000137539410.1504/IJSTM.2000.001583
    [Google Scholar]
  104. MazzolaL. Commercializing nanotechnology.Nat. Biotechnol.200321101137114310.1038/nbt1003‑113714520392
    [Google Scholar]
  105. McNeilR.D. LoweJ. MastroianniT. CroninJ. FerkD. Report-Barriers to nanotechnology commercialization.U.S. Department of Commerce Technology Administration2007
    [Google Scholar]
  106. AithalP.S. AithalS. Nanotechnology innovations and commercialization –opportunities, challenges & reasons for delay.MPRA201619
    [Google Scholar]
  107. JainS. EdwardsM. SpencerL. Advances and challenges in the development of drug delivery systems – A European perspective.Regulatory Rapporteur20161348
    [Google Scholar]
  108. Medicines and Healthcare products Regulatory Agency (MHRA). Guidance: Decide if your product is a medicine or a medical device.2019Available from:https://www.gov.uk/guidance/decide-if-your-product-is-a-medicine-or-a-medical-device
  109. MühlebachS. Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach?Adv. Drug Deliv. Rev.201813112213110.1016/j.addr.2018.06.02429966685
    [Google Scholar]
  110. MühlebachS. BorchardG. YildizS. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars.Nanomedicine (Lond.)201510465967410.2217/nnm.14.18925723097
    [Google Scholar]
  111. DavidB Fischer. Nanotechnology - scientific and regulatory challenges, 19 Vill.Envtl LJ2008Available from:https://digitalcommons.law.villanova.edu/elj/vol19/iss2/2
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999200706014809
Loading
/content/journals/caps/10.2174/2452271604999200706014809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test